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Abstract

Background—The structure and dynamics of DNA are critically related to its function. 

Molecular dynamics (MD) simulations augment experiment by providing detailed information 

about the atomic motions. However, to date the simulations have not been long enough for 

convergence of the dynamics and structural properties of DNA.

Methods—MD simulations performed with AMBER using the ff99SB force field with the 

parmbsc0 modifications, including ensembles of independent simulations, were compared to long 

timescale MD performed with the specialized Anton MD engine on the B-DNA structure 

d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values 

over longer and longer time intervals was evaluated in addition to assessing convergence of the 

dynamics via the Kullback-Leibler divergence of principal component projection histograms.

Results—These MD simulations —including one of the longest simulations of DNA published 

to date at ~44 μs—surprisingly suggest that the structure and dynamics of the DNA helix, 

neglecting the terminal base pairs, are essentially fully converged on the ~1–5 μs timescale.

Conclusions—We can now reproducibly converge the structure and dynamics of B-DNA 

helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and 

CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations 

starting from different initial conditions, when aggregated, match the results from long timescale 

simulations on the specialized Anton MD engine.

General Significance—With access to large-scale GPU resources or the specialized MD 

engine “Anton” it is possibly for a variety of molecular systems to reproducibly and reliably 

converge the conformational ensemble of sampled structures.
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INTRODUCTION

To fully understand the biological relevance, regulation and function of DNA in processes 

ranging from replication to transcription and repair, it is important to gain atomic level 

insight into the sequence specific structure, deformability and dynamics of DNA [1–3]. This 

includes understanding the subtle influences of the surrounding solvent, ligands, ions and 

proteins on the structure and dynamics of DNA. Towards this end, many experimental, 

theoretical, and simulation approaches have been applied to provide this atomistic insight 

into DNA structure and dynamics on timescales ranging from very fast femto- and pico-

second processes to longer millisecond timescale events such as base pair opening.

On the experimental side, the bulk of our structural understanding has come from high-

resolution crystallography and NMR studies. Through the published structures of small to 

moderately sized DNA duplexes in the PDB [4] and Nucleic Acid Database [5,6], we have a 

fair-to-excellent understanding of the variations in sequence dependent DNA structure at the 

di- to tetra- nucleotide level. Although most structures in the databases tend to hide 

dynamics due to ensemble and time averaging, some extremely high resolution DNA crystal 

structures [7] have been able to trap multiple DNA backbone conformational substates. 

Relaxation dispersion NMR experiments have been able to identify transient and low 

populated Hoogsteen base pairs [8] in DNA duplexes, and solid state NMR experiments 

have been able to identify large amplitude dynamics in the sugar puckers at CpG steps in 

crystals [9] of the Dickerson dodecamer. Although these structure-based experiments show a 

population of conformations, they do not provide ready insight into the timescales of the 

dynamics. A wide variety of additional experimental approaches have been applied in order 

to assess dynamics on nanosecond or faster timescales. These approaches range from varied 

NMR experiments [10–14] and Fourier transform IR difference spectroscopy [15] to triplet 

anisotropy decay [16], electron paramagnetic resonance, and pulsed electron-electron double 

resonance to active nitroxide or other spin labels [17–19]. Common to each experiment is 

identification of motions on the sub-microsecond timescale, typically from picoseconds up 

to the low-nanosecond timescale. Jumping to longer timescales, NMR has been able to 

characterize internal base pair opening events on the 5 to 100 and greater millisecond 

timescales [20–24]. Insight has also come from early theoretical approaches that helped 

interpret experimental persistence length estimations, nanosecond scale fluorescence 

depolarization, fluorescence anisotropy, and other experiments through the development of 

analytic chain [25], elastic rod [26], worm like chain [27], and also coarse-grained bead 

models [28] to characterize DNA flexibility. Torsional flexibility could also be analyzed 

with early atomistic potentials and conformational/energetic analyses [29]. Again, 

characteristic in each was probing motion effectively, on the picosecond to low nanosecond 

timescale regime. In fact, motion within this timescale appears to be rich as probed by the 

time-resolved dynamic Stokes shift in the fluorescence of base pair analogues which suggest 

a power-law behavior in these fast dynamics due to not only conformational changes of the 

DNA, but interactions with solvent and ions [30,31]. In other words, rather than seeing 

specific decay times corresponding to a particular observable, as seen by NMR or 

interpreted in other analyses that are investigating a particular process or structural feature of 

the DNA, the time-resolved Stokes-shift experiments suggest that motion is occurring all 
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across the ps-ns timescale range and that there is no unique multi-exponential fit that can 

explain the data [32]. A better fit is a logarithmic fit over the range of 40 ps to 40 ns [33]. As 

will become apparent later, this is actually consistent with the current MD simulation results 

that suggest fairly diffuse motion across the many degrees of freedom including the DNA, 

water and ions, with motion that rapidly decays as we average over longer and longer 

timescales and effectively disappears on the 1–5 μs timescale [34].

As pointed out by others and reaffirmed here, explorations of DNA dynamics to date show 

rich behavior in the picosecond to low microsecond regime and also dynamics on the 5–

100+ millisecond timescale. However there is a distinct lack of evidence for motion at the 

microsecond to millisecond timescale. Are dynamics flat on this timescale, or do DNA 

motions continue the power-law behavior seen on the 40 ps – 40 ns timescale across the 1 μs 

– 1 ms timescale? This question is difficult to answer since few experimental techniques can 

resolve DNA duplex dynamics over this time range. MD simulations tens of microseconds 

in length were performed to attempt to address this question. The extreme length of these 

simulations (currently the longest simulations of DNA to date) was facilitated by access to 

resources like the specialized MD engine Anton from D. E. SHAW Research (DESRES). 

Our simulation results, coupled with the detailed experimental knowledge of base pair 

opening rates, suggest that motion is flat in the microsecond to millisecond regime for 

Watson-Crick DNA helices. This is supported by selective off-resonance carbon R1ρ NMR 

relaxation dispersion spectroscopy by Al-Hashimi—one of the few experimental techniques 

able to see into dynamics in the microsecond timescale—investigating a 1,N6-ethenoadenine 

(eA) lesion/mismatch in a DNA duplex [35]. Compared to Watson-Crick DNA helices that 

do not show exchange processes or internal dynamics on this timescale, the NMR results of 

the mismatch clearly resolve exchange processes on the 26 ± 8 μs timescale, which is 

consistent with the higher expected opening rates. However, before jumping into the 

simulation results and a more elaborate discussion of the implications of a 1 μs – 1 ms gap in 

DNA helix dynamics [34], it is worthwhile to review progress to date and note that 

previously, due to limits in computational power, MD simulations were effectively limited 

to the sub-microsecond range.

To provide further historical context, simulation methods have also been applied to 

complement experiment and the theoretical/analytic interpretations of the data. The most 

widely applied methods have been molecular dynamics (MD) simulations which have been 

enabled by significant advances in the simulation methodologies and force fields. Although 

lagging behind protein systems, a number of large-scale simulations of nucleic acids (NA) 

over the past ~25–30 years have been published [36] with considerable acceleration in 

application projects starting in the mid-90’s when fast and parallelized particle mesh Ewald 

methods [37,38] and better force fields became available [41–44]. Such simulations have 

provided a detailed atomic-level picture of nucleic acid structure and motion [43]; moreover, 

due to their highly charged nature and sensitivity to their surroundings, MD simulations of 

nucleic acids have also been a rather sensitive probe of the (un)reliability of the simulation 

methods and force fields. To push to longer timescales in MD simulation, the community 

has long benefited greatly from the availability of and easy access to state-of-the-art high 

performance and/or specialized computer systems [44–46]. As computer power has grown 

over the past decade and the community has routinely been able to reach longer and longer 
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MD simulation time scales, repeatedly such simulations have sampled hitherto unknown 

conformational states and exposed artifacts in the force fields [47–51].

The longer MD simulation timescales sampled have allowed not only a more thorough study 

of nucleic acids and provided a more rigorous test of force field parameters for nucleic 

acids, but also exposed serious deficiencies in the force fields that when fixed have 

significantly improved their accuracy [37,54–58]. In ~2002–2004, a large-scale assessment 

of DNA sequence-dependent structure and dynamics was performed via a divide and 

conquer approach by the ABC consortium, resulting in a set of 39 MD simulations of DNA 

18-mer sequences with all possible tetrameric repeats (136) on the 300 ns time frame 

[58,59]. Analysis of these MD simulations allowed characterization of tetrameric DNA 

sequence specific structure and dynamics, showed results consistent with interpretations of 

the crystal data, and exposed the potential for long-lived conformational substates [58–61]. 

