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Abstract

The ventral visual pathway of the primate brain is specialized to respond to stimuli in certain 

categories, such as the well-studied face selective patches in the macaque inferotemporal cortex. 

To what extent does response selectivity determined using brief presentations of isolated stimuli 

predict activity during the free viewing of a natural, dynamic scene, where features are 

superimposed in space and time? To approach this question, we obtained fMRI activity from the 

brains of three macaques viewing extended video clips containing a range of social and nonsocial 

content and compared the fMRI time courses to a family of feature models derived from the movie 

content. Starting with more than two dozen feature models extracted from each movie, we created 

functional maps based on features whose time courses were nearly orthogonal, focusing primarily 

on faces, motion content, and contrast level. Activity mapping using the face feature model readily 

yielded functional regions closely resembling face patches obtained using a block design in the 

same animals. Overall, the motion feature model dominated responses in nearly all visually driven 

areas, including the face patches as well as ventral visual areas V4, TEO, and TE. Control 

experiments presenting dynamic movies, whose content was free of animals, demonstrated that 

biological movement critically contributed to the predominance of motion in fMRI responses. 

These results highlight the value of natural viewing paradigms for studying the brain’s functional 

organization and also underscore the paramount contribution of magnocellular input to the ventral 

visual pathway during natural vision.
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INTRODUCTION

During an animal’s natural visual experience, the brain receives information about the 

environment in a manner that differs from that in most electrophysiological or fMRI 

experiments. For example, when a macaque monkey observes its conspecifics, visual input 

consists not of a series of isolated presentations, but of an evolving thread of dynamic, high- 

and low-level features superimposed in space and time. While it is straightforward to record 

neural or fMRI activity while monkeys observe natural movies, few such experiments have 

been carried out, likely because of the challenges inherent in the data analysis and 

interpretation. However, given that the brain evolved and operates under such conditions, it 

may be of great value to use natural paradigms that can complement more conventional 

approaches to assess functional responses in the brain.

Human fMRI experiments have begun to develop and apply such paradigms, often by 

having subjects watch commercial movies. Various experiments have used voxel time 

courses to assess the shared signal variation across brain areas (Bartels and Zeki, 2005; 

2004), map intersubject correlations (Hasson et al., 2004; 2008), and measure the degree to 

which brain activity is predicted by certain features (Bartels et al., 2008; Hanson et al., 2007; 

Huth et al., 2012). These studies have shown that, despite the challenges of superimposed 

features, it is possible to create functional maps and assess aspects of functional brain 

organization under natural viewing conditions. One study has gone further, matching the 

voxel time courses in the human brain to those in macaques watching the same movies with 

the aim of establishing homological correspondence between the species (Mantini et al., 

2013; 2012).

The macaque extrastriate visual cortex is characterized by having a large number of 

specialized areas. Visual signals are analyzed by regions apparently dedicated for the 

processing of motion (Maunsell and Van Essen, 1983), complex spatial structure (Fujita et 

al., 1992), and spatial cues (Andersen, 1985). Testing with fMRI has identified functional 

networks, such as that specialized for the processing of faces (Tsao et al., 2003). Does this 

apparent division of labor, derived from conventional testing, govern neural activity in the 

macaque’s brain during natural viewing?

Here we explore this question by measuring fMRI activity in macaques freely viewing 

extended natural videos containing diverse social and nonsocial content. Using a family of 

feature models extracted from each video, we assessed the relative contribution of different 

visual features throughout the brain. We first show that face feature models yield maps that 

bear striking similarity to the face patches identified using conventional block design. We 

next show that in the face patches, as well as in neighboring regions of V4, TEO and TE, the 

motion feature models, whose time courses are largely uncorrelated with the face feature 

models, are the primary drivers of the fMRI voxel time courses. These findings demonstrate 

that natural viewing paradigms can be valuable assays of functional specialization in the 

macaque brain, and additionally underscore the strong contribution of magnocellular input 

to ventral stream visual processing during natural vision.
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METHODS

Subjects

Three adult female rhesus monkeys (M1, M2, M3) participated in the study. Prior to 

training, monkeys were implanted with a custom-designed and fabricated fiberglass 

headpost, which was used to immobilize the head during testing. All procedures were 

approved by the Animal Care and Use Committee of the US National Institutes of Health 

(National Institute of Mental Health) and followed US National Institutes of Health 

guidelines. Surgery was performed using sterile procedures (see Maier et al (2008) for 

details on surgical procedures). The analgesics ketoprofen (2 mg/kg twice daily) and 

ibuprofen (100 mg twice daily) were sequentially administered for three and four days, 

respectively, following each surgery. Two of the female rhesus (age 5–6 at the time of the 

study) were pair-housed with other animals and naïve animals prior to participation in the 

current study. The third animal (age 10 at the time of the study) was singly housed and had 

participated in fMRI and neurophysiological experiments prior to the current study. During 

participation in the experiment, the animals were on water restriction and received their 

daily fluid intake during their daily testing (see below). Each subject’s weight and hydration 

level was monitored closely and maintained throughout the experimental testing phases.

fMRI Scanning

Functional magnetic resonance images were collected while the monkeys were engaged in 

the natural viewing task. Subjects participated in up to 12 5-minute trials per scanning 

session. Structural and functional images were acquired in a 4.7 tesla, 60-cm vertical 

scanner (Bruker Biospec, Ettlingen, Germany) equipped with a Bruker S380 gradient coil. 

Animals sat upright in a specially designed chair and viewed the visual stimuli projected 

onto a screen above their head through a mirror. We collected whole brain images with an 8 

channel transmit and receive radiofrequency coil system (Rapid MR International, 

Columbus, OH). Functional echo planar imaging (EPI) scans were collected as 40 sagittal 

slices with an in-plane resolution of 1.5 x 1.5 mm and a slice thickness of 1.5 mm. 

