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Abstract

Background—Non-nucleoside inhibitors of HIV reverse transcriptase are an important 

component of treatment against HIV infection. Novel inhibitors are sought that increase potency 

against variants that contain the Tyr181Cys mutation.

Methods—Molecular dynamics based free energy perturbation simulations have been run to 

study factors that contribute to protein–ligand binding, and the results are compared with those 

from previous Monte Carlo based simulations and activity data.

Results—Predictions of protein–ligand binding modes are very consistent for the two simulation 

methods, which are attributed to the use of an enhanced sampling protocol. The Tyr181Cys 

binding pocket supports large, hydrophobic substituents, which is in good agreement with 

experiment.

Conclusions—Although some discrepancies exist between the results of the two simulation 

methods and experiment, free energy perturbation simulations can be used to rapidly test small 

molecules for gains in binding affinity.

General significance—Free energy perturbation methods show promise in providing fast, 

reliable and accurate data that can be used to complement experiment in lead optimization 

projects. This article is part of a Special Issue entitled “Recent developments of molecular 

dynamics”.
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1. Introduction

Optimization of protein–ligand binding affinity is a central goal of small molecule drug 

discovery. A wide range of computational methods has been developed for this purpose, but 

free energy perturbation (FEP), in combination with molecular dynamics (MD) or Monte 

Carlo (MC) sampling, is a particularly attractive option, because it provides a rigorous 
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theoretical means to compute changes in the free energy of binding. There is a growing list 

of examples of drug discovery programs that have benefited from insights obtained from 

FEP predictions [1,2]. Indeed, to borrow an example from our own lab, FEP was used, in 

conjunction with biological assays and X-ray crystallography, to aid the optimization of a 5-

μM docking hit to an extremely potent (55 pM) anti-HIV agent [3,4]. Yet, the broad use of 

FEP has yet to be realized [5], mainly due to perceived difficulties in obtaining accurate 

predictions on a timescale that can impact live projects.

In recent years, there have been signs that these limitations in the accuracy, reliability and 

speed of FEP simulations are being overcome. The predictive power of FEP relies on the 

assumption of ergodicity, that is, that in effect all relevant geometries of the protein–ligand 

complex are being sampled with the correct Boltzmann weight. Numerous examples of 

quasi-ergodic sampling have been reported in both the MD and MC literature, whereby the 

protein and/or the ligand are trapped for long times in local free-energy minima [6-8]. There 

are, however, a wide range of enhanced sampling methods available, usually based on 

tempering the system or modifying the underlying potential energy surface, which can 

circumvent this problem without significantly affecting the computational cost [9]. Even in 

the limit of complete sampling, the accuracy of FEP is dependent on the quality of the 

employed force field. Although the functional form of most force fields has remained 

largely unchanged, parameter determination and benchmarking are being performed on 

increasingly large quantum mechanical and experimental data sets [10-13], thus improving 

the transferability of the parameters and confidence in the results. In addition, adding extra 

physical terms such as polarization promises to further improve the description of ligand 

binding. Finally, an important consideration is the time taken to obtain the results, both in 

terms of computational cost and human effort. The move to exploit the computing power of 

graphics processing units (GPUs) by entirely re-writing molecular dynamics algorithms has 

resulted in order-of-magnitude speedups [14,15], while automated workflows significantly 

reduce the set-up time for the calculations [16].

In this paper, we compare FEP results using two sets of software, MCPRO and Desmond, 

for the retrospective design of inhibitors of a well-studied drug target. MCPRO has been 

used extensively for lead optimization through FEP calculations with MC sampling of 

protein–ligand complexes [1,17]. An attractive MD/FEP alternative has recently emerged. 