A similar approach on embedded tetra-nucleotide sequences was performed not long after 

by Sarai, whose MD simulations enabled the development of harmonic potentials of mean 

force for dinucleotide flexibility which provided further insight into differential DNA 

tetramer sequence structure and dynamics and mechanisms of DNA sequence recognition 

and specificity [62,63]. During these systematic investigations of the sequence dependence 

of tetrameric repeats in DNA, we learned about artifacts from anomalous α,γ transitions 

bringing γ to trans (fixed by parmbsc0) [64] and salt crystal formation at abnormally low 

concentrations [49,65]. Further improvements to the force fields in Amber removed “ladder-

like” structures in RNA helices [66–69] and may improve ε/ζ backbone states in DNA [70]. 

Similar improvements in the CHARMM force fields for RNA and DNA have been 

published [71,72].

The acknowledged lack of convergence of the structure and dynamics in these MD 

simulations pushed groups to perform MD simulations on increasingly longer timescales. 

The first published microsecond length DNA simulations were reported by Orozco and his 

group [73], with the results clearly showing that even 1 μs of MD was insufficient to fully 

converge the structure and dynamics of a small DNA duplex. These observations led the 

ABC consortium to extend their simulations of the 36 tetrameric repeat sequences over the 

last few years to at least the 1–3 microsecond timescale (unpublished results). More 

recently, the Orozco work has been extended to bring simulations of the Dickerson 

dodecamer to the 4 μs time scale [74,75]. Although the authors claim convergence of the 

internal properties of the helix on the 250–300 ns time scale, longer timescales are likely 

required to fully relax the BI/BII populations, bimodal twist distributions at CpG steps, and 

ion distributions. Moreover, “end-effects” from terminal base pair opening and fraying are 

clearly not converged [76]. This begs the question: How long does an MD simulation of a B-

DNA helix have to be to sample the dominant structural and dynamic features? Even with 

access to high performance computing facilities with thousands of CPUs and efficient ports 

of MD codes to very fast graphics processing units (GPU), this is still a challenging 

question. However, with access to the very fast Anton special purpose MD engine [77] 

developed by D. E. Shaw Research—available at the Pittsburgh Supercomputing Center 

(PSC) through competitive allocation to resources—answering this question becomes 

tractable. Using such resources, currently MD simulations can provide detailed structural 
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and dynamical information about the atomic structure of biomolecules on timescales up to 

milliseconds.

In 2011, and then again in 2012–13, we were awarded an allocation of 50,000 and 100,000 

—processor hours, respectively, on the Anton machine at PSC to study MD on DNA 

duplexes. This was sufficient time to perform MD on one of the ABC DNA duplexes for a 

total of about 56 μs. In deciding which sequence to simulate, it was noted that an interesting 

feature had emerged in the simulations of one particular sequence of the DNA tetrameric 

repeats by the ABC consortium [58,59,61]: a bimodal distribution in the twist at particular 

CpG steps (see Figure 6 in reference [74]). This is the GAAC sequence which flanks the 

CpG steps with the A-rich sequence AACGAA. In addition to displaying a bimodal twist 

distribution, the GAAC sequence has bio-relevance, similar to the TATA sequence, since it 

has been shown to participate as a transcriptional control and initiator for DNA replication 

[78,79]. Also, like DNA TpA steps, DNA CpG steps show multiple modes of motion and 

enhanced flexibility [62,75,80]. To better understand the structure and dynamics of this 

GAAC sequence and to see if we could obtain some form of convergence in the distributions 

of structural parameters in simulations beyond 1 μs, longer timescale simulations were 

performed on Anton. The GAAC 18-mer sequence of d(CGACGAACGAACGAACGC) 

was simulated with conditions matching the original ABC calculations [58,59,61] except in 

a larger orthorhombic box as required for Anton simulations at that time. The initial MD 

simulation was started from a canonical B-DNA structure and MD was performed for ~12 

μs. The initial analysis showed significant and reversible terminal group fraying, as well as 

unexpected convergence in the structure and dynamics on the ~1–5 μs time scale for the 

internal base pairs. Although terminal base pair fraying is expected on the microsecond time 

scale [81–83], the effective rigidity of the internal DNA duplex when averaged over the ~1–

5 μs time scale was confusing as we had never seen such convergence before in MD 

simulations. Essentially, if average structures are created over intervals of ~3 μs or longer at 

different time points in the trajectory and overlaid, the RMSD fits show overlap of all atoms, 

neglecting the terminal 3–4 base pairs, to better than 0.2 Å. Such strong agreement in the 

structures from different time intervals was unexpected, especially as we assumed that the 

DNA duplex should display longer time scale breathing, twisting and bending events and to 

potentially display internal base pair opening events. However, as internal base pair opening 

occurs on the ~5–100+ ms time scale (or somewhat faster for AT base pairs not in A-tracts 

and/or GC base pairs in GpC sequence repeats on ~1ms time scale, both of which are mostly 

absent in our GAAC sequence, [21,23]) clearly these MD simulations are not long enough to 

see internal base pair opening events with high probability.

However, healthy skepticism and lack of understanding of these initial results prompted us 

to repeat the simulations not only on Anton, but also using the standard Amber MD engines. 

Given the underlying differences in hardware between CPU, GPU, and Anton, and 

differences in the underlying approximations and models of numerical precision, not only 

between Anton and Amber simulations, but also between the Amber CPU and GPU 

implementations [45], it was prudent to determine whether these differences can affect the 

outcome of MD simulations. So after running simulations on the ~12 μs time scale on Anton 

which only required 1–2 days of Anton computer time, we started the relatively slow 

Galindo-Murillo et al. Page 5

Biochim Biophys Acta. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



process of Amber simulations on CPUs (2 simulations of ~ 2 μs each) and on GPUs (2 

simulations of ~4 μs each) to study and detect any possible differences due to hardware and 

methods. Additionally, in order to reach aggregate simulation times approaching those 

sampled on Anton, we also explored multiple molecular dynamics simulations [84–86] 

where an ensemble of 100 independent simulations (ENS) were performed using Amber 

MD engines and the AMBER ff99SB force field with the parmbsc0 modifications starting 

from the same DNA structure but with the ion positions independently randomized by 

swapping with waters for each simulation as described in the methods. These simulations 

were performed over a six month period starting on a local CPU cluster, continued during 

friendly user access on the Keeneland Initial Delivery NVIDIA Tesla M2090 GPU system at 

XSEDE/Georgia Tech, and finally extended to ~900 ns for each independent simulation 

using the GPU resources on the University of Illinois Blue Waters Petascale resource, for a 

total aggregate time of ~84 μs. To demonstrate that the effective DNA rigidity on the μs-

scale was not only a property (or artifact) of the AMBER force field, we also included 

another ensemble of 100 independent simulations on Blue Waters using the CHARMM 

all36 (C36) force field [71] with a total aggregate time of ~91 μs.

Overall, the results suggest that we are able to converge the internal DNA helical structure 

on the ~1–5 μs time scale as determined by two independent measures of convergence: an 

assessment of the convergence of internal motions by comparing overlap of principal 

component projection histograms as a function of time, and a novel measure of overall 

structural convergence which we term RMS average correlation (RAC) [87]. These 

observations suggest that there is little significant motion of the internal DNA helices on the 

timescale of 1 μs – 1 ms. The results also show that reversible base pair opening of the 

termini occurs frequently, is associated with ion binding events in the groove, can be long-

lived, and can go beyond the first base pair. Comparisons of the Anton, Amber CPU and 

Amber GPU runs show that between them there is little apparent difference in the structure 

and dynamics of the internal B-DNA helix, with the exceptions that 1) convergence of the 

terminal base pair opening events occurs on time scales significantly longer than 10 μs and 

cannot be captured completely via ensembles of shorter and independent MD simulations, 

and 2) transient base pair opening events to the fourth base pair are only observed when the 

data is written at frequencies greater than 50 ps. Convergence of the structure and dynamics 

is also seen with the CHARMM C36 force field, although on a slightly longer time scale due 

to larger and more frequent terminal base pair opening events.

METHODS

A canonical B-DNA structure with the sequence d(GCACGAACGAACGAACGC) was 

generated as specified in the original ABC simulations to allow for a consistent comparison. 

