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Abstract

Measurements derived from neuroimaging data can serve as markers of disease and/or healthy 

development, are largely heritable, and have been increasingly utilized as (intermediate) 

phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused 

on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic 

variables such as disease risk factors, environmental exposures, and epigenetic markers. However, 

identifying significant interaction effects is critical for revealing the true relationship between 

genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we 
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present a general kernel machine based method for detecting effects of interaction between 

multidimensional variable sets. This method can model the joint and epistatic effect of a collection 

of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially 

moderate genetic influences, and test for nonlinear interactions between sets of variables in a 

flexible framework. As a demonstration of application, we applied the method to data from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions 

between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease 

(CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic 

resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, 

demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting 

that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence 

of CVD risks.
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1 Introduction

Genetic components play a significant role in most brain-related illnesses. The discovery of 

genetic effects can elucidate the biological pathways and processes underlying neurological 

disorders, and ultimately yield prevention and treatment strategies. In the field of imaging 

genetics, this goal is approached by using quantitative brain image derived measurements as 

intermediate or endophenotypes [Biffi et al., 2010; Ge et al., 2014; Gottesman and Shields, 

1972; Gottesman and Gould, 2003; Meyer-Lindenberg and Weinberger, 2006; Sabuncu et 

al., 2012], which are biomarkers of disease, and are believed to be closer to the disease 

process and have a simpler genetic architecture than clinical diagnoses.

However, heritability analyses and genome-wide association studies (GWAS) [Visscher et 

al., 2012] of complex genetic phenotypes ranging from human height [Yang et al., 2010], 

body mass index, von Willebrand factor [Yang et al., 2011], schizophrenia [Lee et al., 

2012b], to various volume-, surface- or connection-based brain measurements computed 

from structural, functional or diffusion images [Thompson et al., 2013], indicate that 

phenotypic variation cannot be solely explained by genetics. The interactions between 

genetic and non-genetic variables such as disease risk factors, environmental exposures and 

epigenetic markers may play an important role in the variation of complex phenotypes 

[Sullivan et al., 2012], and the influence of genetic variants on the likelihood, development, 

and progression of a brain illness may be indirect and interactive. The presence of 

interactions implies that genetics can modulate the effects of various risk factors on the 

disease, producing variations across subjects even exposed to the same environment. 

Alternatively, the effect of the genotype on outcomes can depend on one or more risk factors 

or environmental exposures. For example, Caspi et al. [2002] reported that the effect of 

maltreatment of children from birth to adulthood on the development of antisocial behavior 

is moderated by a functional polymorphism in the MAOA gene. The genotype of a locus 

known as 5-HTTLPR located in the promoter region of the serotonin transporter gene was 
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found to moderate the influence of stressful life events on depression [Caspi et al., 2003]. 

Therefore, identifying potential genetic interactions with non-genetic variables can be 

critical in understanding the true relationship between genotype and phenotype.

Thanks to recent advances in genotyping technology, it is now possible to investigate 

genetic interaction effects involving specific genetic risk factors, candidate genes, or even 

the entire genome, in unrelated individuals. Current statistical methods to test for 

interactions largely utilize multiple linear regression models with quantitative phenotypes, or 

logistic regression models with binary outcomes, in both the genetics community [Aschard 

et al., 2011; Kraft et al., 2007; Paré et al., 2010], and the imaging community (e.g., 

psychophysiological interactions analysis [Friston et al., 1997]). In these analyses, both main 

effects are typically univariate variables, and the interaction is modeled by their product. 

Although a number of recent papers have tried to improve the power of the classical 

univariate interaction test [Hsu et al., 2012; Mukherjee and Chatterjee, 2008; Murcray et al., 

2011], they suffer from two main drawbacks when detecting interactions between genetic 

variants and non-genetic variables. First, converging evidence has shown that many complex 

brain disorders are polygenic and influenced by up to thousands of genetic variants with 

small effects [Purcell et al., 2009; Sullivan et al., 2012]. Analyzing each individual locus 

may not identify any reliable results with a small to moderate sample size, which is typical 

in imaging genetic studies. And second, it is now not uncommon to collect a large number 

of disease risk factors, environmental variables, or epigenetic markers in a single study. The 

product of all possible pairs of genetic variants and non-genetic variables may be dauntingly 

large, which dramatically increases the burden of computation and multiple testing 

correction. More critically, Lin et al. [2013] showed that if the main effects of a set of 

genetic variants are associated with the phenotype, testing each single genetic variant for 

interactions can be biased.

In this paper, inspired by Li and Cui [2012], we present a semiparametric kernel machine 

based method to detect interactions between multidimensional variable sets. Kernel machine 

based methods have been previously used in association studies between single nucleotide 

polymorphism (SNP) sets and complex diseases or imaging phenotypes [Kwee et al., 2008; 

Liu et al., 2007; Wu et al., 2010, 2011], and have been applied to voxel-wise genome-wide 

association studies to obtain boosted statistical power [Ge et al., 2012; Stein et al., 2010]. 

Here, to jointly model the genetic and non-genetic variables, and their interactions, we 

extend the original kernel machine based method, and include three appropriately selected 

kernels in the model; one for genetic variants, one for non-genetic variables, and a third one, 

which is the Hadamard product of the genetic and non-genetic kernel, for the interaction 

effect. The genetic kernel provides a biologically-informed way to capture epistasis in a set 

of SNPs and model their joint effect on the phenotype. SNP sets can be formed by SNPs 

located in or near a gene, within a gene pathway or a haplotype structure; risk SNPs 

identified by previous studies or other a priori biological information [Wu et al., 2010]. 

Examining the collective contribution of SNPs further opens possibilities to investigate 

cumulative effects of rare variants [Wu et al., 2011], and often provides improved 

reproducibility, biologically informed insights, and increased power relative to univariate 

methods. The non-genetic kernel allows for modeling the joint effect of multiple variables. 