Namely, Desmond, which is distributed as part of the Schrödinger package and is fully 

integrated with Maestro [18,19], which allows the efficient set-up of FEP calculations with 

MD sampling. Both MCPRO and Desmond optionally include replica exchange with solute 

tempering (REST) for enhanced sampling [7,20,21]. This allows the heating of local regions 

of the system, thus substantially improving traversal of the free energy surface while 

sampling rigorously from the Boltzmann ensemble. The REST algorithm has been shown to 

improve agreement with experiment in typical medicinal chemistry projects [8,22]. Both 

codes use OPLS force fields [23,24], though there are differences in the parameters and the 

assignment of partial charges [11,12,25,26].

The application of MCPRO with REST to the optimization of non-nucleoside inhibitors of 

HIV-1 reverse transcriptase (NNRTIs) has previously been described [8]. This class of 

molecules is an important component of anti-HIV treatment; however, patients who begin 
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NNRTI treatment often develop the Tyr181Cys (Y181C) mutation, which renders many 

agents inactive. For example, the benzyloxazole molecule with R = H, shown in Fig. 1, has 

an EC50 of 6 nM towards the wild-type protein, but 420 nM towards the variant strain 

bearing the Y181C mutation [27]. It was hypothesized that substituents at the 4-R position 

might fill the cavity vacated by Y181, thus restoring activity against the mutant form [27]. 

Indeed, FEP calculations predicted that bulkier alkyl groups, such as ethyl and isopropyl, 

should give gains in binding free energy, and assays using infected T-cells showed that both 

analogues have sub-10 nM potency against both viral strains [8,27]. The nature of the bulky 

alkyl groups at the 4-R position necessitates enhanced sampling methods to cross torsional 

energy barriers, and the assay data spans two orders of magnitude. Thus, the current data set 

provides an excellent test of the ability of the FEP methodology to distinguish between weak 

and strong inhibitors in a typical medicinal chemistry setting. In what follows, the extent to 

which MD-based FEP is likely to be useful in a lead design effort is evaluated by testing the 

reliability, accuracy and speed of the simulations, and the results are compared with our 

previous MC-based study and assay data.

2. Computational details

2.1. Desmond

Structural preparation of the benzyloxazole ligands in complex with the HIV-RT receptor 

followed identical protocols as described elsewhere [8,27-30]. Briefly, the model system 

was built from the PDB ID: 1S9E file [31], using the MCPRO [17] and BOMB [1] software 

packages. The system was truncated to include only the 178 amino acids closest to the 

ligand. The Y181C variant was generated manually from the wild-type structure. All 

complexes were relaxed using conjugate gradients’ minimization in MCPRO prior to the 

simulations. It should be noted that the system preparation could also have been performed 

using the Protein Preparation Wizard in Maestro [19]. However, using an identical initial 

system affords a direct comparison between the Desmond FEP scheme and previously 

published MCPRO results [8].

In Desmond [18], the systems were solvated in orthorhombic, periodic boxes, with a 5 Å (10 

Å) buffer between the system and the edge of the simulation box for bound (unbound) 

simulations. No counter ions were used and the systems were overall charged to be neutral. 

The protein and ligands were treated using the OPLS2.1 force field [12], and water with the 

SPC model. Ligand charges were assigned using a combination of the Cramer and Truhlar 

CM1A charge model [25], and a set of bond charge correction terms (BCC) [26]. The 

Maestro force field builder [19] identified two torsional angles in the benzyloxazole 

molecule with missing OPLS2.1 parameters. A torsional scan was automatically run at the 

LMP2/cc-pVTZ(-f)//B3LYP/6-31G** level, and the parameters were obtained by fitting to 

the resulting quantum mechanical energy profile. The ligand R-group FEP transformations 

were set up using the Maestro software [19]. The systems were equilibrated using standard 