Monocrystalline iron oxide nanoparticles (MION), a T2* contrast agent, was administered 

prior to the start of each scanning session. MION doses were determined independently for 

each subject to attain a consistent drop in the signal intensity of approximately 60% (Leite et 

al., 2002), which corresponded to ~8–10 mg/kg MION. The repetition time (TR) was 2.4 s 

and the echo time (TE) was 12 ms. For each 5-minute presentation of a video clip, either 125 

or 250 whole brain images were collected, corresponding to 5 and 10 minutes of data 

collection. During the 10 min scans, the video appeared on the screen after 2.5 min of fMRI 

acquisition during rest and disappeared at 7.5 min.

Video Stimuli

The stimuli used in this study consisted of eighteen 5-minute videos. Fifteen videos depicted 

conspecifics and heterospecifics engaged in a range of activities in natural settings. Scenes 

were taken from a set of commercially produced nature documentaries (see Video S1 for 

example stimulus). The remaining three videos, which we termed as the non-biological 

motion stimuli, had dynamic scenes without a single animal present. These included footage 

of natural events such as tornados, volcano eruptions, and avalanches. In a typical session, 
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subjects viewed 3–4 different movies each repeated 3–4 times and presented in 

pseudorandom order (Figure 1A).

Training and Experimental Design

Prior to the experimental sessions, the subjects were trained on a fixation task, in which they 

were required to fixate a 0.2°–0.5° white dot and hold this fixation for 2 s to receive a juice 

reward. Viewing of the videos was preceded by an eye movement calibration task, where the 

animal directed its eyes to a spot appearing at different points on the screen. Such calibration 

was repeated after every second five-minute trial to reaffirm fixation accuracy throughout 

the session. Eye position was recorded using an MR-compatible infrared camera (MRC 

Systems, Heidelberg, Germany) fed into an eye tracking system (SensoMotoric Instruments 

GmbH, Teltow, Germany). Horizontal and vertical eye position was sampled and saved at 

200 Hz.

Each natural viewing trial began with the brief 500 ms presentation of a white central point 

surrounded by a 10-degree diameter annulus, with the extent of the annulus indicating the 

spatial region within which the animal could earn reward. Since the annulus was 

approximately as large as the movie itself, the animals were free to view the content of the 

video. As long as their eyes remained directed to the movie region, they received a drop of 

juice reward every two seconds. Pilot studies revealed that while the subjects would watch 

new videos without any reward incentive, the reward ensured that they would continue to 

view the same video even after several presentations.

Subject M1 participated in 39 sessions of the repeated natural viewing task, in 14 of which 

the movie was flanked by 2.5 min rest periods. Subject M1 watched each of the 15 movies 

an average of ~20 times over the course of the study. Subject M2 participated in 27 sessions 

total, 11 of which had the 2.5 min flanking periods. Subject M2 watched each movie an 

average of ~15 times over the study period. Subject M3 participated in 3 sessions of the 

experiment, during which she viewed 9 of the movies 3 times each.

Face Localizer Block Design

Face patches were localized and defined using a block design contrasting monkey faces 

(Gothard et al., 2004), and phase scrambled version of those faces. Each run consisted of 

eight alternating 48 s blocks. Each image subtended 12° visual angle, with a 0.4° red 

fixation point in the center, and was presented for 2 s. Subjects were free to scan the images, 

and were rewarded every 2 s as long as their gaze was maintained within a 6° radius 

centered fixation window. Over the course of data collection, each subject participated in 

multiple face localizer runs (17 in M1, 37 in M2, and 4 in M3). Functional maps were 

produced for each monkey by concatenating all runs and computing the response contrast (t-

value) between the two stimulus conditions.

Construction of Feature Models

From each 5-minute movie, we extracted a family of high- and low-level feature models to 

be used in the main analyses of the paper. Low-level visual features included models related 

to luminance, contrast, and motion and were computed automatically using algorithms 
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applied to the video image sequence in MATLAB. Higher-level visual features included 

models related to animals, such as the presence of faces and body extremities and various 

behaviors, and were coded by the experimenters on a frame by frame basis at four frames 

per second.

Based on a preliminary analysis of both the correlation between different feature models and 

the feature models in creating functional maps, we pruned down an initial array of nearly 

two dozen feature models to six visual models that were largely uncorrelated in their time 

courses (Figures 1B & 1C). These consisted of three low-level feature models (motion, 

luminance and contrast) and three high-level feature models (faces, animals, and 

extremities), whose maximum level of correlation was <0.3. Additionally, a behavioral 

model of saccade frequency was computed for each subject.

High-level features were scored by a human rater, who evaluated the content of individual 

frames with a sampling of 4 frames per second (total of 1200 time points for each coded 

feature per movie). A broad range of stimulus features (>50) were scored in the initial rating, 

most of which were either too sparse to be of use in our analysis or strongly correlated with 

one another. In preliminary analysis we pared the initial coding down to three. The face 

model consisted of a binary function that was one when a single face was present on the 

screen and zero otherwise. This model was strongly correlated with a number of other face-

based models we computed initially, such as measures of the number of faces present. For 

the animal and extremity models, we counted the total number of animals, or extremities 

(i.e. arms and legs) on the screen in each frame and constructed the models based on the 

square root transforms of these counts.

Low-level feature models were computed by algorithms applied to the movies automatically 

using MATLAB. In the initial extraction of features, multiple different algorithms were used 

to create the motion feature model. In pilot analysis, we compared total motion, defined as 

the mean instantaneous speed in the image plane, and local motion, computed according to 

an algorithm for determining motion within center-surround receptive fields (Itti, 2005; Itti 

et al., 1998). As these measures were strongly correlated, we opted to use the total motion 

for our main analysis. Luminance was calculated by measuring the average pixel intensity 

value for each frame of the movie. Contrast was calculated using a Weibull fit of the pixel 

intensity histogram based on the properties of the early visual system (Ghebreab et al., 2009; 

Groen et al., 2012; Scholte et al., 2009). This measure of contrast is associated with the 

average strength of the edges present in a given frame.