[58–61] The structure was parameterized using the Amber ff99SB force field [88] with the 

parmbsc0 corrections for α/γ torsions [64], explicit solvent was added using the SPC/E [89] 

water model for a total of 19012 solvent molecules in an orthorhombic periodic box. 

Potassium ions were added to neutralize the charge (34 K+), and additional 60 K+ and Cl− 

ions were added for a total excess ion concentration of ~150 mM using the Smith and Dang 

ion parameters [90]. All of the Amber MD simulations were run using PMEMD from 

Amber 12 and Amber 14 [91,92]. After the models were built, the ion positions were 
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randomized using PTRAJ [87] by swapping random water and ion positions such that no ion 

was closer than 4 Å to another and all ions were greater than 6 Å away from the DNA to 

avoid any biasing created by the initial placement of the ions. The simulation protocol is 

equivalent to the earlier ABC simulations with the exception that the box was made to be 

nearly cubic since the Anton specialized MD engine did not support general triclinic unit 

cells at the time the simulations were performed.

The large series of simulations were run (see Table 1) using the same minimization, heating, 

and equilibration procedures: The solvated structures were minimized using 1000 steps of 

steepest descent followed by 1000 steps of the conjugate gradient minimization, applying a 

restraint force constant of 25 kcal/mol-Å2 to the entire solute molecule. With the same 

restraints, heating was done over 5000 steps of MD from 100 to 300 K with a time step of 2 

fs, using a weak coupling thermostat [93] at constant pressure and constraining bonds 

involving hydrogen using SHAKE with the tolerance set to 0.00001[94]. A non-bonded 

cutoff of 9 Å was used. Long range electrostatics were handled using particle mesh Ewald 

(PME) using the default PME parameters for Amber with automated pair list updating. After 

heating, the restraints applied to the DNA were slowly decreased from 5 to 0.5 kcal/mol-A2 

in 5 intervals, each step first minimizing using 1000 steps of steepest descent followed by 

500 steps of conjugated gradient minimization and time step of 2 fs, followed by 50 ps of 

MD at 300 K, constant pressure and temperature, both with Berendsen coupling constants of 

0.2 ps.

Anton1 and Anton2 simulations were run using the special purpose supercomputer for 

molecular dynamics, Anton, built by DE Shaw Research, Inc. using multiple different 

versions of the Anton software and microcode (initially 2.4.1 and then 2.4.5). To convert the 

Amber parameter and topology files into formats appropriate for Anton, the available 

“amber_topNrst2cms.py” script on the computer anton.psc.edu was used with Desmond [95] 

to create the needed *.cms file. Note that there is a bug in the “amber_topNrst2cms.py” 

script that will erroneously assign zero mass to C5′ atoms when converting from Amber 

topologies, so the generated files were hand-edited to fix the mass and further checked to 

make sure the resulting *.cms file contained the correct Amber ff99 + parmbsc0 force field 

parameters. The Anton “guess_chem”, “refinesigma”, and “subboxer” programs were then 

run to set up inputs appropriate for Anton and a series of “anton_run” commands performed 

to do the simulations. For the Anton runs, constant 300 K temperature and 1 bar pressure 

with weak coupling using a coupling time “tau” of 10.0, a maximum and minimum velocity 

scaling of 1.2 and 0.85, and a maximum and minimum expansion per step of 1.05 and 0.97 

and kappa of 4.5×10−5 were imposed. The integration time step used was set to 2 fs and 

“max_strain” was set to 0.08 performing RESPA [96] on the long-range non-bonded 

interactions every third step. The AMBER CPU simulations were run using the PMEMD 

code on Intel-based cluster either in one of the XSEDE systems or at the Center for High 

Performance Computing (CHPC) at the University of Utah. The GPU simulations were run 

using the PMEMD.cuda implementation of SANDER from Amber 12 and Amber 14 on 

NVIDIA Tesla M2090 cards [97]. Production simulations in Amber were performed at 

constant pressure and 300 K using the weak coupling algorithm for temperature and pressure 

control with a relaxation time of 5 ps [94]. For the equilibration and production a 2 fs 

integration time step was used. Long range interactions were calculated using PME with 
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default parameters and a ~1 Å grid spacing [38]. The coordinates were recorded every 50 ps 

for the Anton simulations (due to IO considerations), and every 1 ps for the CPU and GPU 

simulations. The CPU and GPU simulation trajectories were written more frequently to 

determine if the frame rate influenced the analysis. Trajectory data was processed with 

PTRAJ, CPPTRAJ and Curves+ [87,98], with Anton trajectory data first transformed to the 

DCD format using VMD [99].

The ENS (ensemble) simulation consists of 100 independent simulations using the same 

starting structure but randomized ion positions (by random exchanges with water for each of 

the ensemble instances, as described previously) and different initial velocity distributions. 

The simulations was run initially using the CPU version of PMEMD on a local parallel 

Infiniband CPU cluster, followed by runs using the GPU (CUDA) version of PMEMD on 

the XSEDE Keeneland Initial Delivery system (kids) on NVIDIA Tesla M2090 GPUs, 

which were then continued on the NVIDIA K20X XK nodes on Blue Waters, for an average 

of 800+ ns total for each individual simulation. After the run, the first 100 ns of each 

trajectory from each replica were discarded as “equilibration”. The remaining frames were 

concatenated together, resulting in effectively one large 83+ μs trajectory. The CHARMM 

simulations were generated following the same methodology, except for the use of a 

different nucleic acid force field, water model and ion parameters. The CHARMM TIP3P 

water model and ion parameters for counter ions were used. The CHARMM C36 force field 

was modified so that the atom names match the PDB (and AMBER) standard and the c37b2 

version of CHARMM was used to generate the initial PSF and coordinate files. These were 

then converted into AMBER compatible parameter/topology/coordinate formats using the 

CHAMBER [100] utility of AmberTools. Each of the 100 replicas for CHARMM was run in 

the NCSA Blue Waters Petascale Resource for a total aggregated trajectory of 91+ μs, with 

the MD trajectory written at 10 ps intervals. The reference structure used for RMSD 

calculations in the case of CHARMM was built using the first 10 μs of data from the 

aggregated ensemble.

Global and local DNA parameters were obtained with Curves+ [98] for the first 2 μs of the 

all the trajectories to facilitate comparison with AMBER CPU simulations. Additionally, the 

analysis was also performed for Anton1, Anton2, ENS and CHARMM for the first 10 μs of 

the simulation (included in the supporting information). The rest of the analysis was 

performed using both PTRAJ and the AmberTools 13 and Amber 14 versions of CPPTRAJ 

[87]. Average structures used for comparison between the different simulations were 

obtained doing an RMS mass-weighted fit to the initial structure followed by a straight 

coordinate average over all frames or the specified time interval. Analysis of the water and 

ion distribution was obtained using the “grid” command of CPPTRAJ with a grid size of 100 

Å and 0.5 Å spacing. The straight coordinate averaged structure (RMS fit to the first frame) 

used as a reference for the grid analysis was obtained using the first 10 μs of the Anton 2 

simulation. See Supporting Information Table S2 for the input scripts to perform similar 

analysis. All of the molecular graphics were generated using the UCSF Chimera 

visualization tool [101].

Two relatively new analysis features of CPPTRAJ were further developed and utilized to 

assess convergence. This first is the “RMS average correlation” (RAC) or “rmscorr” 
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functionality which loosely can be thought of as a pseudo-autocorrelation function for 

RMSD values; this essentially measures the convergence of the overall average structure at 

different time intervals within a single trajectory. For a given time interval or lag (τ) a 

straight coordinate running average over that time interval is performed over the entire 

trajectory; each sliding averaged structure over the time interval τ is then either fit to the 

first averaged structure (time 0−τ) or a reference structure specified by the user, and finally 

the average RMSD value of all averaged structures of length τ is calculated according to:

where N is the total number of frames. At time τ=1, this is the standard average RMSD over 

the whole trajectory. When τ approaches the end of the trajectory length, the value 

approaches zero and loses meaning. For μs length trajectories, calculating these values at 

every time point becomes incredibly computationally demanding despite the OpenMP 

parallelization of the command. Therefore an “offset” option was added such that the values 

are calculated at τ=1, τ=1*offset, τ=2*offset, …, τ=n*offset and normally a “stop” time is 

chosen to truncate the calculation before the final time sampled in the trajectory. To our 

knowledge, this type of analysis has not been previously done by others, so significant 

experimentation with the “rmscorr” command was performed in order to better understand 

the results; we show and explain the utility of this analysis through several examples. Input 

scripts for CPPTRAJ that we used are supplied in the Supporting Information.