Desmond set-up protocols, which comprise short minimization and MD runs. The final 

averaging stage of each FEP window was run at 300 K in the NPT ensemble for 5 ns unless 

otherwise stated.
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The ligand R-group mutation is controlled by an alchemical parameter λ, which varies 

between 0 and 1 over the course of the FEP simulation. Sampling is enhanced to some 

extent in Desmond by allowing periodic replica exchange moves along the alchemical λ-

coordinate, which is a protocol known as λ-hopping. It has been shown that sampling in FEP 

simulations may be enhanced still further by scaling the potential energy of a selected 

subsystem by a factor less than one at intermediate λ-windows using the replica exchange 

with solute tempering (REST) procedure [7,20-22]. In REST, since the overall effect of the 

scaling is to increase the rate of transitions across free energy barriers, the selected 

subsystem is often referred to as the “hot” region. The scaling factor is related to the 

effective temperature of the hot region; a higher effective temperature corresponds to a 

smaller potential energy scaling factor. It should be emphasized that the hot region does not 

have a higher kinetic energy than the rest of the system. By allowing replica exchanges with 

acceptance probabilities determined by the Metropolis criterion between neighboring λ-

windows, the conformations that are sampled in the high temperature, intermediate λ-

windows are able to propagate to the end-points of the FEP alchemical transformation, thus 

enhancing sampling at all values of λ. In what follows, Desmond simulations with high 

temperature, enhanced sampling at intermediate alchemical λ-windows are referred to as 

FEP/REST simulations.

Following the standard Desmond FEP protocol, the simulation was split into 12 λ-windows, 

with replica exchange attempted every 1.2 ps. The hot region is determined automatically as 

the group of the ligand that is being mutated. Although it is possible to extend the hot region 

to include more of the ligand and the receptor [22], by limiting the hot region to a single 

group, very high effective temperatures can be employed while maintaining good exchange 

rates between replicas. Effective temperatures were selected automatically with the aim of 

achieving 30% exchange rates between λ-windows. The highest effective temperature, 

reached at the central λ-window, was in excess of 1400 K for all of the transformations 

studied here. The free energy differences between the initial and final states are calculated 

using the Bennett acceptance ratio (BAR) method [32], and the errors estimated using 

bootstrapping [33].

2.2. MCPRO

The corresponding MC/FEP simulations have been described in detail elsewhere [8], but it 

is worth explicitly highlighting the main differences between the approaches of MCPRO and 

Desmond. The biggest difference is in the method of sampling the degrees of the freedom of 

the protein–ligand complex and the ligand in water. The MCPRO calculations used MC 

sampling with REST for the ligand and a fixed protein backbone. Backbone sampling is 

possible via concerted rotations, but this is often not used [34]. Furthermore, a ‘flip’ 

algorithm allowed selected dihedral angles to undergo attempted jumps, which are much 

larger than typical MC moves [35], and this has been shown to work well with the REST 

method [8]. Although both codes use OPLS force fields [23,24], there are differences in 

their parameterization, particularly for the torsional energetics, which has been trained on 

different quantum mechanical data sets [10,12]. In addition, assignment of ligand partial 

atomic charges in both cases follows the CM1A scheme, but in MCPRO environmental 

polarization is included via a charge scaling factor [36]. Finally, the free energy changes 
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reported here were computed using 11 λ-windows of simple overlap sampling, which has 

been shown to be well-converged for the types of small mutations investigated [37]. In 

practice, to incorporate the REST scheme, at each λ-window, four replicas are run in parallel 

on the same node, each representing a different effective temperature.

3. Results

3.1. Isopropyl to ethyl

To investigate the benefits of using FEP/REST in a typical medicinal chemistry setting, the 

energetics of the R = isopropyl to ethyl transformation were studied first. The chosen 

transformation is interesting, because it involves two common hydrophobic groups, and the 

symmetry of the isopropyl group means that the user has a choice of two methyl groups 

which may be mutated to hydrogen to give ethyl. The free energy of the transformation 

should, of course, be independent of which of these two mutation paths is chosen. It has 

previously been shown [8] that this mutation demonstrates the problems of non-ergodic 

sampling when enhanced sampling methods are not used — simulations with slightly 

different starting conditions gave free energies that differed by up to 0.5 kcal/mol and, more 

worryingly, the two different methyl to hydrogen mutation pathways showed differences in 

excess of 1.5 kcal/mol. By incorporating the REST enhanced sampling protocol, alongside 

the ‘flip’ algorithm for attempting large jumps in select dihedral angles [35], it was shown in 

that study that much more consistent results, which are independent of both starting 

conditions and mutation pathway, could be obtained.