One model of saccade behavior was also included in the analysis. To this end, we included 

an estimation of mean instantaneous saccade frequency over the duration of each movie. To 

compute this, we detected the instance of saccades on each trial whose peak velocities 

exceeded (40 deg/sec). Binning these for each fMRI TR, and then dividing by the bin width 

and total number of trials provided an estimation of the time varying mean saccade 

frequency associated for each movie. Note that this analysis focuses on the average saccade 

frequency and does not pertain to trial-unique patterns of eye movements, which is the topic 

of a separate report. The overall mean saccade rate across movies was 1.7 sac/sec for M1 

and 1.4 sac/sec for M2.
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All feature models were down-sampled using the decimate function in MATLAB to match 

the same temporal resolution as the fMRI data (i.e. 1 sample per 2.4 seconds), convolved 

with an estimation of the hemodynamic MION response function, and concatenated across 

all movies for comparison with the concatenated average fMRI data.

fMRI Analysis

All fMRI data were analyzed using custom-written MATLAB (MathWorks, Natick, MA) 

programs as well as the AFNI/SUMA software package developed at NIH (Cox, 1996). Raw 

images were first converted from Bruker into AFNI data file format. Motion correction 

algorithms were applied to each EPI time course using the AFNI function 3dvolreg, 

followed by correction for static magnetic field inhomogeneities using the PLACE algorithm 

(Xiang and Ye, 2007). Each session was then registered to a template session, allowing for 

the combination of data across multiple testing days. The first 7 TRs (16.8 s) of each movie 

were not considered in the analysis so as to eliminate the hemodynamic onset response 

associated with the initial presentation of each video.

The inherent temporal flow of an extended video clip poses challenges for using 

conventional fMRI design to study the neural mechanisms of natural vision. Normally, 

functional maps are created based on a priori models derived from the stimulus presentation 

sequence, for example in block and event-related designs, where the time courses of all 

responsive voxels are usually assumed to follow the on/off temporal dynamics of stimulus 

presentation. Since extended video stimuli add their own inherent temporal structure to the 

responses of individual voxels, which will differ throughout the brain based on regional 

response selectivity, alternative analysis strategies are required. Previous studies have 

addressed this challenge by developing purely data-driven methods, for example computing 

the statistical covariation among voxel time courses during movie viewing (Bartels et al., 

2008; Bartels and Zeki, 2004), or the consistency in the time courses of corresponding 

voxels across subjects (Hasson et al., 2008; 2004). Here we applied a hybrid method, 

extracting feature models from movies, thus following the temporal dynamics of a naturally 

evolving scene. We applied three main analyses, investigating the correlation with the 

feature models, using multiple models in a stepwise regression, and investigating the relative 

contribution of the different models in a region of interest analysis. Each of these is 

described in the following paragraphs.

Correlation with each feature model

We compared the time course in the brain to each of the six extracted feature models using 

Pearson’s correlation. The time courses for each voxel were averaged over all viewings and 

concatenated across the different movies. This analysis led to a family of activity maps (r-

values) that provided a portrait of the functional activation associated with each feature. The 

significance of r-values was assessed by calculating the two-tailed p-value of each feature 

model’s correlation with a voxel using the number of time-points across all movies minus 

two as the number of degrees of freedom (df = 1768). A Bonferroni correction was applied 

to account for multiple comparisons, yielding an estimate of significance (p < 0.05, 

corrected for the total number of voxels in the field of view, which exceeded 90,000) that 

corresponds to a Pearson’s correlation of r = +/− 0.1181. Maps of r-values were displayed in 
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either unthresholded form (Figure 3) or with their transparency modulated by the r-value 

magnitude for purposes of visualization (Figure 2).

Stepwise regression using multiple feature models

We next compared the relative contribution of different features to the voxel time courses 

throughout the brain. To do this we computed a stepwise regression for the seven selected 

feature models. Stepwise regression provides the ability to directly compare the amount of 

contribution of each feature, while ensuring that the amount of variance explained is not 

being over fit. We chose to use stepwise regression, which is a modified version of the 

commonly used general linear model (GLM) because this method from the outset identified 

the most relevant models from a large initial number of candidates. Narrowing down the 

candidates using GLM would yield a similar result, but would require further steps, since the 

GLM fitting provides a beta coefficient for all models, and does not take redundancy into 

account. The stepwise regression consisted of an iterative regression sequence. In each 

cycle, all remaining feature models (starting with the seven selected models) were 

independently regressed against each time course. With each cycle, a new feature model was 

added to the overall model for a given voxel if its regression explained the highest percent of 

the signal variance and this value was above 1%. This method provides an inherent 

threshold for data visualization, where voxels for which a given feature model did not 

explain 1% of the variance are without any value. Note that the seven feature models used in 

the main analysis were from the outset selected based on a criterion of minimizing inherent 

correlation (see Figure 1C). In addition, our application of stepwise regression guarded 

against the redundant contribution of different feature models.

Region of Interest Analysis

The stepwise regression analysis afforded the opportunity to compare the relative 

contribution of the different stimulus features within voxels throughout the brain, serving as 

a complementary analysis to the maps in Figure 3. We approached this comparison by 

creating regions of interest (ROI) across the striate and extrastriate visual cortex. This was 

achieved in two ways. First, functional ROIs were created for the individual face patches by 

selecting all voxels that were above a threshold of t = 5 based on the results from the block 

design. In the prefrontal cortex this threshold was lowered to t = 2, as the signals were 

inherently weaker. Next, structural ROIs for eight visual regions were selected based on the 

Saleem and Logothetis monkey atlas (Saleem and Logothetis, 2012). To compare across 

features, we selected 10 voxels from each ROI with the highest total variance explained 

from the stepwise model and computed the average value for each of the seven features. 

