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Abstract

Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 

values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). 

However, in vivo measurements are challenging due to the significantly slower data acquisition 

speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which 

raises the demand for accelerated protocols by means of undersampling. This work introduces a 

new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly 

exploits redundancies in the diffusion weighted images by reducing the number of unknowns in 

the optimization problem and compressed sensing is performed directly in the target quantitative 

domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. 

Experiments were performed for an anisotropic phantom and the knee and brain of healthy 

volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by 

comparing the results to reconstructions performed with gridding, combined parallel imaging and 

compressed sensing, and a recently proposed model-based approach. The experiments 

demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative 

parameter maps as well as a reduction of angular dispersion of the primary eigenvector when 

using the proposed method, without introducing systematic errors into the maps. This may enable 

an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without 

degrading parameter quantification and/or SNR.
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Introduction

Diffusion tensor imaging (DTI) provides insight into the amount of water diffusion 

anisotropy caused by oriented micro-structural barriers in the tissue. Thus DTI provides 

unique quantitative sensitivity in vivo to microscopic tissue integrity and function (1). In the 

anisotropic Gaussian diffusion model used in DTI, the diffusion properties in each voxel are 

described by a rank-2 symmetric diffusion tensor. Accurate measurement of the components 

of the diffusion tensor requires repeated acquisitions with different diffusion weightings and 

diffusion-encoding directions. Consequently, fast acquisition techniques such as the single 

shot EPI are widely used to acquire enough diffusion directions with reduced acquisition 

time. However, EPI has limited applicability in musculoskeletal (MSK) applications due to 

its sensitivity to off-resonance and the demands for high resolution. A paramount example 

of musculoskeletal applications where high resolution (≤0.7 mm) is needed is DTI of 

articular cartilage (≈4 mm in its thickest regions).

Assessment of the integrity of articular cartilage is considered key for the early diagnosis of 

osteoarthritis (OA). A comprehensive assessment of the cartilage matrix involves 

assessment of the two major components of the solid matrix of the cartilage: Proteoglycan 

content and collagen structure. Articular cartilage can stimulate proteoglycan synthesis but 

has very limited ability to repair damaged collagen, so changes in collagen are believed to 

be an indication of irreversibility (2, 3). While many MRI biomarkers have focus on the 

assessment of the proteoglycan content (e.g. sodium imaging (4), delayed Gadolinium 

enhanced MRI of articular cartilage (dGEMRIC) (5) or glycosaminoglycan chemical 

exchange saturation transfer imaging (gagCEST) (6)), only a partial evaluation of the 

collagen structure is possible with the existing biomarkers (T2 relaxation time (7) and the 

magnetization transfer (8)).

DTI of articular cartilage has been proposed as a biomarker for both proteoglycan (PG) 

content and collagen architecture (9). The key idea behind the use of DTI is that the various 

components of the cartilage matrix have different effects on the motion of water molecules. 

The collagen network favors the motion of water along the collagen fibers inducing 

anisotropy in the motion of water, which can be measured with fractional anisotropy (FA) 

(10–14). PG molecules, on the other hand, do not show a preferred orientation and therefore 

restrict the motion of water molecules equally in all directions. Thus, PG content only 

affects the mean diffusivity (MD) (11–15). Measurement of diffusion is also interesting 

from the physiological point of view, because diffusion is an essential mechanism for 

mechanical function of articular cartilage and for the transport of nutrients to the 

chondrocytes and for the removal of their metabolic waste product.

Ex vivo studies of DTI of articular cartilage have shown potential to assesses early cartilage 

damage with accuracy of 95%, and grade cartilage damage with accuracy of 75% using 

histology as a gold standard (16). First in vivo clinical studies have shown great promise of 

DTI for the early detection of osteoarthritis (17, 18). In particular, DTI showed an accuracy 

of 92% to detect changes on cartilage with unspecific changes in clinical images (17). 

However, these first clinical studies were performed at high field (7 T) using dedicated coils. 
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Therefore there is a need for DTI methods to acquire high-quality diffusion measurements 

for articular cartilage.

Measurement of DTI of articular cartilage in vivo in clinical scanners is technically 

challenging due to the short T2 relaxation times (≈40 ms) and the submilimetric resolution 

required to resolve the cartilage anatomy (≈0.6 mm). Therefore, standard single-shot 

sequences like diffusion-weighted echo planar imaging (EPI) fail to deliver adequate image 

quality (18). To overcome these problems we have recently introduced a radial spin-echo 

diffusion tensor imaging (RAISED) sequence (16,19). The high SNR efficiency of spin echo 

sequences makes them specially suitable for the measurement of diffusion on a short-T2 

tissue like articular cartilage. However, spin-echo sequences have intrinsically slow data 

acquisition rates, which typically results in very long acquisition times. The radial 

acquisition of the RAISED sequence is ideally suited for high undersampling of the data, so 

that the acquisition can be performed within the typical clinical scanning times.

Undersampled data acquisition is a well established principle to accelerate measurement 

time. However, due to the violation of the sampling theorem, this leads to aliasing artifacts 

when a conventional reconstruction technique is used. Parallel imaging (PI) (20–22) is one 

known way to address this issue, and was already used successfully in diffusion imaging 

(23). Another technique to reconstruct images from undersampled data is compressed 

sensing (CS), which has gained much popularity in recent years (24, 25). CS can also be 

combined with PI to achieve higher acceleration factors (e.g. (26–30)). However, it is also 

well known that the performance of CS is limited in cases where the fully sampled image 

already has low SNR, because noise compromises the ability of CS to separate between 

compressible ”true” image content and incoherent aliasing (25, 31). This makes the 

application of CS to diffusion-weighted imaging (DWI) challenging since diffusion-

weighted images inherently have lower SNR. However, DTI has the advantage of a well 

defined signal model, which can be added to the CS framework in the form of a modelbased 

reconstruction. This concept was first applied for relaxometry (32-37). Both compressed 

sensing (38-40) and model-based reconstruction (41) were recently applied to reduce the 

measurement time of diffusion acquisitions as well. In addition, we recently demonstrated in 

related work on denoising that improved DTI maps can be obtained by performing nonlinear 

regularization directly in the domain of the diffusion tensor, instead of denoising the 

diffusion-weighted images followed by calculating tensor maps from denoised images (42).