By using a connection to linear mixed effects models, the interaction effect can be tested by 
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a variance component score test [Lin, 1997; Liu et al., 2007]. The proposed method thus 

offers a flexible framework to account for epistatic effects, multiple non-genetic factors, and 

test for the overall interaction effect between sets of multidimensional variables.

As a demonstration of application, we applied the proposed method to detect the interaction 

effects between candidate late-onset Alzheimer's disease (AD) risk genes and cardiovascular 

disease (CVD) risk factors including age, gender, body mass index (BMI), hypertension, 

current smoking status and diabetes, on hippocampal volume derived from structural brain 

magnetic resonance imaging (MRI) scans, which is associated with AD risk and future AD 

progression [Sperling et al., 2011].

AD, the most common form of dementia, is characterized by memory loss, cognitive 

decline, and other symptoms. The cause and progression of AD are not well understood. As 

a disease that often co-occurs with AD in the elderly population, vascular pathology is 

among the potential factors to increase the risk of AD. In particular, increasing evidence 

shows that many CVD risk factors including hypertension, smoking and diabetes are 

associated with cognitive decline and neurodegeneration, and may increase the risk and 

accelerate the progression of AD [Helzner et al., 2009; Kivipelto et al., 2001; Lo et al., 

2012; Luchsinger et al., 2005; Purnell et al., 2009]. For example, the neurovascular 

hypothesis of AD suggests that neurovascular dysfunction reduces the clearance of amyloid 

beta (Aβ) peptide across the blood-brain barrier, which could initiate a series of pathological 

processes and ultimately lead to neuronal injury and loss [Zlokovic, 2005]. Moreover, recent 

studies have identified that the interaction within multiple CVD risk factors, and the 

interaction between CVD risk factors and the apolipoprotein E (APOE) polymorphism, the 

largest genetic determinant of late-onset AD susceptibility, may significantly influence the 

risk and progression of AD [Borenstein et al., 2005; Irie et al., 2008; Purnell et al., 2009; 

Qiu et al., 2003]. We therefore hypothesized that genetic components play a role in the 

development and progression of AD in the presence of CVD risk factors and events. Testing 

for the interactions between AD risk genes and CVD risk factors on hippocampal volume 

may shed light on the underlying mechanisms of AD-related neurodegeneration, and suggest 

potential therapeutic treatment as many CVD risk factors are largely modifiable.

The remainder of the paper is organized as follows. In the Materials and Methods section, 

we present the kernel machine based method and the statistical test for interaction detection 

between multidimensional variable sets. Simulation studies are then introduced to evaluate 

the proposed method. In the Results section, simulation results, as well as our findings on 

the real data are shown, and compared to alternative interaction detection methods. The 

advantages and weaknesses of the method, and the implication of the findings, are 

summarized in the Discussion section. Some theoretical aspects of the kernel method and 

supplementary analyses are provided in Appendix.

2 Materials and Methods

2.1 Kernel methods for interaction detection

2.1.1 The model—We assume that there are N unrelated subjects under investigation. yi, i 

= 1, ···, N, is a quantitative phenotype for the i-th subject, such as an image derived disease 
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marker. We are interested in detecting the interaction between a collection of genetic 

variants and a set of non-genetic variables such as disease risk factors, environmental 

exposures, or epigenetic markers. In particular, let  denote the L SNP 

markers, where Gi,s, s = 1, ···, L, is the genotype coded to be the number of copies of the 

minor allele that the i-th subject possesses for the s-th SNP, and takes the values of 0 

(homozygotic major alleles), 1 (heterozygote), and 2 (homozygotic minor alleles). Let 

 denote the R non-genetic variables for the i-th subject. We associate 

the phenotype with the genetic and non-genetic variables via the following semiparametric 

model:

(1)

where xi is a p × 1 vector of covariates (e.g., age, sex) for the i-th subject, β is a p × 1 vector 

of fixed effects, εi is random residual with zero-mean and homogeneous variance σ2, f is an 

unknown function on the product domain , with  and . 

According to the ANOVA decomposition of functions [Gu, 2002], f can be expanded as

(2)

where hG(Gi) and hW(Wi) are the main effects of genetics and non-genetic factors, 

respectively, and hG×W (Gi, Wi) captures interactions. The overall mean of f can be absorbed 

into the intercept contained in xi, and is therefore omitted here. A reproducing kernel Hilbert 

space (RKHS)  of smooth real-valued functions on  can be constructed [Gu and 

Wahba, 1993; Wahba et al., 1995]. In particular, the functional space  has an orthogonal 

decomposition:

(3)

where  and  are RKHSs of functions on  and , respectively,  is a RKHS 

of functions on , denotes direct sum. Each component in Eq. (2) lies in the 

corresponding subspace in Eq. (3). Therefore,  is a RKHS with the associated 

reproducing kernel as the sum of the reproducing kernels of the three component subspaces. 

We assume that  is equipped with an inner product < ·, · > and a norm .

2.1.2 Model estimation—The function  can be estimated by minimizing the 

penalized squared-error loss function of model (1):

(4)

where  is a roughness penalty, and λ is a tuning parameter. Since the entire 

functional space  has the orthogonal decomposition (3), the penalty function  can be 

decomposed accordingly, and Eq. (4) can be more explicitly written as
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(5)

where , , , 

, , λG, 

λW, and λG×W are positive smoothing parameters that balance the goodness of fit and 

complexity of the model.