Post-hoc two-tailed t-tests were then performed to investigate whether there was a 

significant difference between the amount of variance explained by the motion and face 

features.

RESULTS

The main goal of the study was to measure the contribution of different stimulus features to 

fMRI responses throughout the brain during natural viewing. The fMRI data were obtained 

from three monkeys, who repeatedly viewed up to eighteen five-minute natural videos inside 
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the bore of a 4.7T vertical scanner. The movies varied in their content, but generally 

depicted conspecific and heterospecific monkeys, humans, and other animals engaged in a 

variety of social and nonsocial behaviors (see Video S1 for a depiction of the movie 

content). The subjects viewed individual movies between 3 and 40 times (mean = 14), with 

fMRI data collected during a total of 728 viewings over a period of several months (389 for 

M1, 309 for M2, 30 for M3). In a typical session, subjects viewed 3–4 different movies each 

repeated 3–4 times and presented in pseudorandom order (Figure 1A). Based on tracking 

their eye movements, it was evident that the monkeys readily explored the movies, even 

during repeat presentations of the same movie, consistent with previous reports (Shepherd et 

al., 2010). Across all viewings, gaze was directed toward the screen on average 86% of the 

time (M1: 87%, M2: 87%, M3: 84%). Since gaze was directed toward the movies most of 

the time, all trials were included in the mean time courses for each movie presented below. 

The link between eye movements and fMRI responses across trials is considered briefly here 

and is investigated in detail in a parallel study. We optimized the estimation of each voxel’s 

representative movie-driven time course by computing the mean response across all 

presentations of each movie. Voxels across the brain differed markedly in their time courses 

in response to the movies, making it possible to assess the relative contribution of particular 

stimulus features to the responses in each area during natural viewing.

Analysis of fMRI responses, including the creation of functional maps, involved comparing 

the individual voxels’ mean time courses to a family of feature models extracted from the 

movies. Based on pilot analysis, our study focused on six main models (Figure 1B) selected 

from a much larger initial set of candidates. A critical aspect of the selected feature models 

is that their time courses were largely uncorrelated with one another (Figure 1C, see 

Methods for more details on the generation and selection feature models). We begin by 

focusing on one feature, faces, and show that the evolving face content of the movie can be 

used to map the macaque face patches that closely resemble those obtained with a 

conventional block design. We next broaden the exploration to the six nearly orthogonal 

visual feature time courses, demonstrating that the very same fMRI data sets offer a range of 

distinct and robust activity maps reflecting the processing of faces, contrast, and motion 

content. Finally, using a quantitative comparison of the variance explained by each feature, 

we demonstrate that stimulus motion dominates responses across the extended visual system 

during natural viewing, including in the face patches and ventral object pathway.

Mapping face patches from natural videos

As an initial test of the feature mapping approach, we first asked whether the well-described 

macaque face patches (Tsao et al., 2003; Ungerleider and Bell, 2011) could be mapped by 

comparing voxel time courses across the brain to the time course of the extracted face 

feature model. Previous human studies have found that voxels in face-selective regions show 

their highest responses to faces appearing in a movie (Hasson et al., 2004), suggesting that 

such a mapping approach might be possible.

Indeed, computing the brain-wide correlation between fMRI activity and the face feature 

model revealed discrete patches of activity in the lower bank of the STS and the prefrontal 

cortex (Figure 2B & 2D). The locations of these patches closely resembled those reported in 
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previous macaque fMRI studies (Tsao et al., 2003; 2008b; Ungerleider and Bell, 2011), and 

numbered 36 face-selective patches in six hemispheres of three monkeys (see Table 1). To 

more closely evaluate the relationship between these activity patterns and the previously 

described face patches, we also performed a conventional block design in the same animals 

(Figure 2A & 2C). Comparing these two modes of data collection revealed striking overlap 

in nearly all identified face patches in the three monkeys. The face feature model used here 

was based on the appearance of isolated faces on the screen: pilot experiments determined 

that other related face feature models yielded similar results (see Methods). In addition, the 

natural viewing approach led to the identification of a few areas outside the face patches (see 

Table 1). While the maps in Figure 2 were computed using a large number of trials, we 

found that as little as 15 minutes of movie viewing led to the reliable mapping of activity in 

the face patches (Supplemental Figure 1).

This mapping of the face patches under natural viewing demonstrates that it is possible to 

use this approach to gauge aspects of the brain’s functional organization despite multiple 

stimulus features being superimposed in space and time. The close correspondence to face 

patches further suggests that data collected during conventional fMRI paradigms provides a 

reasonable path toward understanding how the brain responds under more natural viewing 

conditions. It should be noted, however, that while this method was able to reveal the 

position of the face patches, it yielded correlation that seldom exceeded a value of 0.3 in the 

face patches, which corresponds to less than 10% of the overall signal variance. We will 

return to this point later.

Parallel functional feature maps obtained during natural stimulation

In light of the successful mapping using the face feature model, we next examined the 

family of maps derived from the same fMRI data using the six different visual feature 

models. The patterns of correlation are shown on the lateral surface of the brain in Figure 3 

(medial surfaces are shown in Supplemental Figure 2) and illustrate the spatially distinct 

contribution of the different features in one hemisphere of subject M2 (Subject M1 shown in 

Supplemental Figure 3). The upper left map corresponding to the face feature model 

illustrates the circumscribed nature of the face patches extracted using this method. It shows, 

in addition, several regions of negative correlation distributed in both the dorsal and ventral 

visual pathways.