In this work, we introduce a new image reconstruction technique for DTI which combines 

the concepts of PI, model based reconstruction and CS. An l1-norm-based sparsifying 

transform is used directly in the target quantitative domain, given by the elements of the 

diffusion tensor. Evaluation was performed by comparing the results to reconstructions from 

gridding, combined parallel imaging and compressed sensing, and a recently proposed 

model-based approach (41) both in terms of image quality and in terms of reliability of the 

quantitative values for phantom, MSK and brain applications.

Matlab source code for the method, along with sample data, will be provided on our website 

and on request 1.
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Methods

Theory of model based reconstruction and CS

The basic optimization problem for a combined CS-PI reconstruction of diffusionweighted 

images (prior to the inclusion of a specific diffusion model, which we will introduce below) 

can be written as follows:

[1]

In Eq. 1, En is the forward sampling operator for the nth diffusion-weighted image xn, yn is 

the corresponding k-space data and Ψ is a transform that promotes sparsity in a certain 

domain. Finite differences were used as the sparsifying transform in this work, which is 

equivalent to total-variation (TV) minimization (43). This choice was motivated by the 

favorable properties of TV when combined with radial sampling trajectories (25), but in 

principle an arbitrary transform can be used. N is the number of diffusion-weighted images. 

In the case of non-Cartesian imaging, En is comprised of multiplication by the coil 

sensitivity profile followed by a non-uniform fast Fourier transform (NUFFT) (44) along the 

particular sampling trajectory of the nth diffusion-weighted image. α > 0 is the 

regularization parameter. As signal intensities of the different xn change depending on the b-

values used and the signal values of the individual directions must be preserved with respect 

to each other, a proper balance of the two terms in Eq. 1 has to be ensured. This is achieved 

by scaling α by the ratio of the norm of the I0 image to the norm of the diffusion-weighted 

images . This ensures proper balancing of the individual contributions to the 

sum in Eq. 1. Note that this scaling is only done once before the actual initialization of the 

iterative algorithm, using the signal values of the regridding reconstruction. In the DTI 

framework, the diffusion properties of the tissue are characterized by the diffusion tensor D, 

which is a rank-2 symmetric tensor:

[2]

The tensor has 6 independent elements so that the minimum number of diffusionencoding 

directions N that must be acquired is 6. However, the estimation of the diffusion coefficients 

can be improved if more than 6 directions and more than a single b-value are acquired 

(45-47). This means that by directly reconstructing the tensor elements rather than 

proceeding through the intermediary of diffusionweighted images, the number of unknowns 

is reduced from N · nx·ny to 6 · nx·ny (nx and ny being the size of the grid the images are 

reconstructed to), resulting in an easier parameter-estimation problem (41,48). This step can 

also be seen as inherent compression by exploiting redundancies in the DWIs. The basic 

DTI signal model, which is integrated into the image reconstruction step in the proposed 

method, is given by:
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[3]

Here, I0 is the non-diffusion-weighted image, xn the diffusion-weighted image for diffusion-

encoding direction n with diffusion weighting bn and  its unitary direction vector. The 

extended forward operator Ẽn(D), which maps D to the k-space data of direction n, is then 

given by:

[4]

A different NUFFT operator FTn is applied for each diffusion direction, allowing the use of 

different k-space patterns for different directions. cn is the complex coil sensitivity map for 

direction n, which must be estimated in a preprocessing step, and e−iΦn describes phase 

errors due to macroscopic motion. For the purpose of iterative image reconstruction, the 

independent elements of the diffusion tensor D are written as a 6×1 vector 

[Dxx,Dyy,Dzz,Dxy,Dxz,Dyz]. This vector can also be extended to include images without 

diffusion weighting (I0 images), which are then treated as unknowns as well. This extended 

form of the tensor is denoted by D̃. An extended version of the method recently presented in 

(41), adding iterative estimation of the I0 image, arbitrary trajectories, phase correction and 

integration of coil sensitivities can therefore be formulated as follows:

[5]

Finally, a model-based optimization problem with regularization of the elements of D̃ can be 

formulated as follows:

[6]

in both Eqs. 5 and 6 the first term evaluates the data fidelity of the current estimate, where 

the operator Ẽn maps the current estimate of the extended diffusion tensor to the 

corresponding k-space data yn of the diffusion-weighted image xn. i indexes the element of 

the unknown vector D̃. Identical to Eq. 1, αi in Eq. 6 is scaled according to the norms of the 

signal intensities of the tensor elements generated from the gridding reconstruction 

. Again, this means that the scaling is only done once before the 

initialization of the iterative algorithm. The numerical method that was chosen to minimize 

F̃ (D̃) is the gradient-descent (GD) algorithm:
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[7]

This very simple numerical scheme requires evaluation of the gradient of F̃ (D̃) with respect 

to D̃i in each iteration step and updating of the individual elements of D̃i according to the 

step sizes .

Using the well-known relaxation for the l1-norm  for a small μ > 0, it 

follows that  (μ = 10‒15 was used here). Following the derivations in 

(24,32,41) it can be shown that the gradient with respect to a specific element of the 

diffusion tensor is (* denoting the adjoint in equations 8 and 9):

[8]

The gradient with respect to the non-diffusion-weighted images is:

[9]

The gradient used in the gradient descent update step in Eq. 7 is then comprised of ND 

elements. In particular, if a single non-diffusion weighted image is aquired, 6 elements of 

the diffusion tensor, plus one non-diffusion weighted image. A single update step therefore 

consists of a simultaneous update of both the tensor elements and the I 0 image. One issue of 

first-order methods such as GD is that the scaling of the gradients during the optimization 

can be poor. This is also true here when comparing the gradients of the tensor elements and 

the I0 image, but it was also described for applications in relaxometry (32,34,36,37). This 

can lead to the need for a prohibitively large number of iterations. A workaround in our 

implementation is to scale the step-sizes of the iterations with the inverse of the norm of the 

individual gradients, leading to an adaptive step-size for gradient direction i and iteration 

number .