By the representer theorem [Kimeldorf and Wahba, 1971; Wahba, 1990], the functions hG, 

hW and hG×W that minimize the functional (5) take the forms

(6)

for arbitrary G* and W*, where αG,j, αW,j and αG×W,j, j = 1, 2, ···, N, are unknown 

coefficients, kG, kW and kG×W are reproducing kernel functions of the Hilbert spaces , 

 and , respectively. Since the reproducing kernel of a tensor product of two 

RKHSs is the product of the two reproducing kernels [Aronszajn, 1950], the kernel function 

kG×W is connected to the kernel functions kG and kW by

(7)

Define the N×N symmetric kernel matrices KG = {kG(Gi, Gj)}, KW = {kW (Wi, Wj)} and 

, where  is the Hadamard product 

(element-wise product) of two matrices. Then

(8)

where ,  and 

. Substituting hG, hW and hG×W into Eq. (5), and making 

use of the reproducing kernel property, we obtain
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(9)

where ε = y – Xβ – KGαG – KWαW – KG×WαG×W.

The gradients of  with respect to the parametric coefficients β and nonparametric 

coefficients αG, αW and αG×W are

(10)

Therefore, setting the gradients to zero, this first-order condition is given by the linear 

system:

(11)

Liu et al. [2007] showed that this first-order linear system is equivalent to the normal 

equation of the linear mixed effects model

(12)

where β is a coefficient vector of fixed effects, hG, hW and hG×W are independent random 

effects, and distributed as , , , 

, , , , ε is 

independent of random effects and follows ε ~ N(0, σ2I), and I is an identity matrix. This 

connection indicates that the fixed effects β, and the random effects hG, hW and hG×W, 

obtained by minimizing the loss function in Eq. (4), are equivalent to the best linear 

unbiased predictors (BLUPs) of the linear mixed effects model (12). The variance 

components , ,  and σ2 can be estimated via the restricted maximum likelihood 

(ReML) approach [Harville, 1977; Lindstrom and Bates, 1988] (see Appendix A for details), 

and the estimates of random effects ĥG, ĥW, ĥG×W can be obtained by solving the linear 

system (11) and inserting the  estimates into Eq. (8).

2.1.3 Selection of kernels—There are a variety of choices for the kernel functions to 

characterize the similarity between subjects with respect to the genetic variants and non-

genetic factors, as long as they are nonnegative definite [Schaid, 2010a,b]. Possible 

candidates are the linear kernel, the polynomial kernel, the Euclidean distance (ED) kernel, 

the Gaussian kernel, and the identity-by-state (IBS) kernel [Kwee et al., 2008].

Here we use the IBS kernel for the genetic effect. The IBS kernel measures the similarity of 

the genotypes between the i-th and j-th subject by
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(13)

where L is the number of SNP markers to be combined. The IBS kernel is a nonparametric 

function of the genotypes, as it does not depend on the selection of basis or any assumption 

on the types of genetic interaction. Therefore, in principle, it can capture any epistatic effect 

between genetic variants and their nonlinear influences on the phenotypes.

We propose the linear kernel to combine multiple non-genetic factors. The linear kernel can 

be represented as

(14)

where R is the number of non-genetic factors under investigation. We evaluate the 

performance of the two kernels by simulation studies.

2.1.4 Score test—We note, from the linear mixed effects model representation (12), that 

testing an overall genetic and non-genetic effect  is 

equivalent to testing the variance components: . To address the issue 

that, under the null hypothesis, the parameters , , and  are on the boundary of the 

parameter space, Liu et al. [2007] proposed a score test based on the ReML. In particular, let 

K = KG + KW + KG×W, and the score test statistic is defined as:

(15)

where  is the maximum likelihood estimate (MLE) of the regression coefficients under the 

null model y = Xβ0 + ε0,  is the variance of ε0,  is the 

projection matrix under the null.  is a quadratic function of y and follows a mixture 

of chi-squares under the null. We use the Satterthwaite method to approximate the 

distribution of  by a scaled chi-square distribution . In practice, the unknown 

value of the model parameter  in  is replaced by its ReML estimate  under the null 

model. To account for this substitution, the fitted scale parameter κ and the degrees of 

freedom ν are adjusted, giving  and  (see Appendix B for details). The p-value of an 

observed score statistic  is then computed using the scaled chi-square distribution 

.

To test the interaction effect, we notice that testing the null hypothesis  is 

equivalent to testing the variance component: . Let , 
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where , , and σ2 are model parameters under the null model y = Xβ + hG + hW + ε. We 

follow Li and Cui [2012] and design a score test statistic

(16)

where  is the projection matrix under the null 

hypothesis . Analogously, the Satterthwaite method is used to approximate the 

distribution of  by a scaled chi-square distribution . In practice, the unknown model 

parameters ,  and σ2 in  are replaced by their ReML estimates ,  and  under 

the null model. The fitted scale parameter κI and the degrees of freedom νI are adjusted to 

account for this substitution, giving  and  (see Appendix B for details). The p-value of an 

observed score statistic  is then computed using the scaled chi-square 

distribution .

2.2 The ADNI data

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial MRI, PET, 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's 

disease (AD). Determination of sensitive and specific markers of very early AD progression 

is intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older subjects, people with early 

or late MCI, and people with early AD. The follow up duration of each group is specified in 

the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 

and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see 

www.adni-info.org.

2.2.1 Data preprocessing and SNP grouping—All ADNI-1 1.5T structural brain 

MRI scans were processed using FreeSurfer (freesurfer.nmr.mgh.harvard.edu) [Dale et al., 

1999; Fischl, 2012; Fischl et al., 1999], version 4.3. Subject specific intra-cranial volume 
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(ICV) and bilateral hippocampal volumes were automatically computed by FreeSurfer, after 

skull stripping, B1 bias field correction, segmentation and labeling [Fischl et al., 2002, 

2004], and passed rigorous visual quality control checks. For more details regarding the 

imaging processing and quality control, we refer the reader to the official website of ADNI 

(http://adni.loni.usc.edu).