Table 1 shows a comparison of the free energies of the R = i-Pr to Et transformation in the 

wild-type HIV-RT protein, using a range of simulation protocols within Desmond. Paths 1 

and 2 denote the two branches of the i-Pr group, which may be mutated from methyl to 

hydrogen to give ethyl. Using standard FEP, with no enhanced sampling, there is a 

difference of nearly 1 kcal/mol in the computed ΔG between the two mutation pathways, 

which should give identical results. This is very similar to previous observations that used 

MCPRO with no enhanced sampling procedure [8], and clearly reflects incomplete 

sampling. The discrepancy is somewhat improved by using the λ -hopping scheme in 

Desmond, and the difference in computed free energies falls to close to 0.2 kcal/mol. The λ-

hopping scheme [38] allows periodic replica-exchange moves along the alchemical λ-

coordinate. In theory, conformational sampling is enhanced in this scheme via mixing of the 

coordinates sampled along the FEP trajectory. However, as discussed in more detail 

elsewhere [39,40], sampling will be incomplete if there are no values of λ that reduce a 

particular free energy barrier. Our results are consistent with this picture and previous 

observations in the literature [7], in that λ-hopping improves sampling over standard FEP, 

but some dependence on the mutation pathway remains. In contrast, using the FEP/REST 

scheme, in which intermediate λ-windows are run at higher effective temperatures, the free 

energy of the i-Pr to Et transformation is effectively independent of the mutation pathway 

(differences less than 0.1 kcal/mol).

The conformational sampling during the FEP/REST simulations may be compared with 

previous results using MCPRO. In this respect, the key degree of freedom is the dihedral 

angle labeled φ in Fig. 2. Given the differences between the two computational methods that 
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were outlined in Section 2.2, the agreement between the sampled conformations in the two 

simulations is remarkably good. In particular, when R = Et, the dihedral angle distribution 

shows one main peak close to 240°. However, when R = i-Pr, the dihedral angle distribution 

has two peaks, close to 180° and 330°. These two configurations are shown in Fig. 3, and 

are the source of poor convergence in this system for FEP simulations without enhanced 

sampling methods. The large free energy barrier that hinders inter-conversion between the 

two conformers arises from contacts between the methyl groups and Trp229.

Table 1 also compares the computational expense of the three schemes used in Desmond. 

While standard FEP is slightly less demanding than the enhanced sampling methods used 

here, the lack of consistency in the results makes it unsuitable for this system. FEP/REST 

runs in essentially the same time as the λ-hopping scheme. Furthermore, the efficiency by 

which the method crosses free energy barriers means that a substantially reduced simulation 

time can be used. Reducing the length of the averaging section of each λ-window from the 

default of 5 ns to 1 ns gives a maximum discrepancy (ΔΔG) of just 0.03 kcal/mol for this 

transformation. However, it should be emphasized that FEP transformations involving larger 

changes, or higher free energy barriers, may take longer to converge. The total run time of 

just 2.5 h on three GPUs substantially increases the number of FEP simulations that can be 

performed as part of a lead optimization effort. As a comparison, the MCPRO/REST 

calculations required around 800 CPU-hrs for each FEP simulation. The main difference is, 

of course, the speedup that the GPU implementation of Desmond brings, though this study 

also highlights the performance gain that the λ-hopping scheme would bring to MCPRO; the 

number of replicas could be reduced by a factor of 4, and the computation time would be 

reduced to approximately 200 CPU-hrs.