Data acquisition and image reconstruction

Data acquisition for this work was performed on a clinical 3T scanner (MAGNETOM 

Skyra, Siemens Healthcare, Erlangen, Germany) with a diffusion-weighted radial spin-echo 

sequence (RAISED), which has been developed for DTI of articular cartilage (16,49). The 

RAISED sequence is a spin-echo sequence with a radial acquisition of k-space. Every 

diffusion-weighted image is acquired with a different set of radial trajectories, thus 

providing an overall less undersampled k-space over all b-values. It is a multi-slice sequence 

that excites all slices interleaved within the TR. To avoid slice cross-talk diffusion-
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weighting of of each slice is alternated within the TR, so that two consecutive slices never 

have the same diffusion-weighting. Spokes were equally distributed, go from  to 

and the polarity of the readout direction is alternated between successive spokes to improve 

the robustness of the sequence to residual off-resonant frequencies (e.g. residual fat signal). 

If the angle shift between two spokes is δ, the spokes were acquired with angles: 0, π + δ, 

2δ, π + 3δ… Finally, each diffusion-weighted image is acquired with a different set of 

angles to provide optimal sampling of the outer part of k-space. We rotated the trajectory of 

each diffusion-weighted images by the angle δ(n - 1)/ND (n denoting one individual 

diffusion weighting and ND the total number of diffusion weightings), so that all spokes of 

all diffusion weighted images were equally distributed in the k-space with a gap of δ/ND 

degrees.

Radial sequences are robust against macroscopic motion, however the diffusion sensitizing 

gradients induce phase inconsistencies that need to be corrected to produce high-quality 

images. Thus, the RAISED sequence includes a 2D low-resolution EPI motion-correction 

navigator acquired after each readout after refocusing the magnetization. The EPI readout is 

performed on a Cartesian grid with a matrix resolution of 32×32, a monopolar readout to 

avoid N/2 ghosting, partial Fourier of 5/8 and echo spacing of 5 ms.

For the forward operator we calculated the images as described by Miller et al. (50). 2D 

phase navigator maps were constructed separately for each spoke and channel of the receive-

coil array. These phase maps were subtracted from the 2D back-projection of the 

corresponding spoke in each channel. The final images for each channel were calculated as 

the sum of all phase-corrected back-projections (50). All channels were combined using sum 

of squares. In the backward operator for each spoke and channel we added the Navigator 

phase to our image estimation and den multiply by the coil sensitivity, and then applied the 

FFT operator,

All reconstructions were carried out offline using Matlab (R2012b, The Math-Works Inc., 

Natick, MA, USA) implementations of four different reconstruction methods:

1. Conventional gridding using the NUFFT implementation from (44) and the phase 

correction approach described above.

2. A combined PI and CS reconstruction on the individual diffusion-weighted images 

(denoted as PI-CS DWI in the following sections), as described in Eq. 1.

3. A multi-coil, non-Cartesian version of (41). In addition, optimization of the I 0 

image, which was kept constant in (41) because it was fully sampled, is performed 

in the image reconstruction step as well, as described in Eq. 5. As this method 

utilizes a model-based reconstruction but applies the sparsifying transform on the 

diffusion-weighted images, it is denoted as Model DWI.

4. The proposed model-based approach with application of the sparsifying transform 

directly on the elements of the diffusion tensor (Eq. 6), denoted as Model DTI.

While all diffusion-weighted images were treated as a single dataset for the purpose of 

image reconstruction, the sparsifying transform was only applied in 2D, which means that 

no joint sparsity over the diffusion-encoding directions was enforced (see discussion for 
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more details). The parameters of the GD algorithm were a starting step-size of t = 10‒4 and 

100 iterations. All three methods require determination of a regularization parameter, as is 

the case for almost all regularized or CS-based reconstruction methods. This parameter will 

depend on SNR, matrix size and sampling pattern, but once identified for a specific 

combination of sequence parameters can then usually kept constant in future examinations 

(24,25,29). In this study it was determined once for the different sequence parameters of the 

different experiments (matrix size, number of spokes) using exhaustive search, yielding 

values ranging from 5 ·10‒5 to 3 · 10‒4 (PI-CS DWI), 1 · 10‒2 to 3 · 10‒2 (Model DWI) and 1 

· 10‒3 to 3 · 10‒3 (Model DTI). Once identified, these values were kept constant for the same 

type of acquisition. To estimate coil-sensitivity maps, reconstructions were performed using 

quadratic regularization on the gradient, followed by convolution with a smoothing kernel. 

These reconstructions were then divided by the sum of squares image, yielding a method 

that is fully autocalibrated and uses only the acquired DTI dataset to estimate the 

corresponding sensitivity map (25,29).

Image analysis and statistical evaluations

From the diffusion tensor, the mean diffusivity (MD) and the fractional anisotropy (FA) 

were calculated according to standard formulae: MD = (λ1 + λ2 + λ3)/3, 

. In the case of the phantom 

measurements, the angular dispersion of the principal eigenvector was analyzed in the 

anisotropic region. For each different reconstruction method, the mean of all vectors was 

calculated, followed by a calculation of the dispersion angle θ to the mean vector. A region-

of-interest (ROI) analysis was performed by calculating means and standard deviations in 

selected ROIs. Additional statistical evaluation was conducted for the phantom and brain 

experiments. Each nonlinear reconstruction was compared to the result given by gridding, 

but no comparisons of the individual methods with respect to each other (ANOVA) were 

performed. A Kolmogorov-Smirnov-test was performed to check for normal distribution of 

the samples in the ROI. If the data was normally distributed (p > 0.05) t- and F-tests were 

used to test for statistically significant differences of mean and variance. In cases when data 

was not normally distributed, the Wilcoxon-rank-sum-test and the Levene-test were used 

instead.