In order to assess the convergence of the internal motions (i.e. the dynamics) between 

independent trajectories, we looked at the overlap of histograms of principal component 

(PC) projections obtained from each simulation trajectory as a function of time [102,103]. 

First, to ensure that the eigenvectors obtained from each simulation being compared match, 

the coordinate covariance matrix (using only heavy atoms) is calculated using a combined 

trajectory from both simulations [104]. Each frame of the trajectory is RMS-fit to the overall 

average coordinates in order to remove global rotational and translational motions. Next, the 

projection along these eigenvectors of each coordinate frame from the first simulation 

trajectory is calculated; this is then repeated for the second simulation trajectory. Finally, at 

each frame t a histogram for each simulation of the PC projection values for a given PC is 

constructed, and the overlap of these histograms was calculated using Kullback-Leibler 

divergence, KLD [105]:

where hPCXN(t, i) denotes bin i of the histogram from trajectory X for the projection of PC 

N using data from frames 0 to t, and M is the total number of histogram bins (400 in this 

case). In order to better avoid cases where one histogram bin is zero and the other is not 

(where KLD is not defined), histograms were constructed using a Gaussian kernel density 

estimator with a bandwidth obtained via the normal distribution approximation of the PC 

data. This analysis was performed with CPPTRAJ which was released with AMBER 14 in 
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April, 2014. In addition to the scripts in the Supporting Information, the topologies, the raw 

trajectories, and all of the analysis files are available for download at http://

www.amber.utah.edu/DNA-dynamics/GAAC.

To simplify notation, for the remainder of the article we refer to the three different GAAC 

motif repeats of the 18-mer DNA sequence as GAAC1 which corresponds to base pairs 

(bps) 5–8 and 29–32, GAAC2 which corresponds to bps 9–12 to 25–28, and GAAC3 which 

corresponds to bps 13–16 to 21–24.

RESULTS

Convergence of the structure and dynamics: How long does an MD simulation have to be 
until the average properties of a DNA duplex do not change with the AMBER force field in 
SPC/E water?

The previous work by Dršata and co-workers [75] make the qualitative claim that the basic 

structural parameters for the internal parts of the helix converge within 300 ns. This work 

generally agrees with this assessment depending on how one defines convergence and for 

what properties, although it would be safer to state that simulations on the order of ~1–5 μs 

in length or longer are likely necessary to fully converge the structural properties of a free 

DNA duplex in solution, minus the two (or more) terminal base pairs on each end. In the 

sections that follow, we highlight what differences in structural properties to expect for 

simulations on different time scales. With access now to longer MD simulation from 

independent simulations, we can attempt to push this assessment a step further to understand 

and quantitatively define how well independent trajectories self-consistently converge 

and/or agree with each other.

RMSD plots as a function of time are shown for the Anton1, Anton2, ensemble AMBER 

(ENS) and ensemble CHARMM (CHARMM C36 force field) simulations in Figure 1. The 

reference structure used for the AMBER force field runs (Anton1, Anton2, and ENS) is the 

average structure over the first 10 μs of the Anton1 simulation. So as not to bias the 

CHARMM results, the reference structure used for the CHARMM run is the average 

structure over the first 10 μs of the CHARMM simulation. In the runs with the AMBER 

force field, the RMSD values of all atoms are in the range of 1–6 Å. The spikes in the 

running average of the RMSDs (discussed in more molecular detail later) correspond to 

terminal base pair opening events, on either one or both ends of the helix. These opening 

events tend to occur on the μs time scale with open state lifetimes on the ns-μs time scale. As 

is evident from the plots, too few events have been observed to show complete convergence. 

Also, in the ensembles of aggregated independent simulations the bumps in RMSD values 

are not as high and either abruptly end or show shorter duration. This is an artifact of the 

aggregation of independent MD trajectories, each with insufficient time to fully explore 

terminal fraying events. However, we note that in the ENS simulations where trajectory 

information was saved every 1 ps, very transient base pair opening events to the fourth base 

pair were observed which are not seen in the Anton simulations where the data is saved at 50 

ps intervals. The Anton2 run shows fairly consistent behavior to the other two simulations 

with the exception of a larger deviation from the average structure at ~21.5 μs to higher 

RMSD values. This event corresponds to the terminal base pairs of both ends opening 
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simultaneously, with one end of the helix actually fraying two base pairs. Just prior to the 

end of the simulation run (at ~44 μs), the base pairs had completely reformed; the run was 

not extended any further since our Anton allocation was exhausted. The RMSD plot for the 

ensemble CHARMM runs is on a different scale with larger transient deviations from the 

reference; like with the Anton and ENS simulations, the deviations correspond to fraying 

events on each side of the chain. Multiple base pair openings and backbone deformations are 

detected for the CHARMM dataset going as far as 3 base pairs, causing pairing mismatches. 

The observed RMSD plots are consistent with previous simulation work on DNA with the 

exception of the repeated base pair opening events, which have not been observed at this 

level of detail previously since prior simulations were significantly shorter. Before going 

into further details analyzing the structure and dynamics, various measures of convergence 

were calculated to better assess how long MD simulations of a DNA duplex should be in 

order to fully converge the structure and dynamics.

Figure 2 shows the decay in the “RMS average correlation” (RAC) as a function of 

increasing time interval for the Anton1, Anton2, and ENS simulations. The RAC for a given 

time interval is the average RMSD of all running averaged structures over that time interval

—see the Methods for a more complete description. The solid and dotted lines in each case 

represent RMS-fits to different reference structures; the solid lines are from fitting to the 

overall average structure, and the dotted lines are from fitting to the first averaged structure 

for each time interval (i.e. for time interval τ the first structure is the average from 0 to τ).

Since the RAC is a relatively novel analysis, we will first describe some of its features that 

are dependent on the reference used to RMS-fit (overall average versus first average). 

Specifically, by definition, as you average over longer periods of time you will necessarily 

get closer to the average structure. However, if you consider a fit to the first structure 

(averaged over different time intervals), deviations like base pair opening at different times 

may produce structures that are effectively further away from the first structure average. For 

example, consider cyclohexane and its conversion between the two chair conformations. If 

you compare running averages in time to the flat average structure, the deviations will tend 

to get smaller. However, if you do the calculation to the first running average structure as 

you progress will have cases where in the lifetime of a particular chair conformation you 

may compare left-chair conformations of the reference to right-chair conformations in the 

time average leading to an effective increase in the RMSD. In other words, the bumps in the 

dotted line plots expose structural changes on different time scales.

In the case of the 12.27 μs Anton1 simulation (black lines), the decay when fit to the overall 

average is smooth until 3–4 μs, after which decay occurs more rapidly as the RAC values 

begin to approach zero at the end of the trajectory (which must happen by definition). In 

contrast, when fit to the first averaged structure the decay is less smooth, with a particularly 

pronounced spike at ~1 μs, which corresponds to base pair opening events seen in the 

Anton1 simulation. The RAC values from the Anton2 (red lines) trajectory show fewer 

features in the dotted plots since we had periods during the MD trajectory with very few 

opening events and also a long period of a large opening event. Effectively, there is less 

correlation in the time scales of events that would lead to significant feature shifts from the 

solid and dotted plots. It is also evident that the RAC values do not decay as quickly to zero; 
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this is because of the different structural features on the 8 μs timescale in the parts where 

little opening is occurring to where significant opening is occurring. Finally, the ensemble of 

independent MD trajectories (green lines) shows the smoothest behavior and decay to zero 

more rapidly. This is an artifact of the shorter time scales of the simulations (~1 μs per 

ensemble instance) which means the opening events are less frequent and effectively of 

shorter duration (due to truncation of the opening event as the simulation was terminated at 

finite scales, i.e. we get more partial opening events in the termini) and less complete. 

Despite this, the dotted green shows features of the opening as seen in the Anton1 trajectory 

on the ~1 μs time scale.