CVD risk factors considered in the present study included age, gender, body mass index 

(BMI), systolic blood pressure, current smoking status and diabetes. A CVD risk score 

summarizing these six risk factors can be calculated using the non-laboratory, office-based 

cardiovascular risk profile prediction function from the Framingham Heart Study (FHS) 

[D'Agostino et al., 2008]. The score can be treated as a continuous variable, and higher 

values indicate higher risks of developing individual CVD events. We use the FHS risk 

score as a benchmark variable to compare the results obtained with the proposed 

multivariate method.

We followed the ENIGMA2 1KGP cookbook (v3) (The Enhancing Neuroimaging Genetics 

through Meta-Analysis (ENIGMA) consortium, http://enigma.loni.ucla.edu/wp-content/

uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.doc, version July 27, 2012), developed 

by the ENIGMA2 Genetics support team, to preprocess and impute the ADNI genome-wide 

SNP data. In brief, we used PLINK [Purcell et al., 2007] for preprocessing and quality 

control, which included sex discrepancy check, removing subjects with low genotype call 

rate (< 95%), and filtering individual markers that contained an ambiguous strand 

assignment and that did not satisfy the following quality control criteria: genotype call rate ≥ 

95%, minor allele frequency (MAF) ≥ 1%, and Hardy-Weinberg equilibrium p ≥ 1 × 10–6. 

We then used the MaCH software [Li et al., 2010] to impute ungenotyped SNPs based on 

the 1,000 genomes reference [1000 Genomes Project Consortium, 2012]. 697 subjects 

(cognitive normal controls N = 203, subjects with mild cognitive impairment N = 334, and 

AD patients N = 160) that have complete imaging and genetic data, and CVD risk factors, 

were included in the following analyses. Among the 334 subjects with mild cognitive 

impairment (MCI), 183 subjects were stable and did not convert to AD throughout the 

follow-up, and 151 subjects progressed to AD in at least one of the follow-up visits.

In addition to APOE, the major genetic risk factor for late-onset AD, a recent two-stage 

meta-analysis of GWAS with 74,046 individuals identified 20 susceptibility loci for late-

onset AD [Lambert et al., 2013]. A very recent article suggested that the REST gene may 

play a critical role in normal aging in human cortical and hippocampal neurons, and may 

distinguish neuroprotection from neurodegeneration [Lu et al., 2014]. We therefore used 

these 21 genes as our candidate gene set and extracted all the SNPs on the coding regions as 

well as 20kb up/downstream of each of these genes in the ADNI data set. Some of these 

genes, e.g., BIN1, CR1 and PICALM, have been associated with quantitative imaging 

phenotypes, such as hippocampal volume, amygdala volume and entorhinal cortical 

thickness, in ADNI [Biffi et al., 2010; Bralten et al., 2011; Furney et al., 2010; Weiner et al., 

2013]. Table 1 lists the 21 genes and the final number of SNPs located on them after 

preprocessing and quality control.
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2.3 Alternative methods

No standard method exists in the literature that can detect interactions between a collection 

of SNPs and a set of non-genetic variables such as CVD risk factors. Below in both 

simulation studies and real data analysis, we consider alternative methods based on burden 

tests and principal component analysis (PCA) that can summarize multiple variables into a 

single regressor and convert the problem into standard multiple regression analyses.

Burden tests collapse a set of variants in a genetic region into a single burden variable. They 

can be powerful when most variants in a region are causal and the effects are in the same 

direction, but suffer from dramatic power loss when these assumptions are violated [Lee et 

al., 2012a]. Different variants of burden tests have been proposed and are mainly aimed at 

rare variant association tests. Here we adapt two methods to our context: (1) the rare variant 

test (RVT), proposed by Morris and Zeggini [2010], which calculates the proportion of 

minor alleles in the set of genetic variants for each subject as the burden regressor, and (2) 

the weighted sum test (WST) [Madsen and Browning, 2009], which calculates a genetic 

score as the burden variable. The genetic score is a weighted average of the count of minor 

alleles for each subject. Specifically, if Gi,s ∈ {0, 1, 2} is the count of minor alleles in 

genetic variant s for the i-th subject, then the genetic score is , where L is 

the number of SNP markers,  is the weight, in which qs = (ms + 1)/(2Ns 

+ 2), Ns is the total number of subjects genotyped for variant s, and ms is the number of 

minor alleles observed for variant s. Many other burden tests are similar to these two 

methods. We note that the underlying assumptions of these collapsing methods are that the 

interactions have similar effect sizes and the same direction for all the genetic variants being 

collapsed. The tests can be biased or have inflated type I error if these assumptions are 

violated.

For the second alternative method, we perform PCA on the set of SNP regressors or CVD 

risk factors to extract the first principal component that explains the largest possible variance 

of the original regressors.

After reducing the dimension of the SNP set and the CVD risk factors, we can carry out a 

standard multiple regression analysis, in which the interaction effect between the derived 

univariate SNP regressor and the CVD risk factor is modeled by their product.

2.4 Simulation studies

We conducted simulation studies to evaluate the performance of the ReML algorithm and 

the accuracy of the score tests. The simulation was based on real ADNI demographic 

information, genetic data and CVD risk factors with N = 697 subjects, in order to best mimic 

the situation of our real data application. To synthesize quantitative phenotypes, we 

employed the following model:

(17)
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where xi is a vector comprising an intercept, the ICV, and the education (in years) of the i-th 

subject, β is a vector of all ones, εi is a Gaussian distributed random error with zero mean 

and unit variance, σ is the standard deviation of the error and was set to 5 in our simulation 

studies. αM and αI are two free parameters. We followed Liu et al. [2007] and designed the 

function hG to have the following complex form:

(18)

The main non-genetic effect was designed as hW(Wi) = Wi,1 + Wi,2. Finally, we introduced a 

linear interaction effect between the genetic variants and CVD risk factors: hG×W(Gi, Wi) = 

3hG(Gi)hW(Wi).