Phantom experiments

Measurements of an in-house built diffusion phantom consisting of polyethylene (Dyneema) 

fibers (51,52) at the center surrounded by water were performed with a 15 channel knee coil 

array. Sequence parameters were: TR=1500 ms, TE=39 ms, matrix=208×208, 61 spokes 

(corresponding to undersampling of  at the edge of k-space ) with 416 

samples along each readout, slice thickness=3 mm, 11 slices, b-values (200 and 400 s/mm2) 

and one single image with b-value 1 s/mm2, in-plane resolution=0.7×0.7 mm2, acquisition 

time tacq=19:50 min, bandwidth=300 Hz/pixel, 6 diffusion-encoding directions for each b-

value optimized with the downhill simplex algorithm (45), diffusion time=20 ms, duration 

of the diffusion gradients=17 ms, maximum gradient strength=39 mT/m. Data was acquired 
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in axial, coronal and oblique at a 45 degree angle with respect to the anisotropic fiber 

bundle. A schematic drawing of the phantom, also indicating the three orientations where 

data was acquired, is presented in Fig. 1b.

In-vivo experiments

Scans of the right knee and the brain of healthy volunteers (3 and 2 volunteers, respectively) 

were performed with a 15-channel knee coil array and the 16 head channels of a 20-channel 

head/neck coil array using the RAISED sequence. All measurements were approved by the 

institutional review board. The subjects provided written informed consent. Again 6 

directions were used for each b-value, diffusion time=20 ms, duration of the diffusion 

gradients=17 ms and maximum gradient strength was 39 mT/m.

Scans of the right knee were performed with TE=39ms, b-values 150, 300 s/mm2 and one 

single image with b-value 1 s/mm2, matrix=208×208 and resolution=0.74×0.74 mm2. 208 

and 70 radial spokes (undersampling of  at ) were acquired with 416 

samples along each readout with slice thickness=3 mm and 11 slices. Scantime for the 208 

spokes acquisition was 67:27 min and 22:42 min for 70 spokes. The goal of the 208 spokes 

acquisition was to serve as a reference measurements against which the undersampled 

acquisition could be compared. ROIs were manually drawn on the I0 image around the 

femoral cartilage, tibial cartilage, and two sections of calf muscle tissue. A second 

experiment was designed to compare the performance of the individual reconstruction 

methods when using a different number of diffusion directions. Acquisitions were 

performed with 6 (tacq=10:39 min) and 30 directions (tacq=52:23 min) using a b-value of 

300 s/mm2.

For reference, acquisitions were also performed in the brain using the following protocol: 

TE=60 ms, b-value (1000 s/mm2) and one single image with b-value 1 s/mm2, matrix= 

196×196, resolution=1×1 mm2 and 75 radial spokes (undersampling of  at ) 

and acquisition time tacq=15:46 min. A slice thickness of 3 mm with 11 slices was used and 

ROIs were manually drawn on the FA map in the splenum of the corpus callosum (high FA) 

and bilateral cortical gray matter (low FA). Mean values and standard deviations of DTI 

metrics within these ROIs were computed for each of the 4 reconstruction schemes.

It should be noted that the RAISED sequence is a multi-slice sequence. With the TR of 1500 

ms used in our acquisitions a maximum of 21 slices can be acquired without additional 

increase in the scanning time. We chose a protocol with 11 slices to have representative 

slices from all knee cartilage regions.

Results

Phantom experiments

Figure 1 shows the I0 image, MD, FA, and the color-coded direction of the principal 

eigenvector of the anisotropy-phantom measurement in axial direction with 61 spokes, two 

b-values for the reconstruction approaches described in the methods section (Gridding, PI-
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CS, Model DWI and Model DTI). In the case of I 0 and especially MD, a noticeable 

reduction of streaking artifacts can be observed for all nonlinear reconstruction methods 

when compared to conventional gridding. FA and the color-coded directions show a 

pronounced reduction of noise, which is strongest in the two model-based approaches while 

still maintaining a sharper appearance of MD in comparison to PI-CS. It can also be 

observed that none of the nonlinear methods introduce a systematic error with respect to the 

direction of the principal eigenvector. The through-slice orientation of the polyethylene 

fibers, encoded in blue color, is preserved equally well for all reconstruction methods.

Figure 2 illustrates the dispersion of the principal eigenvector in the anisotropic region of the 

phantom for the three different scan orientations indicated in the schematic in Figure 1b 

(axial, coronal, oblique at a 45 degree angle with respect to the anisotropic fibers). The 

specific anisotropic ROIs where the dispersion analysis was performed are shown in 

subfigure a. The mean of all vectors in the ROI was calculated and the pixel wise deviation 

from the mean is plotted color coded in subfigures b, c and d for all reconstruction methods. 

Subfigure e is a 3D graphical illustration of the dispersion of the eigenvectors on a sphere.

While all nonlinear methods show a clear reduction of dispersion the effect is strongest for 

the proposed Model DTI approach. This behavior is consistent over the different orientations 

of the anisotropy.

The results of the ROI analysis in the highlighted regions in Figs. 1 and 2 are shown in 

Table 1. The number of voxels was 256 for the isotropic, and 36 for the anisotropic region. 

It can be observed that the values of MD are very consistent when comparing the different 

reconstruction methods and corresponds to a temperature of 23 °C (53), which was the room 

temperature in our scanner suite. The exception here is the PI-CS reconstruction, which 

exhibits a higher MD value. Given the homogeneous nature of the phantom, it is not 

surprising that all non-linear reconstructions showed a significant reduction of the standard 

deviation of MD as compared to gridding, which indicates reduction of noise and streaking 

artifacts due to undersampling.

The trend is similar for FA. For isotropic diffusion of free water an FA value of 0 is the 

physical expectation. Deviations from this value can be attributed to noise and aliasing 

artifacts and there is a significant reduction of both mean values and standard deviations for 

FA for all nonlinear methods. In the ROI defined over the anisotropic fibers significant 

reductions of both mean values and standard deviations of FA can be observed as well. All 

methods show significant reductions of the angular dispersion of the principal eigenvector 

(θ). Model DTI yields the lowest dispersions in comparison to all other methods.