To assess the time scale of convergence within a given simulation one can choose a cutoff 

point where the slope of the RAC values approaches zero, indicating no further changes in 

the average structure as sampling time increases. Inset in Figure 2 are the RAC values to the 

full simulation average structures for the internal ten (GAACGAACGA) base pair heavy 

atoms. What is remarkable is how fast the decay to the average structure is, such that across 

all three trajectories, the RMSD to average structures over time scales from ~80–130 ns lead 

to RMSD values of less than 0.1 Å. By 3 μs, the deviation is less than 0.01 Å with 

essentially complete convergence in the structures of the heavy atoms of the internal ten 

base pairs on the 4–6 μs time scale. Although surprising to us, this rapid decay is consistent 

with the previously discussed fast timescale NMR, fluorescence anisotropy, and electron 

paramagnetic resonance decays and also with the timescales of DNA, water and ion motion 

probed by dynamic Stokes shifts with most decays complete by the hundreds of 

nanoseconds. To better understand what deviations these small changes in structure 

correspond to, shown in Supporting Information Figure S1 is an overlay of the three average 

structures from the long trajectories omitting the terminal four base pairs. The small 

deviation corresponds to small alterations in the backbone geometries at the ends, 

differences likely due to the proximal opening events and lack of complete convergence. 

Interestingly, although opening events are minimal beyond the first or second base pair with 

the AMBER force field, these transient events lead to an observed lack of complete 

convergence in the DNA structure at the fifth base pair. The RAC profile calculated from 

the CHARMM simulations shows a similar fast decay to less than 0.5 Å in the first 120–150 

ns of simulation time going to less than 0.1 Å by ~ 2.3 μs [34]. Due to more significant base 

pair opening events and disruption of the structure of the internal helix, the converge of the 

dynamics occurs on a longer timescale than was observed in the AMBER simulations, and 

also with a higher final RMS value of ~0.6 Å [34].

While the RAC is a measure of structural convergence within a single simulation, it is also 

of interest to measure how well two independent MD simulations converge with respect to 

each other. Principle component analysis (PCA) in Cartesian space can be used to assess the 

dynamic properties (i.e. the motions) of a given system. Figure 3 shows the overlap of 

histograms of the first five principle component (PC) projections from the Anton1 and 

Anton2 simulations (see Methods for complete details). When the PCA is performed on all 

atoms (Figure 3, left), there is reasonable overlap between the first and second PCs, but 

much poorer overlap for the remaining 3 PCs, particularly the third PC. Visual examination 

of pseudo-trajectories created by projecting the averaged coordinates along each PC shows 

that the first two PCs correspond to global bending and twisting motions, while the 
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remaining 3 PCs correspond mostly to motions at the termini. A video file showing the 

described motions is available for download in the Supporting Information. The min/max 

values using the pseudo-trajectories for total bend are 40.1° and 6.9° respectively, the values 

for twist range from 29.6° to 32.2°, for tilt −1.7° to −0.5°, roll 7.3° to 4.3° and total length 

measured from the center of the termini base pairs is 51.8 Å to 56.3 Å to respectively. This 

also agrees with the experimental observation of a negative twist/stretch coupling measured 

by Prisner and co-workers [19]. When the PCA is performed on only the 10 internal base 

pairs (Figure 3, right), there is almost perfect overlap of all 5 PC histograms. These results 

are consistent with the RAC results, which showed that the decay of RAC values was much 

faster when fit on only the 10 internal base pairs. Consistent with the comparisons of Anton1 

and Anton2, in Figure S2 we show the overlap of the principle component histograms from 

the Anton2 and the ENS simulations where we notice a closer similarity between both 

simulations on all the components.

The convergence of the dynamic properties of the Anton1 and Anton2 simulations was 

quantified by measuring the overlap of the PC histograms via Kullback-Leibler divergence 

as a function of simulation time, shown in Figure 4. When the PCA is performed on all 

residues (Figure 4, top), the first two PCs are relatively well-converged within 2 μs. The 

remaining PCs take longer to converge, particularly the third PC which actually shows an 

increase in divergence around 8 μs. This is consistent with the observation that PCs 3–5 

correspond mostly to terminal motions, and confirms that base pair fraying events are why 

the simulations are not fully converged on the multiple-μs time scale. As further evidence 

for this, when the PCA is performed on the 10 internal base pairs only (Figure 4, bottom), 

the first five PCs are all relatively well converged within 1 μs.

Opening events contribute to the majority of structural deviations as is shown in Figure 5. 

To highlight what these structural deviations refer to, straight coordinate running averages 

over the trajectories were performed independently on the ENS trajectory at 50 ps intervals 

with time windows for averaging of 50 ns, 100 ns, 1 μs, 3 μs and 6 μs time scales. The 

resulting running-averaged trajectories were then independently clustered using CPPTRAJ 

with the average-linkage clustering algorithm, a sieve of 250 frames, and RMSD omitting 

the terminal base pairs on each end as the distance metric; this resulted in 15 clusters. 

Molecular graphics of overlays of the 15 representative structures from each of the clusters 

is shown in Figure 5. For the shorter time interval structures (i.e. a running average over 50 

ns), we notice the wide fluctuations produced by the base opening events at both ends of the 

DNA molecule while the central base-pairs display only minor structural differences 

between the 15 representative structures from the clusters used to build the overlay. For the 

longer time scale conformational averaging, terminal base pair openings are still present at 

both sides of the structure although the central base-pairs show a tighter comparison with 

less fluctuation. This shows that as more sampling space is explored, reaching a converged 

state becomes more accessible.

The atomic fluctuations over different “running average” time windows for the ENS 

simulation are shown in Figure 6. The values show how much each particular atom 

fluctuates with respect to the reference used to compute the calculation. Each line is a 

running average of the atomic fluctuation using increasing window size. When the time 
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window for the running average is 50 ns, the base pairs at the start and at the end of the 

DNA chain show fluctuations about the average structure in the range of 1.0–2.5 Å. In 

contrast, base pairs close to the center of the DNA show movement only in the 0.2–0.5 Å 

range. As we have previously discussed, high fluctuations on both terminal edges of the 

DNA are produced mainly by base pair opening events. For this sequence, the fluctuations 

of the first two base pairs on each side suggest frequent fraying events. As the window of 

the running average is increased and more sampling space become available, the fluctuations 

start to converge to the average structure, hence lowering the difference. On the bottom plot 

of Figure 6 we zoom in on the GAAC1 section (residues 8 to 13, atoms 251 through 377). 

The shaded sections in the figure group the atoms that form the nucleotide (base, 

deoxyribose and phosphate group). For the 4 bases (gray area) in GAAC1, the bases display 

low fluctuations of less than 0.2 Å in all of the windows until the fluctuation is less than 

0.001 Å at a running average of 8 μs. For the sugar (teal) and phosphate group (light red), 

the fluctuations are slightly larger and between 0.2 and 0.3 Å. The change of fluctuation 

range as increasing the windows of the averaging suggest that the main variations detected 

in the simulations are present in the backbone of the chain. Also, analysis including the base 

pairs present at the edges will show high variability due to the increased fluctuations caused 

by fraying.

Implications for the time-dependent flexibility of DNA?

To summarize the convergence, for the internal ten base pairs the Kullback-Leibler 

divergence of the first five principal components from the Anton1 and Anton2 trajectories 

fall below 0.005 by 1 μs and below 0.001 by 5 μs. Similarly, considering the RAC analysis 

for the ten internal base pairs, the slope is essentially flat by 5 μs with deviations below 0.03 

Å by ~1 μs. The convergence times in the 1–5 μs time frame suggest that minimal changes 

in structure are observed when time-averaged beyond 5 μs despite MD sampling out to over 

44 μs. This perhaps should be expected since if the internal dynamics are effectively 

converged, the only way to see additional modes of motion is via internal base pair opening. 

As discussed, internal base pair opening is well known from experiment to occur on 

significantly longer time scales, that is ~5–100+ milliseconds. Although internal base pair 

opening is slightly faster (> ~1 ms) for AT base pairs not in A-tracts and in GpC repeats 

[23,106], both of which are mostly absent in the “GAAC” sequence, the time scales for 

internal base pair opening, likely an activated process, are still three orders of magnitude 

slower than the fast convergence in the structure and dynamics observed here. If the models 

and force fields are correct, neglecting internal base pair opening in the millisecond time 

scale, all of the structural fluctuations are effectively converged very rapidly and on the 

range of 1–5 μs. This has considerable significance since the conformation of the helix, its 

flexibility, and interactions with water, salt and other ligands have critical impacts on 

biological function, including gene expression and regulation.[34] It is well appreciated that 

DNA deformability, bending and twisting, and dynamics, along with sequence dependent 

structure are crucial for protein recognition, so it is somewhat surprising that the internal 

dynamics of the helix converge so rapidly.