3.2. NNRTI design

It has been shown in the previous section that FEP calculations with Desmond for the 

present system are consistent under different simulation conditions, due to the FEP/REST 

enhanced sampling algorithm, and may also be run in short times with reasonable 

computational resources. However, to make an impact in lead optimization projects, it is 

necessary that the data can be used to test hypotheses, guide experiments, and/or rationalize 

experimental results. In this case, our hypothesis was that bulky substituents R in Fig. 1 

might differentially improve potency against the Y181C-bearing variants of HIV-RT. Of 

course, the quantitative outcome is unclear owing to the subtleties of steric interactions, 

solvation, and entropic considerations.

Table 2 collects the relative free energies of binding of seven benzyloxazole analogues, for 

both the wild-type and Y181C mutant, and compares them with previously reported 

MCPRO (using REST enhanced sampling [8]) and experimental EC50 results [27]. It is 

emphasized that the experimental data are from cell-based assays so at best qualitative 

agreement with the FEP results is expected. In agreement with the MCPRO results and the 

assays, replacing R = Me by the larger ethyl group is favorable in the WT protein. From the 

Desmond simulations, propyl, isopropyl and t-butyl are also expected to show similar 

activity. However, these substitutions are disfavored by MCPRO, but the differences are all 

within 1.5 kcal/mol. Interestingly, R = OEt should be more potent than CH2OMe according 
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to the results from Desmond, in contrast to MCPRO and the experimental results. However, 

the ΔΔG between methyl and ethoxy from MCPRO (3.15 kcal/mol) seems too much large, 

while the Desmond result is consistent with the small experimental difference in activity. To 

investigate the sampling in these cases, the two-dimensional distributions of dihedral angles 

of the R-group sampled during the MC and MD simulations are plotted in Fig. 4. Using 

REST enhanced sampling, large areas of conformational space are covered by both MCPRO 

and Desmond. The identities of the deepest free energy wells are similar, though there are 

some differences, in particular the MD-based algorithm appears to sample more widely. 

This may be due to differences in the implementation of the enhanced sampling schemes 

since Desmond is able to reach higher effective temperatures by incorporating REST into 

the λ-hopping FEP scheme. It may also stem from differences in the force fields or further 

technical issues that are discussed in more detail in Section 4. The conformations sampled in 

the R = OEt simulation are very similar in the two sets of simulations, and so the large 

difference in the relative free energy computed using Desmond and MCPRO is unlikely to 

be due to insufficient sampling of the R-group.

Turning to the Y181C mutant, the results from Desmond do indicate that larger alkyl groups 

are beneficial for activity. In agreement with MCPRO, R = i-Pr and t-Bu are expected to be 

the most potent inhibitors. Experimentally, the R = Et and i-Pr analogues are equally potent 

and are both sub-10 nM inhibitors of replication of the Y181C viral strain. The propyl 

analogue was not pursued, while attempts to prepare the t-butyl one were unsuccessful [27]. 

As was demonstrated in MCPRO simulations of the benzyoxazole inhibitors [8], the Y181C 

mutation increases the available space for accommodation of a bulkier R-group. Fig. 5 

shows example snapshots from the simulations with R = i-Pr and CH2OMe. For R = i-Pr, 

Cys181 is in close contact with a methyl group of the ligand. However, for R = CH2OMe, 

the substituent is preferentially oriented away from Cys181 to avoid a steric clash with 

Trp229, which may help to explain why the CH2OMe analogue is the least potent towards 

the variant strain, both computationally and experimentally.

4. Discussion and conclusions

FEP simulations using the Desmond MD code have been evaluated in a retrospective study 

of the binding of benzyloxazole inhibitors to both wild-type and the Y181C variant of the 

well-studied drug target HIV-RT. The project is representative of a lead optimization effort 

whereby a hypothesis has been made, which may improve a molecule’s potency, and rapid, 

accurate computational analyses are desired to determine whether the proposed change is 

worth further pursuit. In this case, the hypothesis is that bulkier R groups for the 

benzyloxazole shown in Fig. 1 could better fill the hydrophobic cavity created by Tyr181 to 

Cys181 change, thus improving potency against the mutant strain. Presented with the 

computed results in Table 2, one would be motivated to pursue experimentally the ethyl, 

propyl, isopropyl and t-butyl analogues and to skip the ethoxy and methoxymethyl ones. 