Since previous work has performed extensive simulations to characterize the overall score 

test for the semiparametric model [Hua and Ghosh, 2014; Liu et al., 2007], we focused our 

simulations on testing for the interaction effect. Our major concern is to assess whether the 

main effects “bleed” into the interaction, yielding false positives, or “cloud” the interaction, 

reducing sensitivity.

In the first simulation study, we generated data under different values of αM and αI to 

evaluate the performance of the score tests. Specifically, when αM = αI = 0, both main and 

interaction effects vanish, and we studied the false positive rate of the score test for overall 

effect. When αM > 0 and αI = 0, there are main effects but no interaction, and we therefore 

assessed the power of the overall score test, and the false positive control of the score test 

for interaction effect. We also set αM and αI at a number of different values to test the power 

of both score tests in different situations. 1,000 simulations were performed for each setting. 

For each run, we randomly picked a gene from Table 1 and randomly selected five adjacent 

SNPs on the gene, reflecting the linkage disequilibrium (LD) between genetic markers, and 

randomly selected two variables from the six CVD risk factors (age, gender, BMI, systolic 

blood pressure, smoking and diabetes). The phenotypic data were then generated using the 

five SNPs and two CVD risk variables following Eq. (17). We note that for all the genes the 

signal only comes from a very small proportion of the SNPs. Likewise, only part of the 

CVD risk factors were used in producing the phenotypic data.

We then evaluated the performance of the kernel method. As a comparison, we summarized 

genetic variants and CVD risk factors into a single regressor respectively using different 

collapsing methods (for genetic data: PCA, RVT and WST; for CVD risk factors: PCA and 

the FHS risk score1), and conducted standard univariate interaction tests between all 

possible combinations of these univariate genetic and CVD risk variables, which amounted 

to six multiple regression analyses.

In the second simulation study, we fixed αM = 1, and for each run αI was assigned a random 

number uniformly distributed on [0, 1] with a probability of 0.5, and was fixed at 0 

otherwise. We then generated data following the same approach described above, and 

1We note that the FHS risk score was derived from real biological data. Thus the FHS risk score is likely suboptimal for detecting the 
simulated effects of the CVD risk factors on the phenotype.
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compared the Receiver Operating Characteristic (ROC) curves of the kernel method and 

alternative methods for interaction detection.

2.5 Real data application

As a sanity check, we started with some standard regression analyses of real data from 

ADNI. Specifically, we tested the association between hippocampal volume (averaged 

between two hemispheres) and APOE-ε4 status (carriers vs. non-carriers), after controlling 

for ICV, age, gender and education. We conducted multiple regression analyses to assess the 

main effects of the FHS CVD risk score and each CVD risk factor, and their interaction 

effects with APOE-ε4 status on hippocampal volume, after properly controlling for 

covariates. Using logistic regression, we also analyzed the association between diagnosis 

(AD patients vs. cognitive normal controls) and the FHS CVD risk score and each CVD risk 

factor.

We then applied the kernel method to detect interaction effects between each of the 21 

candidate AD risk genes listed in Table 1, and the collection of six CVD risk factors, on 

hippocampal volume. ICV and education were included in the model as covariates. The IBS 

kernel was used to combine SNPs located on and near each gene, and a linear kernel was 

used for the CVD risk factors. All CVD risk factors were standardized (subtracting the mean 

and devided by the standard deviation) to transform variables measured with different units 

onto the same scale. Bonferroni correction was used to control the family-wise error (FWE) 

rate, and a gene was identified to have a significant interaction with the CVD risk factors if 

the p-value was smaller than 0.05/21 ≈ 2.38 × 10–3. Analogous to the simulation studies, we 

compared the proposed kernel machine based method to six univariate interaction tests 

based on different dimension reduction methods.

In order to reveal the direction of a significant interaction effect, we collapsed genetic 

variables and CVD risk factors into scalar variables; the RVT burden variable and the FHS 

risk score, respectively, and defined four regimes, low genetic risk and low CVD risk, high 

genetic risk and low CVD risk, low genetic risk and high CVD risk, high genetic risk and 

high CVD risk, by splitting the data with respect to the medians of the RVT burden variable 

and the FHS risk score. We then averaged the estimated interaction effect ĥG×W within each 

of the four regimes. A smaller average indicates a higher risk of the interaction effect 

(smaller hippocampal volume). Jackknife resampling was used to get accurate standard error 

estimates of these average statistics. We also compared ĥG×W between the 183 stable MCI 

subjects (who remained MCI throughout the follow-up) and the 151 MCI subjects that 

progressed to AD to investigate the predictive power of the interaction effect on disease 

progression.

3 Results

3.1 Simulation results

Table 2 shows the simulation results for the overall and interaction score tests. Here we used 

a nominal p-value threshold of 0.05. In more than 99% of the situations, the ReML 

algorithm converged within 50 iterations (convergence was declared when the difference 
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between successive log ReML likelihoods was smaller than 10–4), the maximum number of 

iterations we set in this simulation study, and in most cases it converged very quickly within 

10 iterations and a few seconds with a MATLAB implementation on a MacBook Pro with 

8GB of memory and a 2.4 GHz Intel Core i7 processor.

It can be seen that when αM = αI = 0, the size of the overall score test is close to the nominal 

p-value threshold of 0.05. When αM > 0 and αI = 0, the false positive rate of the score test 

for interaction effect is also well controlled. When αI > 0, the power of the interaction test 

quickly exceeds 0.90. In contrast, we observe that dimension reduction methods can have 

slightly inflated false positive rates and are dramatically under-powered when compared to 

the kernel machine based method.

Fig. 1 shows the ROC curves of the kernel method and alternative methods for interaction 

detection, obtained with the second simulation data. The power gain of the kernel method 

relative to the alternative methods is evident.