The time course of the selected high-level features other than faces exhibited relatively low 

correlation with fMRI activity during movie viewing. While both the extremities and 

animals feature models yielded marginally significant correlation in some cortical regions 

(two-tailed t-test(1768), p < 0.05, corrected), the overall correlation was much lower than for 

faces and near zero throughout most of the brain. The exceptions were a few regions of 

negative correlation observed for the extremities feature model, which partially overlapped 

the negative regions observed with faces.

Mapping the time course of low-level features from the same data set led to notably stronger 

patterns of correlation across the brain, and including in the ventral visual stream. The 

contrast and luminance features were both correlated with responses in the early retinotopic 

cortical areas V1 and V2. In addition, contrast was strongly correlated with fMRI time 
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courses in ventral V3, ventral V4, TEO and regions of TE in the lateral occipitotemporal 

pathway. The correlation of voxel time courses with fluctuations in luminance and contrast 

was weak or absent elsewhere in the brain, including along the entire STS and prefrontal 

cortex. Activity changes related to image luminance were largely restricted to the foveal 

representation of V1, and nearly absent at later stages.

The visual feature that was the most strongly correlated with fMRI fluctuations in response 

to the movie was motion (Figure 3, bottom middle). Correlation values were highest in 

motion-specialized cortical areas MT, MST, and FST in the caudal superior temporal sulcus 

(STS), consistent with previous work using biological motion (Bartels et al., 2008; Fischer 

et al., 2012; Nelissen et al., 2006; Orban and Jastorff, 2013). In those areas, peak correlation 

coefficients exceeded 0.7, indicating a very close match between some individual voxels and 

the motion time course (see Figure 4A). Strong correlations were also found in area V4, the 

lateral aspect of the IT cortex and rostral portions of the STS, areas commonly associated 

with object processing in the ventral visual pathway (see Figure 3, and next section). One 

region in which the correlation was conspicuously absent was the foveal representation of 

the primary visual cortex (V1), possibly because of the tendency toward stabilization at the 

center of gaze, or possibly because of a lower proportion of magnocellular input to V1 from 

the foveal region of the retina (Schein and de Monasterio, 1987).

Together, these results are important for two reasons. First, they demonstrate that it is 

straightforward to compute a family of distinct feature-specific functional maps from a 

single fMRI data set collected under experimental conditions that approximate those of 

natural vision. Second, they show that the dynamic, movement-related aspects of natural 

vision are dominant in shaping responses throughout the primate brain, even in areas 

ostensibly specialized for semantic object categories. In the next section, we use stepwise 

regression to more rigorously analyze the relative contribution of the different stimulus 

features to the activity of individual voxels, focusing on the ventral visual pathway.

Assessing the relative contribution of features underscores the dominance of motion

As a next step, we assessed the relative contribution of individual features to fMRI 

responses throughout the brain using a stepwise regression. We computed the percentage of 

variance explained by each of the feature models, including a behavioral measure of 

saccadic eye-movements, to fMRI time courses. Stepwise regression employs an iterative 

algorithm to determine the best-fitting linear combination of functions, with each iteration 

adding a new function (i.e. feature model) to the overall model of the data only if a certain 

established criterion is met. In our case, this criterion was that the new model must add at 

least 1% to the total variance to qualify for inclusion (see Methods).

Applying this analysis to predefined regions of interest throughout the brain underscored the 

predominance of motion over other stimulus attributes throughout visually responsive 

cortical areas (Figures 4B & 4C). As a percentage of the total variance explained, the motion 

regressor outranked all the other regressors throughout most dorsal and ventral stream areas, 

with the most obvious exception being foveal V1, where contrast explained the most 

variance (Figure 4C). In areas MT and FST voxels, the motion feature model contributed as 

much as half the overall variance, reflecting the previously mentioned correlation coefficient 
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of ~0.7, and was frequently the only model meeting the inclusion criterion for the stepwise 

regression. Finally, the average time course of saccade frequency was virtually uncorrelated 

with the fMRI responses within these regions.

In the ventral stream areas V4, TEO, and TEad, which are generally associated with object 

processing, motion was the primary contributor to the fMRI response. Even in the face 

patches, the contribution of motion was dominant (Figure 4B). In fact, in 25 of the 36 faces 

patches identified in the three monkeys (6 hemispheres total: 14 face patches in Subject M1, 

13 in Subject M2, 9 in Subject M3), motion accounted for a similar or higher proportion of 

the percent variance explained than faces (posthoc t-test comparing motion to faces, p<0.05).

In the ventral visual cortex, the contribution of motion took the form of a posterior to 

anterior gradient, both inside and outside the STS. This can be seen in one dimensional 

depictions of the functional maps, where the mean % variance explained for each of three 

variables is shown from posterior to anterior regions, for both the lower bank of the STS and 

the lateral surface of V4/TEO/IT (Figure 4D). On the lower bank of the STS, the percentage 

of variance explained by motion was highest near area MT (cyan arrow) and declined 

gradually toward the temporal pole. On the lateral surface, the maximum motion 

contribution was in area V4 (orange arrow), where the magnitude was similar to MT. Unlike 

in the STS, where stimulus contrast played almost no role in the fMRI responses, the lateral 

surface showed a pronounced dependence on contrast, which also took the form of a 

posterior to anterior gradient. Note that a subset of the face patches is visible in Figure 4D 

(black arrows), and the relative contribution of face and motion for these anterior-posterior 

positions can be estimated.

To investigate the sensitivity of these results to the specific models selected for the stepwise 

regression, we applied the same approach to different combinations features. We found that 

the activity maps pertaining to motion, faces, and contrast were remarkably robust. Even 

when twenty-one feature models were included into the stepwise regression, these three 

features accounted for the highest proportion of the overall variance, led to the same spatial 

pattern across the brain, and contributed in the same way to individual voxels (Supplemental 

Figure 4). This finding demonstrates that our findings reflect a robust aspect of the brain’s 

responses during natural vision and are not strongly dependent on to the specific choices 

made in extracting stimulus features.