Groove width profiles for GAAC1, GAAC2 and GAAC3 for the seven simulations are 

shown in Figure S3. The characteristic minor-groove narrowing with A-tract sequences is 
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present in A6, A7, A10, A11, A14 and A15. In contrast, the major-groove shows a 

narrowing in both C8pG9 and C12pG13 steps. Between the seven simulations, the average 

deviation is 0.05 Å except with A15 and C16 which have an average deviation of 0.12 and 

0.24 for the major and minor groove respectively. The top plots in S7, which is an average 

of the averages from the entire simulations, shows that a direct comparison between our 

dataset suggests similar and small fluctuations which show a good agreement between the 

results.

How different are results on the 1 μs time scale between Anton and AMBER on CPUs and 
GPUs?

To detect and quantify any significant difference or biasing between simulations calculated 

by each computer methodology we performed extensive measurements of global and local 

parameters of the seven sets of simulations. Visualization of an overlay of average structures 

between Anton1, Anton2, CPU1, CPU2, GPU1 GPU2 and ENS simulations extracted from 

1 to 2 μs is presented in Figure S4 and shows that the structural differences are actually 

fairly minor. The structures show all-atom RMS deviations in the range of 0.5 to 1.2 Å 

except for some more significant distortions on the termini base-pairs where the difference is 

over 1.2 Å. Excluding the starting base pair (bp, residues 1 and 36) and ending bp (residues 

18 and 19), the RMSD average difference between all the structures is less than 1 Å. In we 

show two different measures of RMSD between all the simulations. The data was obtained 

comparing an average structure between 1 and 2 μs of the total simulation time. The bottom 

diagonal shows the comparison values using all atoms and all residues and the top diagonal 

shows the comparison values using all atoms without the first base pair at each end of the 

DNA chain. Except for the CHARMM values, the distances are less than 0.4 Å away from 

each other, which suggest a high similarity between the simulations, independent of the 

platform on which they were run. The CHARMM values using all residues have a mean 

value of 4.52 Å difference between the rest of the simulation, which goes to 4.15 Å if we do 

not include the termini base pairs for the RMSD measurement. This deviation between the 

AMBER and CHARMM results will be discussed in detail later on. Additional comparisons 

of the RMSD values among the simulations can be seen in Figure S5.

Comparison of DNA structural parameters on μs time scale

Information about the intra-base pair helicoidal parameters for twist, roll and tilt are shown 

in Figure 7. The complete set of intra and inter-base pair helicoidal data are included in 

Figures S6 and S7 of the supporting information. The terminal base pairs show higher 

variability due to the incompletely converged base pair opening events. This can be seen in 

the structural parameters used to evaluate the simulations, where the GAAC1 and GAAC2 

sequences mostly show very similar values and small deviations due to their distance from 

the termini. The GAAC3 sequence however, being only two base pairs in from the termini, 

displays more significant differences and larger deviations, most notably in twist, tilt, roll, 

buckle, opening, propeller and stretch. Also notable are larger than expected deviations at 

the CpG steps for roll, twist, buckle and stretch, which is indicative of the greater difficulty 

in converging the bimodal distributions for this step as seen previously [74,75]. Despite 

these small differences on the 1 μs time scale, the helicoidal parameters are mostly 

converged and show the expected sequence dependent trends.
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The structural parameters twist, roll and tilt were also computed independently for the first 

and second halves of the trajectories to further measure convergence (Figure S8). The plots 

show normalized distributions for the twist, roll and tilt structure parameters of the C4pG5 

step for all simulations. The overlay of the distribution shows a high level of similarity 

between the simulations with less than 0.01° of difference.

The DNA dynamics of the backbone show a characteristic bimodal distribution between two 

distinct conformations belonging to the B family, known as BI and BII that can be 

characterized in terms of the ε and ζ torsion values in the DNA backbone [74,107,108]. The 

complete simulation trajectory was analyzed and the average time spent in each substate for 

each simulation is shown in Table 3. Given the large standard deviations, the sampled 

distributions are essentially indistinguishable. The complete BI/BII values for each step are 

available in Table S1 in the Supporting Information. The distribution between BI/BII 

conformations for GpA steps (G5pA6, G6pA10 and G13pA14) in the GAAC sequence 

shows a distribution of ~70–30% which matches experimental quantification performed by 

Hartmann using NMR analysis of 63–37% [108]. For the adenine steps A6pA7 and 

A10pA11 the distribution remains close to 90–10% in the seven systems tested and close to 

the observed value of 88–12%. For the steps G13pA14 and A14pA15, even as they close to 

the end of the sequence, the distribution remains close to the experimental values. In Figure 

S9 of the supplemental information we show the groove widths and helical information 

using the average value from the first 10 μs of simulation. The major groove is 1–2 Å lower 

in comparison to the AMBER simulations (Anton1, Anton2 and ENS simulations are 

included as reference, using the same average window). This causes increased values in the 

minor groove. Toward the GAAC3 section of the DNA, the values show a higher fluctuation 

due to base pair opening. This is also present in the opening, propeller, shear, stagger and 

stretch parameters, which show increased deviations toward GAAC3. In Table S3 we show 

the CHARMM and Anton2 averaged helicoidal parameters obtained from the first 10 μs 

average structures from the full trajectory using residues 3–16, 21–34 and the same 

parameters from an experimental DNA NMR structure (PDB id: 1NAJ). Although the 

experimental and simulation numbers are not directly comparable due to the different 

sequence, overall, as seen in Figure S1, the rise, base pair tipping and roll in the CHARMM 

simulations are slightly too high whereas propeller is likely too low.

The RMSD values from the CHARMM simulation in Figure 1 show higher deviations from 

the reference structure caused by multiple structural fluctuations during the entire 

simulation. The RMSD distributions for the Anton1, Anton2, ENS, and CHARMM (C36) 

simulations are shown in the top panel of Figure 8. When all residues are included in the 

analysis, the Anton2 and the CHARMM simulations wider distributions compared to the 

ENS and Anton1 simulations. This is caused by multiple base pair opening events in the 

Anton2 and CHARMM simulations. If the base pairs at both edges of the DNA are taken out 

of the analysis, the histogram of the Anton2 simulation now matches with the Anton1 and 

ENS simulations. However, the distribution from the CHARMM simulation is still relatively 

wide, ranging from 2 to 10 Å RMSD. If only base pairs 3 through 16 are considered, 

although the CHARMM distribution remains wide, the peak of the distribution now matches 

relatively well with the other three simulations.
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To compare the dynamics at each end of the DNA chain between the CHARMM and 

Anton1 simulations, the distribution of distances between the center of mass of residues 

comprising the base pairs at each end of the DNA (i.e. base pairs 1–3 and base pairs 16–18) 

is shown in the two left-most plots of the middle panel in Figure 8. The left-most plot shows 

distance distributions for base pairs 1–3, which are comprised of residues 1 and 36, 2 and 

35, and 3 and 34 respectively. The experimental value between the center of mass of a GC 

base pair is ~12 Å which we can see is highly populated for the 2nd and 3rd base pairs in the 

Anton1 simulation (dashed red and green lines). The distance distribution of the first base 

pair (dashed black line) in the Anton1 simulation shows peaks at 11 Å and ~4.5 Å due to 

base pair opening events. In the CHARMM simulation, the distance distribution for the first 

base pair (solid black line) ranges from 4 Å to 15.5 Å, with slightly higher populations 

around 5 Å which corresponds to mismatched stacking structures, explaining the decreased 

distance value between the bases (see below). Base pair 2 (solid red line) shows a population 

peak at ~11.8 Å corresponding to a correct Watson-Crick (WC) pairing between the two 

bases and another peak at ~7 Å which corresponds to a stacking mismatch, reducing the 

distance between both residues. Although the 3rd base pair (solid green line) has a peak that 

is close to the correct pairing distance, the fluctuations of the simulation are too high to 

allow for a stable WC pairing. The second-to-leftmost plot shows distance distributions for 

base pairs 16–18, which are comprised of residues 16 and 21, 17 and 20, and 18 and 19 

respectively. In the Anton1 simulations, the distance distributions for base pairs 16 and 17 

(green and red dashed lines) show the majority of the population at the expected value of 

~12 Å, while base pair 18 (black dashed line) shows a more broad distribution due to the 

fraying effects studied in this article. For the CHARMM simulation, the fraying effects are 

somewhat reduced since the population is increased to the expected value as we move from 

the 18th to the 16th base pairs. The two right-most plots of the middle panel of Figure 8 show 

the distribution of distances between the N1 atom of guanine and the N3 atom of cysteine. 