In-vivo experiments

Figure 3 shows the reconstructions from a single sagittal slice visualizing the cartilage 

around the distal femur and tibial plateau of the right knee of a healthy volunteer. Gridding 

reconstructions are presented for both the 208 and the 70 spokes acquisition, as well as 

nonlinear reconstructions in the case of 70 spokes. Table 2 presents the corresponding 

values from the ROI analysis. The number of voxels was around 500 in the cartilage ROI 

and 850 in the two muscle regions. All nonlinear reconstructions show a reduction of 
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streaking artifacts and noise as well as increased contrast and reduced numerical values for 

FA which is more consistent with the 208 spokes acquisition than the regular gridding 

reconstruction from 70 spokes (see discussion for more details).

Figure 4 shows the results from the comparison of 6 and 30 diffusion encoding directions 

and Table 3 presents the corresponding values from the ROI analysis in cartilage (≈500 

voxels), two different muscle groups (≈900 and ≈500 voxels) and a small area of synovial 

fluid (≈50 voxels). Both model based approaches show a reduction of overall noise level in 

comparison to PI-CS. Quantitative evaluation displays stable MD values for the two model 

based methods. MD of PI-CS is increased, a finding that is in line with the phantom 

experiments. FA values again show the strongest trend of being decreased with Model-DTI. 

This effect is stronger for the 6 directions data, which is the more challenging experiment 

due to the significantly lower amount of data. It is worth noting that the FA values of 

Model-DTI with 6 directions are pronouncedly closed to the 30 directions results than those 

of all other methods. This effect can best be observed in synovial fluid with FA values of 

0.12 ± 0.07 (30 directions gridding), 0.11 ± 0.07 (30 directions Model-DTI) and 0.13±0.05 

(6 directions Model-DTI). In comparison, the values of the other methods are pronouncedly 

higher.

Figure 5 convergence plots of the different iterative reconstruction methods from Fig. 4. The 

convergence of Model-DWI and Model-DTI are very similar, and indicate proper 

convergence of the methods while convergence of PI-CS is slower. We did not observe a 

notable improvement in image quality with a higher number of iterations for PI-CS so we 

restricted the presented results to the same number of iterations for all three methods. It id 

interesting to note that the two model based methods converged faster for the 30 directions 

dataset than for the 6 directions dataset, while PI-CS did not show this effect.

Figures 6 and 7 show reconstructions of a single mid-brain axial slice through the ventricles 

of a healthy volunteer. The most prominent effect is the reduction of noise in the FA map for 

the nonlinear reconstructions, which is highest for the two model-based methods. I0 and MD 

show a reduction of streaking and ringing near the edges of the brain and a reduction of 

noise. PI-CS DWI and Model DTI show the same behavior in terms of preservation of fine 

details and sharp edges. In contrast, MD maps of Model DWI displays some degree of 

blurring and reduced detectability of fine structures.

ROI evaluations of the brain measurements are shown in Table 4. The number of voxels was 

≈100 in the corpus callosum and ≈200 for the gray matter. MD values in both the corpus 

callosum and grey matter are very consistent for all reconstruction methods with the 

exception of Model DWI, which leads to an increase in MD. Similar to the results of the 

phantom measurements, FA is significantly decreased in gray matter, where the expected 

FA is lower, for all reconstructions. For white matter significant reductions of FA are only 

observed with model-DWI in comparison to gridding.

With 100 GD iterations, we observed reconstruction times between 4 and 10 minutes for one 

slice of the different experiments on a regular desktop workstation (Intel Xeon X5647, 

2.93GHz, 8 Cores, 12GB memory, Linux Kernel 3.5, Matlab 2012b 64 bit). Computation 
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times dependent on matrix size, number of spokes, and number of receive channels but were 

nearly identical for the different reconstruction methods.

Discussion

The results of this work show that model-based nonlinear reconstruction with evaluation of 

the sparsifying transform directly in the domain of the the tensor elements outperforms 

conventional CS, applied to the individual diffusion-weighted images, in terms of the quality 

of the parameter maps for a range of different radial spin echo DTI experiments. This is in 

line with findings on retrospectively undersampled Cartesian fixed specimen data previously 

observed by Welsh et al. (41) and our own results from denoising (42). Our experiments did 

not show a risk of reduced accuracy of the DTI parameter maps when used with nonlinear 

reconstructions. However, in all reconstructions using (nonlinear) regularization or 

compressed sensing in general, there is a certain risk that small features are lost below the 

noise level if the acceleration is pushed too far that can not be recovered even though the 

reconstructed images appear to have a higher SNR. This potential problem is of course also 

present in the proposed method, but it is not unique to it.

In the case of isotropic diffusion of free water in the phantom, the value of 2.32 ± 0.03 

μm2/ms corresponds well to the expected values for room temperature (53). The true FA is 

known to be zero, and model-based reconstruction methods lead to a statistically significant 

decrease in FA of free water from 0.10 ± 0.03 (gridding) to (CS-PI DWI and Model DWI) 

and 0.03 ±0.01 (Model DTI). This observed reduction likely reflects the lower residual 

streaking artifacts and noise in the nonlinear reconstructions, because MD is robust to noise 

while FA is easily biased in the presence of noise. The strongest improvements were seen 

for the dispersion of the principal eigenvector (Fig. 2). This result is also not surprising 

because this parameter is known to be most susceptible to changes in SNR.

For the in vivo experiments, interpretation of the results from the ROI analysis is less 

straightforward due to the lack of a standard reference. This is best observed when 

comparing the MD values of the 208 spokes vs. 70 spokes knee acquisitions. Due to the 

prolonged scantime of more than one hour in the 208 spokes case, some subject motion is 

inevitable even in the case of a healthy volunteer. This leads to residual phase 

inconsistencies that remain with the proposed phase correction scheme. This can also be 

attributed to the approximation of the ”unmixing-operator” in the phase correction step (50). 