This decision would have been productive.

The FEP simulations studied here are relatively challenging from a sampling perspective, 

because the hydrophobic substituents have been shown to adopt a number of different 

conformations that are separated by substantial free energy barriers [8]. Here, it has been 

Cole et al. Page 7

Biochim Biophys Acta. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



shown that, despite the use of different sampling approaches and force fields, there is good 

agreement between the sampled conformations of the ligands using MCPRO and Desmond 

(Figs. 2 and 4). It has also been shown that, as with MCPRO, the computed free energies for 

the R = i-Pr to Et transformation are robust with respect to the chosen mutation pathway 

when the REST enhanced sampling is included. Furthermore, computational times as low as 

2.5 h on three GPUs have been noted for obtaining an FEP result. Thus, with reasonable 

resources, FEP predictions can be obtained in a same-day mode on a large scale.

Despite the agreement between the two approaches concerning the ligand binding modes, 

there are discrepancies in the description of the free energetics of binding. However, most 

differences are of the order of 1 kcal/mol or less, and where larger differences exist, the 

direction of the change is in agreement. For example, relative free energies of −4.40 and 

−1.75 kcal/mol are reported for i-Pr binding to the Y181C mutant, using MCPRO and 

Desmond, respectively. While the magnitudes of the free energy disagree, the conclusions 

that i-Pr is a promising substituent to pursue do not and, indeed, the i-Pr analogue shows 

sub-10 nM potency against both viral strains [27]. The remaining discrepancies between the 

results may arise from: i) while REST enhanced sampling has been applied to the ligand, 

enhanced sampling for protein side chains in the binding site may be beneficial; ii) the 

protein back-bone was not sampled in the MC calculations; and iii) again the force fields 

were not identical. The pattern that the range of the present free-energy results seems overly 

large with MCPRO in comparison to experiment and Desmond likely reflects better 

sampling in the MD simulations as indicated in Fig. 4. Overall, both approaches appear to be 

fully viable and when used together they provide the opportunity of obtaining a consensus 

view. MC- and MD-based FEP calculations can be expected to become an increasingly 

valuable tool for complementing, rationalizing and suggesting experiments in the field of 

protein–ligand binding and inhibitor design.
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Fig. 1. 
The benzyloxazole molecule.
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Fig. 2. 
Dihedral angle distributions along the R = i-Pr to Et transformation inWT HIV-RT from (a) 

MCPRO [8] and (b) Desmond FEP/REST simulations.
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Fig. 3. 
Snapshots from the Desmond FEP/REST simulation showing R = i-Pr at (a) φ = 180° and 

(b) φ = 330°.
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Fig. 4. 
Sampling of dihedral angle distributions from MCPRO and Desmond FEP/REST 

simulations of the inhibitor bound to the wild-type HIV-RT protein for R = Pr, OEt and 

CH2OMe.
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Fig. 5. 
Snapshots from the Desmond FEP/REST simulations showing (a) R = i-Pr and (b) R = 

CH2OMe with the Y181C variant of HIV-RT.
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Table 1

Comparison of Desmond FEP protocols for the transformation of R = i-Pr to Et in wild-type HIV-RT.

Averaging time (ns) ΔG (kcal/mol)a Computational time (min)b

Path 1 FEP 5 −1.18 511

λ-Hopping 5 −0.45 583

FEP/REST 1 −0.46 154

FEP/REST 5 −0.43 584

Path 2 FEP 5 −0.19 508

λ-Hopping 5 −0.22 593

FEP/REST 1 −0.48 152

FEP/REST 5 −0.48 584

a
ΔG is the computed free energy change for the bound leg of the FEP calculation.

b
Run on three Nvidia K20 GPUs.
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