Using these atoms as anchors to measure the distance between two base pairs helps in the 

detection of opening between DNA base pairs and complements the analysis done using the 

center of mass of the nucleotide. In a similar manner as with the previous observations, the 

Anton1 simulation have a maximum population at the experimental value of ~3 Å increasing 

from the 1st to the 3rd and from the 18th to 16th base pairs. For the CHARMM simulation, 

the distribution of distance values looks similar for base pairs 1–3 and for base pairs 18–16. 

The outer-most base pairs (1 and 18) of the CHARMM simulation have peaks around 4 Å, 

the next base pairs in (2, 3,17, and 16) show peaks closer to the experimental value, but still 

having significant population in the 4 Å area.

The bottom panel of Figure 8 shows the representative structures of the 4 most populated 

clusters from a clustering analysis performed using the full CHARMM trajectory (the 

CPPTRAJ input used to perform this analysis is shown in Table S2). The structure a 
represents a cluster populated in >81% of the trajectory for CHARMM, and structures b, c, 

and d represents 6.5 %, 3.7 %, and 1.3% respectively. The analysis produced over 20 

clusters with less than 0.01% of population present in the trajectory, which suggests a 

constantly changing structure in the simulation which is consistent with the wide RMSD 

population distribution shown in the top panel of Figure 8. Despite the large structural 

fluctuations of DNA in the CHARMM simulations shown in Figure 8, the high population 
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of a single cluster compared to all other clusters indicate that by ~2 μs the structure has 

converged for at least the internal portion of the helix.

Events requiring longer simulation times

Extending the simulation time allows exploration of different aspects of the base pair 

opening. The opening events explore different conformational space (e.g. minor or major 

groove binding, base pair flipping), show differential interactions with ions and solvent, and 

can be observed to go beyond the second or third base pair. The Anton2 MD simulation of 

44+ μs is one of the longest continuous simulations of DNA performed to date and shows a 

rich dynamic behavior of opening events on both ends of the helix. Although fraying of 

DNA has commonly been observed at the termini in MD simulations on the microsecond 

scale [83,109–111], few examples have explored the diversity of structure and dynamics 

sampled here with openings beyond the first base pair, and, in spite of seeing multiple 

events, the MD simulations are not yet long enough to fully characterize the opening events. 

Referring back to Figure 1, multiple fraying events are present during the first 20 μs. The 

detail of the first half of the simulation is shown in Figure 9. In conformation A and E we 

see a base mis-pairing between residues G1 and C36 with a RMSD difference of 0.9 Å. In 

conformation B a stacking interaction was formed between the end base pairs C18 and G19 

after fraying and a higher difference of 1.1 Å is observed. The bases remained stacked for 

almost 500 ns before returning to the canonical base pairing. In conformation C, residue 

C36 breaks the pairing and twists toward the minor groove (difference of 1.3 Å). 

Conformation D has 2 step base-pair openings (base pairs 1–36 and 2–35). C36 twists 

toward the minor groove. This results in a backbone distortion and a flip of 19° on the χ 

angle of G35. The resulting orientation allows for a NH-π type of interaction between the 

diazine ring of the cytosine and the amino hydrogen of G1.

During the second half of the simulation, a long distortion caused by multiple opening 

events and interaction of the opening base with the minor groove is seen. The dynamics 

from 20 to 44 μs of Anton2 are shown in Figure 10. Multiple fraying events occur at the 

same time on both sides of the DNA chain, raising the RMSD values. Although the long-

lived opening event hints at instability of the DNA duplex, by the end of the simulation both 

termini have reformed the native Watson-Crick base pairing. Investigating the time course, 

at 21.5 μs, the first and second base pairs open and G1 forms a stacking interaction with G35 

(conformation F). From the RMSD values, this stacking formation is formed with the first 

base pair opening (RMSD 1.1 Å) and the approach of the guanines to form the stacking 

interaction. The process takes ~350 ns. In a similar manner, the same stacking configuration 

occurs on the other side of the chain with first and second base pair openings and stacking of 

C19 with G17 (difference of 3.7 Å RMSD from the starting structure). Rearrangement of the 

stacking in G1 and G35 and the flipping of both the free C2 and C36 causes widening of the 

minor groove and splitting of the double helix, increasing the RMSD to 3.2 Å (conformation 

G). Residues C18 and G19 remain in the stacking configuration. Conformation H has the 

highest RMSD difference from the starting structure with 3.5 Å. Residue 2 flips back on top 

of G35 which was forming the stacking with G1 and C36 goes into the major groove. The 

distances between the C1′ atoms from the 3rd base pair increases from 8.6 to 9.0 Å in this 

conformation. At the other side of the DNA chain, base pairing between residues 17 and 20 
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reforms, although residue 18 flips toward the minor groove. This conformation remains for 

~100ns and the residue 1–35 stacking is lost. Simultaneously, between configurations H and 

I, the base pairing reforms at residues 17–20 and 18–19, lowering the overall RMSD values. 

The configuration I where the residues 1, 2, 35, and 36 are not forming Watson-Crick 

pairing, and not interacting with each other in any other form, remains for ~10 μs. Multiple 

short-lived single base pair openings occur between residues 18 and 19, reforming each 

time. In configuration J the base paring between residues 2 and 35 reforms and residues 1 

and 36 flip back inward from the DNA grooves. The reference RMSD value of ~3 Å is once 

again obtained until 35.1 μs. The rest of the simulation time we observe fraying similar on 

both ends to the one in conformation K, with a single base flipping toward either groove.

A preference for base pair opening and fraying events is shown in the 1–36 base pair, which 

may be caused by the closer presence of an AT base-pair as opposed of the 18–19 end, 

which has 3 consecutive GC base pairs. It is important to notice that multiple opening events 

occur at the same time and in a short time scale. The opening events occurring when 

reaching 21.5 μs shift the structure to a distorted DNA chain in ~2 μs. This distortion is 

eventually lost and the original structure is once again obtained only after ~12μs of 

simulation. This is important because routine applications of MD to nucleic acids include 

aggregate sampling times on the 1–2 μs timescale, which leaves out important sampling 

conformations and folding-refolding events that only can be achieved with longer 

simulations.

Further estimates of convergence are shown by characterizing the average water and ion 

density around the various GAAC repeats in the Anton2 simulation as shown in Figure 11. 

The top part of the figure shows a rendering of the binned water density on top of molecular 

graphics of average structures for the GAAC1 and GAAC2 regions using equivalent 

contouring levels and on the top-right side an overlay of both the densities. We observe that 

qualitatively, both densities are similar, suggesting the same solvation density for both 

GAAC1 and GAAC2 sites.

The ion distribution match in a similar manner presented as an overlay in Figure 11, bottom 

right. Ion distribution at the end base pair of the DNA is presented in Figure 12. The top 

image shows a structure of the most populated cluster of the Anton2 simulation with the 

Watson-Crick pairing formed. The distribution of the K+ ions is present toward the mayor 

groove, similar to what is shown in the previous image. Bottom image shows the second 

most populated cluster with an opening event where G1 has shifted, breaking the pairing 

with C36. Analysis of this structure revealed inclusion of K+ density inside the cavity left 

where the G1 was. It is possible that a direct influence of the ions present in the simulations 

contribute to the frequency of the base pair opening events [23,81,111,112], although further 

studies will have to be done.

CONCLUSION

In this work we present extensive analysis of multiple μs-length MD simulations of DNA 

using Amber12 and Amber 14 on multiple computer architectures. The results show that 

despite the underlying differences in hardware, the simulations run on different architectures 
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overall show very little structural variation with respect to one another. The main difference 

between the simulations is in the dynamics of terminal base pair fraying, which is not 

completely converged even on the μs time scale. Using the Anton supercomputer, we were 

able to perform one of the longest MD simulations of DNA to date (~45 μs). It is important 

to note that even though multiple terminal base pair fraying events occurred during this 

simulation, including one event that involved multiple base pairs over many μs; these base 

pairs were able to reform, indicating the current force field is reasonably robust. 