Biological versus nonbiological motion

The correlation and stepwise regression results both suggest that movement is critical in 

shaping fMRI responses during natural vision. To explore the role of biological versus non-

biological movement in the motion-based responses, we applied the same analysis to data 

collected when monkeys watched natural movies consisting of motion that was not 

generated by biological movements. We compared the results of the regression analysis for 

these non-biological movies to the same amount of data collected during the viewing of the 

social movies used for the main portion of the study. The new movies consisted of scenes of 

disasters such as tornados, volcano eruptions, avalanches, but no animals. Subjects M1 and 

M2 watched each of the non-biological motion movies 12 and 14 times respectively. While 

the subjects may have been somewhat less enthusiastic about watching these movies than 
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the social movies, they did so in exchange for juice reward, which we verified based on their 

gaze position (mean percent time eyes were directed at the movie equaled 83.6% (M1 = 

83.7%; M2 = 83.6%).

The analysis revealed that movie motion caused by non-biological events was largely 

ineffective in stimulating the visual pathways (Figure 5), with the most pronounced 

differences between the two movie types observed in the STS and in area V4. While the 

percentage of variance explained in these regions during the social videos often exceeded 

30%, that obtained during the non-social movies seldom exceeded 10%. Even in the motion 

specialized areas MT and FST, the motion feature regressor contributed much less to the 

response time courses with the non-social movies. While contrast maps were highly similar 

between the two types of movies, motion only contributed strongly to the ventral visual 

pathway for movies that contained biological movement.

DISCUSSION

We used fMRI data collected during the free viewing of natural movies to investigate how 

the brain processes visual features that co-occur during natural vision. We found that we 

could readily map the locations of the face patches across three animals using a model based 

on the presence of faces. Additionally, we found that motion dominated the responses 

throughout the ventral visual stream, both within known motion selective regions in the 

lower bank of the STS (Bartels et al., 2008; Fischer et al., 2012; Jastorff et al., 2012; 

Nelissen et al., 2006; Orban and Jastorff, 2013) and for traditionally object selective cortex 

along the lateral bank of IT, including in the face patches. In the following sections we 

discuss the particular importance of movement signals for social vision, the contribution of 

magnocellular input to the ventral visual pathway, and the trade-offs associated with 

studying brain function using natural paradigms.

Movement cues in social visual perception

Previous experiments have shown that the ventral visual pathway is critical for the high-

level interpretation of visual structure. These neural populations are typically studied by 

measuring their responses to briefly flashed static images. Single-unit recordings have found 

that cells in the inferior temporal (IT) cortex, are selectively activated by complex patterns, 

with many apparently specialized for socially relevant stimuli such as faces and bodies 

(Desimone et al., 1984; Popivanov et al., 2014; Tsao et al., 2006). fMRI experiments have 

mapped the spatial organization of selective responses in the ventral pathway, specifying a 

network of face-selective “patches” in the macaque temporal cortex (Bell et al., 2009; Tsao 

et al., 2006). Other stimulus categories, such as bodies, and biological motion are also 

known to evoke clustered single-unit and fMRI responses (Bell et al., 2009; Jastorff et al., 

2012; Oram and Perrett, 1996). Such basic selectivity is upheld when animals direct their 

gaze to stimuli embedded in cluttered scenes (DiCarlo and Maunsell, 2000; Sheinberg and 

Logothetis, 2001). Additionally, movement of a stimulus often increases its fMRI responses 

in the ventral pathway (Bartels et al., 2008; Nelissen et al., 2006; Orban and Jastorff, 2013). 

For example, in certain face patches, dynamic faces elicit stronger fMRI responses than 

static faces (Furl et al., 2012; Polosecki et al., 2013). During natural vision, these and other 
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visual features are superposed within complex and dynamic scene. It has thus long been 

clear that movement is an important visual feature in the ventral visual pathway. 

Nonetheless, our findings that motion contributes more than any other feature to ventral 

stream responses, and that this dominance only pertains to videos containing social content, 

draws new attention to the ventral visual pathway’s profound entrainment to the movements 

of dynamic natural visual stimuli.

From the perspective of a visual system, animals are unusual stimuli. Their bodies and faces 

frequently undergo spontaneous and non-rigid transformations, which are often of great 

significance to an observer, as they provide immediate and direct cues about others’ actions 

and allow for some element of behavioral prediction. For animals with high visual acuity, 

such as primates, movement patterns are an important cue for recognizing the identity or 

actions of an individual at a distance. Given the importance of bodily movement, it is likely 

there has been consistent evolutionary pressure on the visual brain to specialize in the 

decoding of actions. In the case of primates, including humans, the brain is exquisitely 

sensitive to subtle movements, reflecting the primary role of vision in social perception 

(Leopold and Rhodes, 2010; Parr, 2011).

In our data, most face patches showed either stronger or equivalent responses to motion 

content than to face content. Since the time courses of the face and motion feature models 

were uncorrelated (r = −0.0275, p>.05), one must conclude that the fMRI signal in these 

regions were more strongly shaped by motion than by the simple presence of faces. This 

conclusion extends findings from two recent studies in the macaque, which compared fMRI 

responses to static and dynamic faces (Furl et al., 2012; Polosecki et al., 2013). Nonetheless, 

it is important to point out that this motion sensitivity was not restricted to face patches, but 

was expressed as a posterior to anterior negative gradient, both on the lower bank of the STS 

and on the lateral surface of IT cortex. While the basis of this gradient is not known, it could 

reflect a transition from more structural to a more semantic representation of complex 

biological stimuli, with motion cues used primarily to derive structural information.