3.2 Application to ADNI data

APOE-ε4 status is significantly associated with hippocampal volume (p = 3.97 × 10–16), 

after controlling for ICV, age, gender and education. Table 3 shows the main effects of the 

CVD risk factors, and their interaction effects with APOE-ε4 status on hippocampal volume 

obtained by conventional interaction analyses, as well as the association between diagnosis 

(AD patients vs. cognitive normal controls) and each CVD risk factor obtained by logistic 

regression analyses. As expected, the association between age and hippocampal volume is 

highly significant, indicating the reduction in the size of the hippocampus over time. The 

FHS CVD risk score is also significantly associated with hippocampal volume. Specifically, 

higher CVD risk scores suggest smaller hippocampal volumes. Age also shows a suggestive 

significant interaction with APOE-ε4 status but did not survive a Bonferroni correction for 

the total number of statistical tests performed here.

Table 4 lists the ReML estimates of , ,  and σ2, and the p-values for the interaction 

effects between each of the 21 candidate AD risk genes and the CVD risk factors on 

hippocampal volume. Two genes, CR1 (p = 4.85×10–4) and EPHA1 (p = 5.64×10–4), are 

identified to have significant interaction with the CVD risk factors.

Fig. 2 shows the average of the estimated interaction effect ĥG×W within each of the four 

regimes (low genetic risk and low CVD risk, high genetic risk and low CVD risk, low 

genetic risk and high CVD risk, high genetic risk and high CVD risk) for the two genes CR1 

and EPHA1 that show a significant interaction effect. For both genes, CVD risks largely 

dominate the interaction effect with higher CVD risk associated with higher risk of 

interaction and vice versa. The genetic risk appears to have an opposite effect of its marginal 

effect on interaction under high CVD risk, i.e., high genetic risk reduces the interaction 

effect in the presence of high CVD risk. One interpretation of this interaction pattern is that 

under low genetic risk, CVD risk factors have a more detrimental effect.
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Two-sample t-tests showed that subjects with stable MCI have significantly larger ĥG×W 

(lower risk) than subjects that progressed to AD for both genes (CR1, p = 0.049; EPHA1, p 

= 0.044), suggesting that disease progression is predicted by the interaction effect.

3.3 Comparison to alternative methods

Table 4 also shows the p-values for the alternative methods to test the interaction effect. 

PCA on both the genetic data and CVD risk factors, followed by multiple linear regression 

analyses, also identified CR1 with a FWE-corrected significant p-value, but failed to find 

EPHA1. Other alternative methods did not identify any significant interaction effect.

4 Discussion

In this paper, we have proposed a kernel machine based method to test for interactions 

between multidimensional variable sets. Compared to traditional collapsing and PCA-based 

methods, the proposed method provides a more flexible and biological plausible way to 

model epistasis between genetic variants, accommodates multiple factors that potentially 

moderate genetic effects, and can test for complex interaction effects between 

multidimensional variable sets. Although multivariate methods typically produce more 

powerful and reproducible results, which can also be biologically more insightful, the 

interpretation of model parameters is often challenging. In this paper, we made some 

preliminary attempts to reveal the direction of interaction between multidimensional 

variable sets and investigate the prediction of disease progression by interaction effects. 

Further improvement of model interpretation would be facilitated by incorporating more 

biological information when a better understanding of the underlying mechanisms is 

achieved.

One particular case where model interpretation might be straightforward is when we use a 

linear kernel, as we did to model non-genetic effects. In our analyses, the non-genetic effect 

hW can be represented as a linear combination of the CVD risk factors: hW = WβW, where 

 are the individual CVD risk factors. The linear coefficients βW reflect 

the influence of each variable on the phenotype. The covariance matrix of the coefficient 

estimates can be computed as

(19)

where R is the number of non-genetic variables, 

, and . 

An estimate of this covariance structure can be obtained by inserting the ReML estimates of 

the variance component parameters , ,  and σ2 into Eq. (19), assuming that the 

error of the ReML estimation can be ignored. Supplementary Table S1 presents the point 

estimates and standard errors for each element of βW, for the ADNI analyses corresponding 

to each one of the 21 candidate AD risk genes. The above strategy does not apply to 

nonlinear kernels, but individual subjects can be examined by inspecting the estimated main 

and interaction effects ĥG, ĥW, ĥG×W, and their variabilities. More specifically, 
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, and the variability 

of ĥG and ĥW can be quantified analogously. Analyses of individual subjects may provide 

additional information about the model, but we consider this beyond the scope of the present 

paper.

Due to the moderate sample size in the present study, we constrained our analysis to a list of 

candidate late-onset AD risk genes. However, the proposed method can be applied to 

genome-wide interaction studies. In particular, we note that when testing for the overall 

genetic and non-genetic effect, the variance component parameters , , and  need 

not be estimated. Therefore, the overall score test offers an efficient and non-iterative 

approach to screen the whole genome for genetic variants that might show significant 

contribution to the phenotypic variation. Fitting the full model, estimating the variance 

components, and testing for interactions can then focus on genetic components with 

significant overall effect, which will dramatically reduce computational burden. A similar 

argument applies to voxel-/vertex-wise interaction studies.

We would like to note that most of the CVD risk factors we employed in our ADNI analyses 

are largely endogenous and thus are, to some extent, under genetic control. Although, this 

might make the interpretation of the results difficult, this challenge, we believe, exists in 

many interaction effects probed and detected in the genetics literature. Furthermore, even 

though the non-genetic variables we used are collectively associated with cardiovascular 

risk, and thus our interpretation of the detected interaction effects as genetic influences 

modified by cardiovascular risk is highly likely, alternative explanations that do not involve 

cardiovascular mechanisms are also possible. Finally, while hippocampal volume is a 

sensitive biomarker of AD, it is not solely related to this condition. In fact, we conducted 

additional analyses with entorhinal cortex thickness and volume (also MRI markers of late-

onset AD) as alternative outcome variables. These analyses (not included here) did not 

reveal any statistically significant interaction effect. Although our presented results 

demonstrated that the detected interaction effects with hippocampal volume predict future 

MCI-to-AD conversion, one possibility is that these associations might not be specific to 

AD. Elucidating these issues is beyond the scope of this paper and will require careful 

follow-up studies that will consider all alternative possibilities.