Studies have shown that this approximation cannot generally guaranteed (54). As a result the 

values of MD are higher for the 208 spokes gridding reconstruction (cartilage 1.72±0.45 

μm2/ms, muscle 1.70 ±0.26 μm2/ms) than for 70 spokes gridding (cartilage 1.61 ±0.47 

μm2/ms, muscle 1.62 ± 0.33 μm2/ms). The reduction of streaking artifacts and noise leads to 

a slight decrease of MD for the nonlinear reconstructions in cartilage (strongest for Model-

DTI, cartilage 1.54 ±0.38 μm2/ms) while values in muscle are similar for all reconstructions 

of the 70 spokes dataset. A similar trend can be observed when comparing the 30 directions 

and 6 directions data. While no definite statement can be made about the accuracy, these 

lower values are in line with the results from the literature. See for example (17,55) 

reporting values between 1.5 and 1.6 μm2/ms for knee cartilage and (56) for muscle.
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Results of FA are consistent with the phantom measurements. Lowest values in cartilage are 

observed in the case of 30 directions (0.24 ± 0.16) and 208 spokes (0.25 ± 0.13) data. Due to 

increased noise, the values are significantly larger in the regridding reconstruction from the 

6 directions data (0.42 ±0.21) and the 70 spokes data (0.41 ± 0.18). Again, there is a general 

trend of reduced FA in the case of the nonlinear reconstruction due to removal of streaking 

artifacts and noise. This effect is strongest for Model-DTI (Cartilage: 70 spokes: 0.35 ± 

0.16, 6 directions: 0.34 ± 0.17). The area of synovial fluid in the 6 and 30 directions 

experiment is the closest to a gold standard reference that can be obtained. While the 

diffusion in this area will not be completely isotropic due to the small ROI the effect of 

partial volume effects, FA values are significantly lower than in the other tissues 

investigated, and results from Model-DTI show the highest consistency between the highly 

accelerated 6 directions experiment and the long-scantime 30 directions acquisition.

In the brain measurements, a general trend of reduced values for FA was observed with 

nonlinear reconstruction in gray matter. The general range of values of the measurements is 

in line with values reported in the literature. Studies that report comparable values include 

(57–60).

One of the main advantages of enforcing the TV penalty in tensor space (Eq. 6) as opposed 

to the diffusion weighted images (Eqs. 1 and 5), is that the regularization can only lead to 

potentially over or under-regularized results. These are immediately spotted by visual 

inspection of the results. In contrast, changes in the individual diffusion weighted images 

can lead to systematic errors, because even with adaptive regularization certain areas might 

be subject of slightly different regularization in different images. As the DWIs are 

subsequently used in the estimation of the tensor such potential inconsistencies can lead to 

systematic errors in the tensor maps, which are much harder to spot and generate more 

severe artifacts. This can best be observed in the increased MD and FA values in the 6 and 

30 directions knee experiment (Fig. 4 and Tab. 3) of PI-CS. It is worth noting that our 

choice of TV as a sparsifying transform was motivated by previous work and its known 

properties on undersampled radial data. To facilitate comparison between the different 

methods, we also used it in the Model-DTI method where it is directly applied on the 

elements of the tensor. This neglects certain properties of the tensor maps, and it was already 

shown that for image processing based denoising, transforms like second oder TGV (29) 

outperform TV when working on the tensor elements (42). However, application of these 

more advanced methods to non-convex optimization problems is challenging and requires 

future advances in numerical methods.

Extensions and future work

One challenge of the model-based approaches is that the nonlinearity of the forward operator 

results in a non-convex optimization problem. This makes the numerical solution 

challenging and sensitive to initial values. In the current work, we used the gridding sum-of-

squares reconstruction to initialize the optimizer. Another issue, mentioned already in the 

Theory section, is the potential poor scaling of the gradients during the numerical 

optimization, which has been described previously in the literature (32,34,36,37). Our 

Knoll et al. Page 13

NMR Biomed. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



approach to adaptively scale the step size with the norm of the gradients  leads to 

acceptable reconstruction times for the experiments performed in this work. However, it is 

expected that higher numerical performance can be achieved with second-order methods like 

the iteratively-regularized Gauss-Newton method (30,61). In addition, very recent 

developments in the field of numerical optimization introduced algorithms that guarantee 

finding the global minimum of functionals that consist of the sum of a non-convex smooth 

function (the model based data term) and a convex non-smooth function (the TV term) (62). 

This is subject of ongoing research.

Previously proposed methods to accelerate diffusion acquisition with CS also suggested the 

application of a sparsifying transform across the dimension of the diffusion-encoding 

directions, e.g. dictionary based approaches (39) or methods based on distributed 

compressed sensing (40). While these approaches lead to a higher degree of sparsity due to 

the increased dimensionality, which is expected to improve reconstruction quality, we did 

not exploit compressibility in the diffusion dimension in this work because we observed a 

transfer of diffusion information between the individual images in preliminary experiments. 

However, recent work in mathematical image processing suggests that such an approach can 

be advantageous in the domain of the diffusion tensor (63), and a thorough evaluation of the 

integration of this additional dimension is currently ongoing. Such an additional dimension 

may be especially promising for applications where the number of diffusion encoding 

directions is much larger, as the redundancies in the data will be much larger in these 

situations.

The undersampled acquisition protocols used in this work aimed at the reduction of scan 

time. However, the proposed approach opens up possibilities to invest the scan time gained 

from k-space undersampling into either higher resolution or a larger number of diffusion-

encoding directions (64–66). The different brain protocols presented here already illustrate 

the potential in this respect, but such optimizations will have to be investigated 

independently for each specific application. DTI is the preferred model for the diffusion in 

articular cartilage as well as many other musculoskeletal applications of diffusion (e.g. inter 

vertebral discs and muscle diffusion). Due to the short T2 of articular cartilage (around 40 

ms), and the high in-plane resolution required, DTI of the cartilage is restricted to moderate 

diffusion-weightings with b-values lower than 500 s/mm2. For such modest b-values the 

water diffusion is accurately characterized by the DTI framework, which assumes a 

Gaussian model for diffusion. In any case, our model-based approach could be extended to 

include non-Gaussian diffusion (e.g. diffusion-kurtosis imaging (67,68)), or advanced 

models like HARDI, Q-ball imaging or DSI (69–72). It is expected that the potential for 

improvements will be of even greater relevance for these advanced diffusion MRI 

techniques due to the much higher number of b-values and diffusion weighted images, 

which can reach up to 300 for diffusion spectrum imaging. However, this comes at the cost 

the higher complexity of the models which will make the numerical solution more 

challenging and computationally demanding.