Within certain faces patches, particularly the more posterior ones (PL and ML), the 

extremities feature sometimes accounted for as much variance as the face feature. The 

extremities feature also accounted for a modest but significant portion of the variance in 

other visual areas. These responses are likely to reflect biological movement associated with 

the limbs, which is known to be an effective stimulus for many cortical areas (Bartels et al., 

2008; Fischer et al., 2012; Jastorff et al., 2012; Nelissen et al., 2006; Orban and Jastorff, 

2013), including body areas bordering the face patches of the STS (Bell et al., 2009; 

Popivanov et al., 2014; Tsao et al., 2003; 2008a). In the current study, we did not find any 

regions that were strongly associated with the presence of extremities in the movie (see 

Figure 3). This result could stem from an inherent lack of regional selectivity for the 

extremity features we chose, including hands, feet, and limbs. While individual neurons may 

have selectivity for these features, it may be organized across the cortical surface at a spatial 

scale that makes it impossible to identify an “extremity area” (Popivanov et al., 2014). 

Future analysis may benefit from considering the contents of the fovea based on eye 

tracking, for example, considering whether the animal is looking at a hand or limb at each 

moment, as opposed to simply considering whether one is present on the screen.
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Magnocellular contribution to the “what” pathway

Motion’s contribution to neural responses in the ventral stream was recognized early, 

including in the first recordings from the IT cortex (Gross et al., 1979; 1972). Subsequent 

single unit studies discovered that neurons in certain regions of the STS appeared 

specialized for biological movements (Perrett et al., 1985). Such movements included active 

head rotation, limb movement, locomotion, as well as movable features of the face, such as 

the direction of eye gaze. More recent studies have emphasized the integration of static form 

and dynamic movement in neurons in the STS visual areas (Beauchamp et al., 2003; Engell 

and Haxby, 2007; Jastorff et al., 2012; Oram and Perrett, 1996; Puce and Perrett, 2003; 

Singer and Sheinberg, 2010). While the importance of motion for responses in the STS is 

thus expected (Bartels et al., 2008; Bartels and Zeki, 2004; Fischer et al., 2012; Jastorff et 

al., 2012; Nelissen et al., 2006; Orban and Jastorff, 2013), the domination of motion in fMRI 

responses throughout the entire ventral stream, including area V4 and lateral aspects of TEO 

and TE that are strongly associated with object vision, could not have been predicted based 

on previous work.

By what neural pathways do these lateral form and object-selective regions receive motion 

signals? While there are a number of routes carrying visual information from the retina to 

the ventral visual stream (Kravitz et al., 2013), movement-related signals are ultimately 

thought to draw heavily upon the magnocellular pathway (Nassi and Callaway, 2009). 

Disruption of the magnocellular LGN layers severely disrupts the perception of moving or 

flickering stimuli (Schiller et al., 1990), and strongly reduces activity in area MT (Maunsell 

et al., 1990). One possibility is that the observed motion-sensitive signals in the ventral 

stream pass through MT. This prospect is supported by anatomical studies showing that MT 

sends projections rostrally within the STS including to area FST (Ungerleider and 

Desimone, 1986), which sends prominent projections to regions in the fundus, lower bank of 

the STS (Boussaoud et al., 1990), and the lateral surface of IT (Distler et al., 1993). This MT 

pathway has been used to explain the persistence of visual responses with complex 

selectivity in IT following the ablation of areas V4 and TEO (Bertini et al., 2004). Another 

possibility is that motion signals reach V4 more directly, without passing through MT. Area 

V4 receives roughly equal shares of input from magnocellular and parvocellular channels, as 

revealed by combined recordings and inactivation studies (Ferrera et al., 1994), and projects 

widely to ventral stream areas (Kravitz et al., 2013). Thus there are multiple parallel routes 

by which magnocellular signals can shape responses in the so-called “what” pathway.

Trade-offs inherent in natural viewing paradigms

In designing experiments to probe brain functions, researchers are forced to navigate a 

continuum of complexity that taxes the level of experimenter control. At one end of the 

spectrum, one can present simple, well-characterized stimuli repeatedly to a precise position 

on the retina, in anesthetized animals. Such controlled experiments have provided the 

foundation for understanding visual response selectivity in the brain. At the other end of the 

spectrum, one can imagine an experiment involving free-ranging animals, implanted with 

large microelectrode arrays, interacting naturally as their neural activity patterns are 

telemetrically recorded. This mode of data collection would yield brain activity patterns that, 

while rich and natural in their content, are practically impossible to decipher.
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Our study sits at an intermediate position along this continuum, similar to a number of other 

recent approaches (Bartels and Zeki, 2004; Hasson et al., 2012; Huth et al., 2012). The 

repeated viewing of natural videos departs from a strictly reductionistic approach but retains 

sufficient experimental structure to assess and map consistent patterns of brain activity. The 

method we present in the current paper applies only one approach to brain mapping during 

natural viewing, using feature models extracted from the movie itself. As such, the resulting 

brain activity maps are tightly linked to the definition and extraction of the features. Our 

focus in this study, which involved pruning down an initial set of nearly two dozen models 

into seven whose variations were well-behaved across the movies and nearly orthogonal in 

their time courses, allowed us to asses the relative contribution of a few critical visual 

features. Importantly, our demonstration that the inclusion of all twenty-one models into the 

stepwise regression led to the same basic result shows that the result is robust: functional 

maps of faces and contrast emerged regardless of our initial inclusion criteria, with a 

preservation of the relative contribution to individual voxels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• We used a natural viewing paradigm to generate fMRI feature maps.

• We were able to map face patches with as little as 15 minutes of natural 

viewing.

• Motion dominated fMRI responses throughout the ventral visual pathway.