Additionally, we show that for the latest AMBER and CHARMM force field for nucleic 

acids, there is a fast decay in the dynamics of the internal section of the DNA chain. The 

amount of sampling and simulation time obtained with the current computer power is 

enormous and can provide a wealth of data, but this is a double-edge sword. We are now 

reaching the point where the data becomes available faster than we can actually perform the 

analysis. Although we observe very transient base pair opening events up to 4 base pairs 

when data is recorded every 1 ps that are not observed when data is recorded every 50 ps, 

considering the data explosion and I/O-efficiency considerations from frequent data writes 

on high performance computing systems such as Blue Waters, we now only save the data at 

10 ps intervals (which appears to be a good compromise). Extensive simulation time is only 

useful with modern and detailed analysis methods to properly gain insight into phenomena 

of interest. Furthermore, more elaborate sampling technologies, such as temperature replica 

exchange, Hamiltonian and multi-dimensional replica exchange, meta-dynamics and 

umbrella sampling, enabled by access to national large-scale computational resources, such 

as the Blue Waters Petascale Resource, require efficient and complete methods to study 

convergence [101, 102]. Analysis of the internal modes of vibration with PCA and RMSD 

average correlation provides a further measure of comparison between the different 

simulations and their convergence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• The structure of the internal DNA helix converges on the 1–5 μs time scale.

• Terminal base pair openings on the μs time scale are structurally diverse.

• Ensembles of molecular dynamics simulations match long time scale 

simulations.

• AMBER CPU and GPU simulations match those performed on Anton.

• MD with multiple force fields suggest absence of dynamics from 1 μs – 1 ms.
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Figure 1. 
RMSD values (Å) as a function of time for the Anton1 (black), Anton2 (red), ENS (green) 

and CHARMM (blue) simulations. The plots show the RMSD values of all atoms to the 10 

μs average structure at 50 ps intervals from the Anton1 simulations (in gray) and also a 

running average over 5000 frames. Note that the CHARMM RMSD (Å) values are on a 

different scale to accommodate the larger fluctuations caused by increased base pair opening 

observed with the CHARMM C36 force field.
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Figure 2. 
RMS average correlation (RAC) computed at different time intervals using the “rmscorr” 

command in CPPTRAJ for the Anton1, Anton2, and ENS simulations. In the main plot, the 

fit is over all DNA heavy atoms of running average structures over the full trajectories (with 

frames spaced at 50 ps intervals) calculated at each time interval from 50 ps to 8 μs (with an 

offset of 50 frames) referenced in the RMS fit to either the average structure over the entire 

trajectory (solid) or the first calculated running average structure from 50 ps to N where N is 

the time (dotted) for the Anton1 (black), Anton2 (red), and ENS (green) simulations. The 

initial values at 50 ps are in the 3–4 Å range. The inset plot provides the same information 

except that the RMS fit is to a common average structure (the 0–10 μs average structure 

from the Anton1 simulation) and only includes the 10 internal base pair heavy atoms; 

moreover, to better highlight the decay the small final RMSD value is subtracted from all 

values (this value was 0.009 Å for Anton1, 0.026 Å for Anton2, and 0.026 Å for ENS).

Galindo-Murillo et al. Page 29

Biochim Biophys Acta. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Overlap of principle component (PC) histograms from PC analysis in Cartesian space 

calculated from the combined Anton1 and Anton2 simulation trajectories with independent 

projection of the PCs on the separate trajectories.
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Figure 4. 
Kullback-Leibler divergence of PC projection histogram overlap calculated from the Anton1 

and Anton2 simulations as a function of time.
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Figure 5. 
Molecular graphics of representative structures from 15 clustering of straight coordinate 

running averaged trajectories over different time intervals for all atoms in the DNA 18-mer 

helix. Running averages over the ENS trajectory were performed over different time 

intervals (50 ns, 100 ns, 1 μs, 3 μs and 6 μs, side and top view) and the derived trajectory 

was clustered using CPPTRAJ with the average-linkage algorithm into 15 clusters omitting 

the terminal base pairs using a sieve of 250 frames. The structures of the representative 

member of the 15 clusters over each time interval are shown colored by atom.
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Figure 6. 
Atomic fluctuations of the ENS simulation. Each line represent the fluctuation using 

increasing running average intervals. Top plot, atoms from 1 to 1139. Bottom plot, detail of 

GAAC2, from atoms 221 to 378. The shaded area represents the segment of the plot were 

the atoms of the base, the sugar (atoms C1′ to C5′, including hydrogens) or the phosphate (P, 

O1P, O2P, O5′ and O3′) moiety can be found. The trajectory was RMS fit to the average 

structure of the entire simulation with a time step of 50 frames.
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Figure 7. 
Selected intra-base-pair values using the first 2 μs for each simulation. Values for twist roll 

and tilt of the 3 GAAC motifs. Bottom plots show the seven simulations of this work, top 

orange plot shows the average values.
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Figure 8. 
Top: histogram of RMSD values for the Anton1 (black), Anton2 (red), ENS (green) and 

CHARMM C36 (blue). The reference for the AMBER simulation was a 10 μs average 

structure from Anton1. For the CHARMM simulation, the reference used was also a 10 μs 

average structure obtained from the full CHARMM simulation. Middle: normalized 

histograms of the distance vs. time of end base pairs for CHARMM and Anton1. Each of the 

plots represents a histogram of the distance vs time analysis for the 3 base pairs at the end of 

the DNA chain, using the full CHARMM trajectory. The two plots on the middle-left were 

calculated using the distance between the center of mass for residues 1, 36 (black), 2, 35 

(red) and 3, 34 (green) and the base pairs on the other end of the DNA chain (pairs 18,19, 

17,20 and 16,21). The solid lines are from the CHARMM simulation, dashed lines are from 

the Anton1 simulation. The two plots on the middle-right were obtained measuring the 

distance between the N1 atom of guanine and N3 of cytosine which gives a good measure to 

determine base pair opening. Bottom: the 4 representative structures of the most populated 

clusters from the clustering analysis using the full C36 trajectory (no hydrogens are shown). 

The clustering was obtained using the average-linkage algorithm (see Table S2 for exact 

CPPTRAJ input).
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Figure 9. 
RMSD for the Anton2 simulation of the residues 1 to 36 showing the first 20 μs of 

simulation. For clarity, the RMSD values are presented with a 5000 frame running average. 

See text for discussion.
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Figure 10. 
RMSD for the Anton2 simulation of the residues 1 to 36 showing the second half of the 

simulation, from 20 to 45 μs. For clarity, the RMSD is presented with a 5000 frame running 

average. See text for discussion.
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Figure 11. 
Water (top) and K+ (bottom) densities for Anton2. On the top figure, blue represents the 

water density grid around residues 5 to 8 and the density around residues 9 to 12 is in 

yellow. The bottom plot represents the K+ density grid for residues 5 to 8 in red and residues 

9 to 12 in yellow. The different colors aid to distinguish each grid when they are combined 

on the right side. Both grids were calculated using the first 10 μs of the simulation. The 

resulting grid from GAAC2 was then translated to match GAAC1 using cpptraj and the 

overlay of both densities is shown in the right. Reference for both computations was an 

average 10 μs structure obtained from the Anton2 simulation.
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Figure 12. 
Base opening events in relation to ion binding. Top: most populated structure from 

clustering analysis of Anton2 using average-linkage algorithm into 10 clusters. The 5x bulk 

K+ ion density is shown, only base-pair steps 1 through 3. Bottom: second most populated 

representative structure with an opening event and the K+ grid using the same ion density. 

Coloring of the grids are based on closeness to the center of the grid: red is closer, yellow is 

farther.
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Table 1

The molecular dynamics simulations performed and total time. The ENS and the CHARMM C36 trajectories 

consist of an ensemble of 100 independent MD simulations aggregated together omitting the first 100 ns of 

data, see text.

Simulation set Duration (μs) Force Field

Anton1 12.27 ff99SB + parmbsc0†

Anton2 44.06 ff99SB + parmbsc0†

CPU1 2.18 ff99SB + parmbsc0

CPU2 2.16 ff99SB + parmbsc0

GPU1 4.33 ff99SB + parmbsc0

GPU2 4.33 ff99SB + parmbsc0

Ensemble (ENS) 83.51 ff99SB + parmbsc0

CHARMM 90.89 CHARMM C36

†
Converted to *.cms format using “amber_topNrst2cms.py”
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Table 3

Average distribution percentages between the BI-BII backbone conformational substates using the first 2 μs for 

each simulation.

BI (Std. dev.) BII (Std. dev.)

Anton1 86.9 (11.3) 13.3 (11.1)

Anton2 87.2 (10.5) 12.8 (10.5)

CPU1 86.6 (11.6) 13.4 (11.6)

CPU2 86.8 (10.8) 13.1 (10.9)

GPU1 86.8 (11.8) 13.2 (11.8)

GPU2 86.9 (10.7) 13.1 (10.7)

ENS 86.5 (12.1) 13.5 (12.1)
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