Finally, the methodological developments in this work were performed with a limited 

number of volunteers (3 and 2 for knee and brain). Using the accelerated scan protocols, we 
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are currently performing a follow up study with a larger number of patients and healthy 

controls.

In summary, this work describes a novel technique to accelerate diffusion imaging that uses 

a model-based reconstruction and applies a sparsifying transform directly on the diffusion 

tensor components. While it was demonstrated for radial spin echo acquisitions in this work, 

it is in principle applicable to arbitrary sampling patterns as long as aliasing artifacts are 

incoherent in the space of the selected transform domain. As the model-based reconstruction 

allows data acquisition in a clinically acceptable time of approximately 10 minutes without 

compromising image quality and fidelity of quantitative values, this provides a critical 

improvement towards clinical application of DTI of articular cartilage.
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DWI Diffusion weighted imaging

DWIs Diffusion weighted images

DTI Diffusion tensor imaging

CS Compressed sensing

PI Parallel imaging

ROI Region of interest

MSK Musculoskeletal
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Figure 1. 
a) Axial I0 image and maps of MD, FA and the color coded direction of the principal 

eigenvector of the phantom measurement with 61 spokes, two b-values and 6 diffusion-

encoding directions for conventional gridding (Grid, first row), combined PI and CS on the 

diffusion-weighted images (PI-CS DWI, second row), model-based reconstruction with TV 

regularization of the diffusion-weighted images (Model DWI, third row) and model-based 

reconstruction with TV regularization of the tensor elements (Model DTI, fourth row). The 

ROIs used for the analysis in Table 1 are highlighted in the gridding reconstruction of the I0 

image. b) Schematic of the phantom. The orientations where data was acquired are shown as 

dashed lines. The Dyneema fibers are located at the center of the phantom and are 

responsible for the anisotropy in the central region of the images in a.

Knoll et al. Page 20

NMR Biomed. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Dispersion of the principal eigenvector in the anisotropic region of the phantom for three 

different orientations (axial, coronal and oblique at a 45 degree angle with respect to the 

anisotropic fibers). While all nonlinear methods show a clear reduction of dispersion the 

effect is strongest for the proposed Model DTI approach. This behavior is consistent over 

the different orientations of the anisotropy. a) Color coded direction of the principal 

eigenvector for the three different orientations. b,c,d) Color coded deviations of the 

dispersion angle θ to the mean of all vectors in the ROI in degrees. e) Illustration of the 

dispersion of the eigenvectors in the ROIs.
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Figure 3. 
I0 image and maps of MD and FA from measurements of the knee of a healthy volunteer 

with 208 and 70 spokes and two b-values for conventional gridding (Grid, first row 208 

spokes, second row 70 spokes), combined PI and CS on the diffusion-weighted images (PI-

CS DWI, third row), model-based reconstruction with TV of the diffusion-weighted images 

(Model DWI, fourth row) and model-based reconstruction with TV of the tensor elements 

(Model DTI, fifth row). The ROIs that were used for the evaluation of cartilage and muscle 

tissue in Table 2 are highlighted in the 208 spokes gridding reconstruction of the I0 image.
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Figure 4. 
I0 images with overlaid maps of MD and FA in cartilage and muscle from measurements of 

the knee of a healthy volunteer with 70 spokes using 6 and 30 directions for conventional 

gridding (Grid, first row), combined PI and CS on the diffusion-weighted images (PI-CS 

DWI, second row), model-based reconstruction with TV of the diffusion-weighted images 

(Model DWI, third row) and model-based reconstruction with TV of the tensor elements 

(Model DTI, fourth row). Quantitative values are presented in Table 3.
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Figure 5. 
Convergence plots of the different iterative reconstruction methods from Fig. 4. The 

convergence of Model-DWI and Model-DTI are very similar, and indicate proper 

convergence of the methods while convergence of PI-CS is slower.
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Figure 6. 
I0 image and maps of MD, FA and the color coded direction of the principal eigenvector 

from 196-matrix 75 spokes brain measurements for conventional gridding (Grid, first row), 

combined PI and CS on the diffusion-weighted images (PI-CS DWI, second row), model-

based reconstruction with TV of the diffusion-weighted images (Model DWI, third row) and 

model-based reconstruction with TV of the tensor elements (Model DTI, fourth row). The 

ROIs used for the analysis of the splenium of the corpus callosum and grey matter in Table 4 

are highlighted in the gridding reconstruction of the FA map.
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Figure 7. 
An enlarged region from brain acquisitions in Figure 6. Note the pronounced reduction of 

noise in FA and direction color maps for all nonlinear reconstructions, which is strongest for 

the two model based methods. In the case of Model DWI this comes at the cost of blurring 

and a loss of fine details in the MD maps, an effect that does not occur in Model DTI.
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Table 1

ROI analysis of MD, FA and angular dispersion θ of the first eigenvector for the phantom measurements1. See 

Fig. 1 for the ROIs used. t: t-test, F: F-test. p-values that are bold faced are statistically different from gridding 

(p < 0.05).