Another potential concern in the present study is that we took the coding regions and 20kb 

up/downstream of the 21 candidate genes as units for interaction detection. Although 

Lambert et al. [2013] examined all SNPs that have strong associations with the top SNPs to 

confirm the relevance of these genes, we are aware that they are likely not the causative 

genes. Also, the size of the regulatory region of different genes may vary substantially. 

Therefore, an alternative strategy is to group SNPs in high LD with the most associated 

SNP, whether or not they are in or close to the nearest gene.

The choice of kernels may have an impact on the validity and power of the method too. In 

the present study, we employed an IBS kernel for the genetic data and a linear kernel for the 

CVD risk factors, as both kernels are parameter free and can in principle capture complex 

epistatic effects between genetic variants and model the joint effect of multiple non-genetic 
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variables. We found, through simulation studies, that the proposed selection of kernels 

appears to work well in our setting, both in terms of false positive rate control and statistical 

power. Using other kernel functions, e.g., the Gaussian kernel for combining non-genetic 

factors, is certainly possible, but might require preselecting or estimating additional 

parameters. Our preliminary implementation (results not shown) suggests that incorporating 

the estimation of the spread parameter in the Gaussian kernel into the ReML algorithm 

might lead to unstable estimates and failure of convergence. The performance of various 

kernel functions in different data structures, and the optimal selection of kernels, deserve 

future investigation.

Although we illustrated the proposed method using a univariate quantitative image derived 

phenotype, genes as units to group SNPs, and CVD risk factors as non-genetic variables, the 

modeling framework is general and can be applied to other types of phenotypic and genetic 

data, and to detecting other types of interactions such as genotype-by-environment 

interactions. Our method can also be extended to accommodate binary outcomes, and thus 

has potential wide applications to case-control studies. Recently, a series of papers have 

been published on the proper modeling of longitudinal and time-to-event data in 

neuroimaging studies [Bernal-Rusiel et al., 2013a,b; Sabuncu et al., 2014]. Incorporating 

genetic components and interactions in longitudinal and survival models, and investigating 

the genetic contributions to the progression of a brain-related illness and the timing of a 

clinical event of interest, seem promising directions for future research.

Two genes, CR1 and EPHA1, were identified to have significant interaction effects with the 

CVD risk factors in the present study. The associations between the two genes and AD have 

been identified and replicated by a number of independent studies [see e.g., Harold et al., 

2009; Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011], in addition to 

Lambert et al. [2013], and their potential contributions to the mechanism of AD have been 

under active investigation [Biffi et al., 2012; Chibnik et al., 2011; Thambisetty et al., 2013]. 

Moreover, recent studies show that many of the AD risk genes have potential roles in 

relationship with CVD risk factors, such as hypertension, hypercholesterolemia, and obesity 

[Guerreiro et al., 2012; Liu et al., 2014]. In particular, excess adiposity may act as an 

enhanced substrate for CR1-related inflammatory events [Guerreiro et al., 2012]. Our 

findings indicate that genetic components may contribute to the etiology of late-onset AD in 

the presence of CVD risks, and warrant further investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A The ReML estimation of the linear mixed effects model

The variance component parameters , ,  and σ2 in the linear mixed effects model 

(12) can be estimated via the restricted maximum likelihood (ReML) approach [Harville, 

1977; Lindstrom and Bates, 1988].

Specifically, let , and . 

The log ReML likelihood can be written as

(20)

where  is the BLUP of the regression coefficients β. The score equation of each unknown 

component of θ is

(21)

where , , 

, and ∂V/∂σ2 = I. The element of the observed information matrix is

(22)

The element of the Fisher information (expected information) matrix is

(23)
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Here we employ the Newton-Raphson method, and in particular, the Fisher's scoring 

algorithm, to solve Eq. (21) [Kenward and Roger, 1997]. Given an estimate of the unknown 

variance component parameters at the k-th iteration θ(k), the parameters are updated by

(24)

where  is the Fisher information matrix. At the beginning of the iteration process, all the 

variance components are initialized to var[y]/4. We use the following expectation 

maximization (EM) algorithm [Laird et al., 1987] as an initial step to determine the direction 

of the updates as EM algorithm is robust to poor starting values:

(25)

After one EM update, we then switch to the Fisher's scoring algorithm for the remaining 

iterations until the difference between successive log ReML likelihoods, , is 

smaller than 10–4. In the iteration process, any component that escapes from the parameter 

space, i.e., negative estimate, is set to 10–6 × var[y]. The approach to fit the null model, 

when  is fixed at zero, is analogous.

B Satterthwaite approximation to the score test

The score test statistic  defined in Eq. (15) is approximated by a scaled chi-square 

distribution . The scale parameter κ and the degrees of freedom ν are calculated by 

matching the mean and variance of  with those of . Specifically,

(26)

Solving the two equations leads to κ = ρ/2δ and ν = 2δ2/ρ. In practice, the unknown model 

parameter  in  is replaced by its ReML estimate  under the null model y = Xβ0 + ε0. 

To account for this substitution, we follow Liu et al. [2007] and Li and Cui [2012], and 

replace ρ by  based on the efficient information [Zhang and Lin, 2003]. It can be seen from 

Eq. (23) that the elements of the Fisher information matrix of θ are
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The efficient information is defined as , and 

is estimated by the sum of all the elements in the matrix . With the adjusted parameters 

 and , the p-value of an observed score statistic  is then computed 

using the scaled chi-square distribution .