• Motion contributed much less to fMRI responses to videos without social 

content.
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Figure 1. 
A) Schematic of the single session of the monkeys’ participating in the natural viewing 

paradigm. B) Time courses of a voxel, from area MT of subject M2, and the individual 

features used in the correlation and step-wise regression analyses. Time courses have been 

concatenated across the 15 social movies presented throughout the experiment. Feature time 

courses are in arbitrary units following down-sampling and being convolved with a MION 

function (see METHODS). C) The correlation matrix observed between each feature time 

courses shown in B.
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Figure 2. 
A) Activation maps from using conventional block design to map face responsive regions of 

the cortex of subject M1. Blue labels show the location of face patches as defined using the 

Tsao and colleagues designations(Tsao et al., 2008b; 2003). B) Activation maps exhibit the 

correlation between each voxel and the face feature model from M1. The overlaid dotted 

black lines show the location of the face patches found using the conventional block design 

in A. Figures C & D show the location of the face patches based on conventional block 

design (C) and natural viewing paradigm (D) for subject M2. Color maps use a graded 

transparency to depict the functional data overlaying the anatomy. Increasing t-values (A & 

C) or correlations (B & D) are shown with greater opacity; no threshold was applied to the 

data. Face Patch designation. MF: middle fundus; ML: middle lateral; AF: anterior fundus; 

PA: prefrontal arcuate (area 45); PO: prefrontal orbital (area 13l); PL: posterior lateral. 

Anterior-Posterior (AP) coordinates of the individual coronal slices relative to the inter-aural 

slice of each subject are displayed in A and C.
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Figure 3. 
Inflated surface maps exhibiting the correlation between a given feature time course and the 

average brain activity in response to 15 movies. The dotted black lines on the surface maps 

represent the locations of the fundi of major sulci on the macaque brain. The gray-scale 

surface map depicts the surface anatomy from subject M2, who’s data is depicted here, with 

labels for the various sulci (LUS: lunate sulcus; iOS: inferior occipital sulcus; IPS: 

intraparietal sulcus; CS: central sulcus; STS: superior temporal sulcus; LS: lateral sulcus; 

AS: arcuate sulcus; PS: principal sulcus). Black arrows in the faces surface map show the 

approximate locations of the face patches (see Figure 2 legend for label names). Dotted lines 

in the scale bar represent a significant correlation at p=.05, Bonferroni corrected.
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Figure 4. 
A) Top. Sagittal views of motion sensitive regions in subject M2. Data represent the 

correlation between each voxel’s response to 15 movies and the motion feature model. 

White arrows show the approximate location of areas MT, FST and MST within these slices 

of the right hemisphere. Bottom. Time courses show the similarity between the motion 

feature model from 4 movies (red) and the time course in response to those movies from one 

voxel in area MT (black) from M1 (top) and M2 (bottom). Figures B & C) Bar graphs 

showing the relative percent variance explained by each of the seven feature models 

submitted to the stepwise regression for 16 ROIs in the right hemisphere of M2. Colored 

stars show that for that ROI the given feature model was not included in any of the voxels 

used because it did not add an additional 1% explained variance on top of the other models. 

Error bars represent the standard error of the mean variance explained for each feature 

model across the voxels used in the ROI. B) The relative percent variance explained in eight 

face patches. C) The percent variance explained within visually responsive regions outside 

of the face patches. Results were similar across the 3 monkeys. ROI labels. PL: posterior 

lateral; ML: middle lateral; MF: middle fundus; AL: anterior lateral; AF: anterior fundus; 

AM: anterior medial; PA: PO: prefrontal orbital (area 13l); prefrontal arcuate (area 45); V1f: 

foveal primary visual cortex; V1e: extrafoveal V1; V4: visual area 4; MT: middle temporal 

area; FST: floor of superior temporal area; IPS: interparietal sulcus; TEO: posterior lateral 

inferior temporal cortex; TEad: dorsal subregion of anterior temporal lobe. D) The average 

percent variance explained by the motion (red), contrast (blue), and face (green) feature 

models from posterior to anterior in the ventral bank of the STS (top) and lateral surface of 

V4/IT (bottom). X-axis shows the coronal slice number relative to the interaural plane. 

Black arrows show the relative position of 4 of the face patches in Figures 2C & D. Blue and 

orange arrows show the relative position of areas MT and V4 in the ventral bank and lateral 
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surface plots, respectively. Error bars represent the standard error of the mean of the percent 

variance explained by each feature within each coronal slice. The surface map from the right 

hemisphere of M2 shows the boundaries of the two regions of interest used. Posterior to 

anterior gradient was found in all three monkeys.
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Figure 5. 
Left Column Surface maps showing the percent variance explained by the motion (top) and 

contrast (bottom) feature models to natural movies that contained animals interacting with 

each other and the environment. Right Column. Surface maps showing the percent variance 

explained by the motion (top) and contrast (bottom) feature models to natural movies that 

contained no animals. Reduced explained variance for motion in the nonsocial movies was 

found in both subjects tested.
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Table 1

Face patches identified by the block and natural viewing paradigms within each hemisphere for all 3 animals. 

Italicized and underlined subjects indicate instances in which only one of the testing regimes identified the 

particular face patch.

Face Patch Left Hemisphere Right Hemishere

Block Design Natural Viewing Block Design Natural Viewing

Posterior Lateral (PL) M1, M2 M1, M2, M3 M1, M2 M1, M2

Middle Lateral (ML) M1, M2, M3 M1, M2, M3 M1, M2, M3 M1, M2, M3

Middle Fundus (MF) M1, M2, M3 M1, M2, M3 M1, M2, M3 M1, M2, M3

Anterior Lateral (AL) M2, M3 M3 M1, M2, M3 M1, M2, M3

Anterior Fundus (AF) M1, M2 M1, M2 M1, M2, M3 M1, M2, M3

Anterior Medial (AM) M1, M2, M1, M2, M3 M2 M1, M2, M3

Prefrontal Orbital (PO) M1, M2 M1, M2 M1, M2 M1, M2

Prefrontal Arcuate (PA) M1 M1, M2 M1, M2
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