Isotropic Anisotropic

Mean ± Std p-values Mean ± Std p-values

MD Grid 2.33 ± 0.13 - 1.67 ± 0.22 -

MD PI-CS DWI 2.36 ± 0.05 t: < 10–3, F: < 10–15 1.75 ± 0.09 t: 0.03, F: < 10–6

MD Model DWI 2.32 ± 0.07 t: 0.46, F: < 10–15 1.68 ± 0.17 t: 0.75, F: 0.11

MD Model DTI 2.32 ± 0.03 t: 0.15, F: < 10–15 1.66 ± 0.05 t: 0.75, F: < 10–12

FA Grid 0.10 ± 0.03 - 0.36 ± 0.08 -

FA PI-CS DWI 0.04 ± 0.01 t: < 10–15, F: < 10–15 0.32 ± 0.04 t: < 0.01, F: < 10‒5

FA Model DWI 0.04 ± 0.01 t: < 10–15, F: < 10–15 0.32 ± 0.05 t: 0.01, F: < 0.01

FA Model DTI 0.03 ± 0.01 t: < 10–15, F: < 10–15 0.31 ± 0.02 t: < 10–4, F: < 10–10

θ Grid 14.93 ± 9.35 -

θ PI-CS DWI 7.20 ± 4.22 t: < 10–4, F: < 10–5

θ Model DWI 10.4 ± 6.32 t: 0.02, F: 0.02

θ Model DTI 4.14 ± 2.63 t: < 10–8, F: < 10–10

1
MD values are given in units of μ m2/ ms. FA values are dimensionless. Angular dispersion θ of first eigenvector is given in degrees.
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Table 2

ROI analysis of MD and FA of knee measurements1. See text for details and figure 3 for the used ROIs.

Cartilage Muscle

Mean ± Std Mean ± Std

MD Grid 208 spokes 1.72 ± 0.45 1.70 ± 0.26

MD Grid 70 spokes 1.61 ± 0.47 1.62 ± 0.33

MD PI-CS DWI 70 spokes 1.61 ± 0.45 1.62 ± 0.28

MD Model DWI 70 spokes 1.57 ± 0.40 1.62 ± 0.25

MD Model DTI 70 spokes 1.54 ± 0.38 1.61 ± 0.22

FA Grid 208 spokes 0.25 ± 0.13 0.31 ± 0.11

FA Grid 70 spokes 0.41 ± 0.18 0.42 ± 0.15

FA PI-CS DWI 70 spokes 0.37 ± 0.17 0.37 ± 0.13

FA Model DWI 70 spokes 0.36 ± 0.17 0.37 ± 0.13

FA Model DTI 70 spokes 0.35 ± 0.16 0.35 ± 0.13

1
MD values are given in units of μm2/ ms. FA values are dimensionless.
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Table 3

ROI analysis of MD and FA of knee measurements1. See text for details and figure 4 for the used ROIs.

Cartilage Muscle 1 Muscle 2 Synovial fluid

Mean ± Std Mean ± Std Mean ± Std Mean ± Std

6 directions

MD Grid 1.77 ± 0.54 1.75 ± 0.39 1.51 ± 0.41 3.01 ± 0.23

MD PI-CS DWI 2.09 ± 0.61 1.89 ± 0.36 1.68 ± 0.38 3.24 ± 0.25

MD Model DWI 1.77 ± 0.54 1.75 ± 0.39 1.51 ± 0.41 3.01 ± 0.23

MD Model DTI 1.75 ± 0.44 1.75 ± 0.26 1.50 ± 0.26 2.96 ± 0.14

30 directions

MD Grid 1.78 ± 0.56 1.80 ± 0.35 1.65 ± 0.41 2.93 ± 0.35

MD PI-CS DWI 2.07 ± 0.60 1.93 ± 0.32 1.85 ± 0.35 3.08 ± 0.27

MD Model DWI 1.78 ± 0.56 1.80 ± 0.35 1.65 ± 0.40 2.93 ± 0.35

MD Model DTI 1.78 ± 0.53 1.80 ± 0.31 1.65 ± 0.36 2.92 ± 0.33

6 directions

FA Grid 0.42 ± 0.21 0.38 ± 0.14 0.47 ± 0.18 0.17 ± 0.06

FA PI-CS DWI 0.50 ± 0.23 0.40 ± 0.14 0.47 ± 0.15 0.24 ± 0.08

FA Model DWI 0.42 ± 0.21 0.38 ± 0.13 0.47 ± 0.18 0.17 ± 0.06

FA Model DTI 0.34 ± 0.17 0.31 ± 0.11 0.38 ± 0.13 0.13 ± 0.05

30 directions

FA Grid 0.24 ± 0.16 0.23 ± 0.08 0.26 ± 0.10 0.12 ± 0.07

FA PI-CS DWI 0.29 ± 0.19 0.24 ± 0.08 0.25 ± 0.09 0.16 ± 0.07

FA Model DWI 0.24 ± 0.16 0.23 ± 0.08 0.26 ± 0.10 0.12 ± 0.07

FA Model DTI 0.22 ± 0.16 0.23 ± 0.07 0.25 ± 0.09 0.11 ± 0.07

1
MD values are given in units of μm2/ ms. FA values are dimensionless.
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Table 4

ROI analysis of MD and FA of the brain measurements1. See text for details and Fig. 6 for the used ROIs. t: t-

test, F: F-test, W: Wilcoxon-rank-sum test, L: Levene-test. p-value that are bold faced are statistically different 

from gridding (p < 0.05).

Splenium CC Grey Matter

Mean ± Std p-values Mean ± Std p-values

MD Grid 0.76 ± 0.10 - 1.02 ± 0.27 -

MD PI-CS DWI 0.76 ± 0.06 t: 0.95, F: < 10–5 1.02 ± 0.26 W: 0.93, L: 0.43

MD Model DWI 0.80 ± 0.06 t: < 10–3, F: < 10–5 1.04 ± 0.21 W: 0.04, L: < 10–3

MD Model DTI 0.76 ± 0.06 t: 0.82, F: < 10–5 1.02 ± 0.25 W: 0.86, L: 0.28

FA Grid 0.70 ± 0.09 - 0.24 ± 0.09 -

FA PI-CS DWI 0.67 ± 0.07 t: 0.04, F: < 10–2 0.21 ± 0.08 W: < 10–3, L: 0.14

FA Model DWI 0.63 ± 0.05 t: < 10–7, F: < 10–6 0.17 ± 0.08 W: < 10–15, L: 0.06

FA Model DTI 0.66 ± 0.06 t: < 10–2, F: < 10–3 0.18 ± 0.07 W: < 10–12, L: 0.01

1
MD values are given in units of μm2/ms. FA values are dimensionless.

NMR Biomed. Author manuscript; available in PMC 2016 March 01.