Analogously, the score test statistic  defined in Eq. (16) for the interaction 

effect is approximated by a scaled chi-square distribution . The scale parameter κI and 

the degrees of freedom νI are calculated by matching the mean and variance of  with 

those of . Specifically,

(27)

Solving the two equations gives κI = ρI/2δI and . In practice, the unknown model 

parameters ,  and σ2 in  are replaced by their ReML estimates ,  and  under 

the null model y = Xβ+hG+hW+ε. To account for this substitution, ρI is replaced by  based 

on the efficient information [Zhang and Lin, 2003]. Specifically,  and , 

where , and , in which

and

The p-value of an observed score statistic  is then computed using the 

scaled chi-square distribution .
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Highlights

• Novel kernel machine based method for detecting interaction effects

• Method can model epistatic effects

• Method can accommodate multiple environmental variables

• We show novel gene-cardiovascular risk interaction relevant to Alzheimer's
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Figure 1. 
Receiver operating characteristic (ROC) curves of the kernel method and alternative 

methods for interaction detection in the simulated data. False positive rates are plotted 

against true positive rates with the p-value threshold varying between 0 and 1 with a step 

size of 0.01.
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Figure 2. 
Direction of significant interaction effects. For genes CR1 and EPHA1 that show significant 

interaction effect, genetic variables and cardiovascular disease (CVD) risk factors were 

collapsed into scalar variables; the RVT burden variable and the FHS risk score, 

respectively. The average of the estimated interaction effect ĥG×W within each of the four 

regimes (low genetic risk and low CVD risk, high genetic risk and low CVD risk, low 

genetic risk and high CVD risk, high genetic risk and high CVD risk) is shown with a 

standard error estimate obtained by Jackknife resampling. A smaller average indicates a 

higher risk of the interaction effect (smaller hippocampal volume).
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Table 1

A list of 21 candidate risk genes for late-onset Alzheimer's disease and the final number of SNPs located on 

and near them.

Chr Gene SNP num Chr Gene SNP num

19 ABCA7 240 6 HLA-DRB5 62

2 BIN1 301 2 INPP5D 495

20 CASS4 165 5 MEF2C 272

6 CD2AP 421 11 MS4A6A 63

19 CD33 85 11 PICALM 360

11 CELF1 97 8 PTK2B 419

8 CLU 116 4 REST 146

1 CR1 264 14 SLC24A4 716

18 DSG2 219 11 SORL1 233

7 EPHA1 115 7 ZCWPW1 74

14 FERMT2 242
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Table 2

Simulation results of the overall and interaction score tests, and the alternative methods for interaction 

detection based on dimension reduction and multiple regression. Nominal p-value threshold was set to 0.05. 

The first row corresponds to simulating the null hypothesis for both the overall and interaction effects. The 

second and third rows correspond to the null hypothesis of the interaction effect only. Thus, corresponding 

detection rates in the first three rows are desired to be below the p-value threshold of 0.05. PCg: first principal 

component of the genetic data; PCw: first principal component of the cardiovascular disease risk factors; 

RVT: rare variant test burden variable; WST: weighted sum test burden variable; FHS: the Framingham Heart 

Study vascular disease risk score.

Kernel method Alternative methods

(αM, αI) Overall Interaction PCg × FHS PCg × PCw RVT × FHS RVT × PCw WST × FHS WST × PCw

(0, 0) 0.048 — 0.051 0.043 0.051 0.040 0.049 0.038

(0.5, 0) 0.908 0.046 0.061 0.046 0.063 0.043 0.062 0.054

(1, 0) 1.000 0.051 0.052 0.052 0.068 0.049 0.061 0.052

(0, 0.5) 0.961 0.918 0.622 0.499 0.578 0.444 0.572 0.455

(0,1) 0.983 0.950 0.681 0.546 0.620 0.508 0.631 0.505

(1, 0.1) 0.999 0.585 0.292 0.242 0.229 0.204 0.226 0.216

(1, 0.25) 0.995 0.865 0.506 0.405 0.432 0.324 0.433 0.325

(1, 0.5) 0.997 0.926 0.591 0.481 0.542 0.413 0.536 0.425

(0.1, 1) 0.984 0.951 0.681 0.529 0.622 0.478 0.610 0.476

(0. 25, 1) 0.986 0.944 0.665 0.521 0.600 0.459 0.601 0.469

(0.5, 1) 0.983 0.951 0.654 0.517 0.612 0.472 0.587 0.446

(0.5, 0. 5) 0.984 0.918 0.625 0.488 0.587 0.423 0.575 0.431

(1, 1) 0.994 0.958 0.660 0.527 0.629 0.488 0.620 0.489
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Table 3

Results of standard regression analyses with two different outcomes: hippocampal volume and Alzheimer's 

disease (AD) diagnosis (AD vs. control). The p-values for the main effects of the Framingham Heart Study 

(FHS) cardiovascular disease (CVD) risk score and each CVD risk factor, and their interaction effects with 

APOE-ε4 status on hippocampal volume obtained by conventional interaction analyses are presented. The p-

values for the association between diagnosis (AD patients vs. cognitive normal controls) and each CVD risk 

factor obtained by logistic regression analyses are shown. Significant associations, with Bonferroni corrected 

p-values smaller than 0.05, are highlighted in bold.

Risk factor Covariates adjusted Hippocampal volume (linear regression) AD vs. control (logistic regression)

Main effect Interaction with APOE-ε4

FHS risk score ICV, Edu a 5.12 × 10–4 0.132 0.761

Age ICV, Edu, Gender 3.99 × 10–18 4.03 × 10–3 0.301

Gender ICV, Edu, Age 0.103 0.982 0.467

Body mass index (BMI) ICV, Edu, Age, Gender 2.37 × 10–3 0.227 0.011

Systolic blood pressure ICV, Edu, Age, Gender 0.832 0.591 0.077

Smoking status ICV, Edu, Age, Gender 0.062 0.112 0.974

Diabetes ICV, Edu, Age, Gender 0.609 0.541 0.247
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