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ABSTRACT This paper introduces two new demo-
graphic parameters, the entropy and the reproductive po-
tential of a population. The entropy of a population
measures the variability of the contribution of the different
age classes to the stationary age distribution. The reproduc-
tive potential measures the mean of the contribution of the
different age classes to the growth rate. Using a relation
between these measures and the Malthusian parameter,
it is shown that in a random mating population in Hardy-
Weinberg equilibrium, and under slow selection, the rate
of change of entropy is equal to the genetic variance in
entropy minus the genetic covariance of entropy and
reproductive potential. This result is an analogue of
Fisher's fundamental theorem of natural selection.

INTRODUCTION: The Malthusian parameter reflects an
important aspect of population growth, namely, the long-runi
behavior of the population. This parameter does not com.-
pletely determine the adaptive properties of a population,
distinct populations may achieve identical growth rates with
different life-history patterns. This paper introduces two new
demographic concepts, entropy and reproductive potential.
The entropy measures the variability in the contribution of
different age classes to the stationary age distribution and the
reproductive potential measures the mean of the contribution
of the different age classes to the iMalthusian parameter. We
show that in a random mating poopulation in Hardy-Weinberg
equilibrium and under slow selection, the rate of change of
entropy is equal to the genetic variance in entropy minus the
genetic covariance of entropy and reproductive potential.
When the reproductive potential of each genotype is zero,
entropy is equal tc the Malthusian parameter and, as a corol-
lary, we obtain Fisher's fundamental theorem of natural selec-
tion which states that in a random mating population in
Hardy-Weinberg equilibrium and under slow selection, the
rate of change of fitness is equal to the genetic variance in
fitness. Fitness in this case is measured by the Malthusian
parameter.

This paper is an application of some recent ideas in ergodic
theory to population dynamics. Our sources are Billingsley
(1) and Spitzer (2) for ergodic theory, Keyfitz (3) for demo-
graphic models, and Crow and Kimura (4) for population
genetics. An emphasis on the biological aspects of ideas
treated in this paper will appear in ref. (5).

1. Consider a population divided into n age groups. Let mi
denote the number of offspring an individual in age group j at

time t contributes to the first age group at time (t + 1). Let
bj denote the proportion of individuals of agej at time t surviv-
ing to age j + 1 at time t + 1. The population model can be
represented by the n X n matrix A = (aij) > 0 wohere

mj for i = 1

aij = ibj fori=j+1
tO otherwise

[1.1]

and m.; > 0, < bj < 1. me > 0.
Since the matrix A is irreducible, we conclude from the

Perron-Frobenius theorem that
(i) A has a simple positive real dominant eigenvalue A.
(ii) There exist eigenvectors u-, V with all coml)onents posi-

tive such that

= 1.

u = (u1) corresponds to the stationary age distribution; v =
(vi) is a measure of the relative contribution made to the
stationary population in the future by the individual age
groups; loge A is the intrinsic rate of natural increase or the
Malthusian parameter.
Let

forj = 1

lI = j-Tb
II br
r=1

[1.2]
forj > 2

and

k =
1

n

=-

Then

Ili = i/Axi [1.3]

and
n

k E mijuj
V .=Vi = i=i-t

'llf

2. We shall now consider the population as a system com-
posed of a number in of interacting age classes. The ideas we
now describe revolve around the studies of Ruelle (6) on the
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statistical mechanics of 6ne-dimensional lattice systems. Let
S = {1,2... ,n}, Z the integers and let X = S'. Give S the
discrete topology and X the product topology. X is a compact
Hausdorff space. Let

= {(Xk) e X:azX,Xxkl> Ofor all k E Zl.

The set Z is a closed subset of X and is compact. Consider the
shift T: 2-- 2 defined by

T{xk}I'_ = {X'k}Ic where X'k = Xk+l.
The shift T is a homeomorphism of 2. Let M denote the set of
all T-invariant probability measures on 2. We shall interpret
the space 2 as the configuration or phase space of the system.
An element / E ill, is a state. For any state A E M, we con-
sider the dynamical system (2, ,u, T). We now define the
Kolmogorov entropy of the action T. We refer to (1) for
details.

Let a = (A1,A2,...,A,) be a finite partition of 2 into
measurable sets. The entropy of the partition at is defined by

n
h(d) = -E (At) log (A

Let
n-i

(a(n) = U T-r (at).
r=O

The entropy of at relative to T is

h(QT) = lim -h(((n))
nea

and the entropy of T is

H(T) = sup h(QT)
where the supremum is taken over all partitions at.
Now let 4 be any real valued function defined on the space

Z. The expression fz4dMA is the mean energy in the state u.
The free energy E,, is defined by

El, = Hi, + AdA,.

A state U is called an equilibrium state if

El, = sup (HA +f4d).A

Hence an equilibrium state is a state that maximizes the
entropy for a fixed mean energy.
We now consider a potential 4' defined by

where P.j = ujajj/Xuj. From 1.3, we have
(Pi for i = 1

Pig = 1 for i = j +1
0 otherwise

[2.1]

where

l1m,
The expression pj is the probability distribution for the age of
reproducing individuals in a stationary population. Let us
denote fz4dLm by B.L The free energy E., the entropy Hi,,
and the mean energy 4,, in the equilibrium state U can be
computed using 2.1. Details will appear elsewhere. We have

El, = loge X,
n /n

Hl,, = -E pj log Pi E jpjY
j=1 / 1

n

E Pi log JPJ
BOL= a = I

n

E iPi
j=1

We shall call H/ the entropy H of the population and (P*, the
reproductive potential P. We note that the free energy in the
equilibrium state is precisely the Malthusian parameter or the
intrinsic rate of increase of the population. The entropy H is a
measure of the variability of the contribution of the different
age classes to the stationary age distribution and the reproduc-
tive potential 4 is a measure of the mean of the contribution
of the different age classes to the growth rate of the population.
We have the identity

loge X = H - c.
The expression 2"jl jpj is the generation time of the popula-
tion.
The entropy H and reproductive potential t have continu-

ous time analogues.
Let

and

p(x) log p(x)dx
H = - {e

xp(x)dx

Jo

p(x) log [U(x) m(x)]dx
= - *f

xp(x)dx

{'(x) = -log a.,xlj,

where afj is given by 1.1. The value of this function 4 at the
point x = (Xk) E 2 thus depends only on two coordinates
(xo,x,). This potential 4 represents the interaction between the
age classes i and j. The biological reasons for the choice of this
potential are discussed in ref. 5.

Using a theorem due to Ruelle (6) we conclude that
(a) the system (2, 1A, 4, T) has a unique equilibrium state U
(b) U is a Markov measure.

This Markov measure Ut is derived from the stochastic matrix

P = (PiJ) > 0

where p(x) = e-z 1(x)m(x). The function 1(x) is the probabil-
ity that an individual survives to age x and m(x) is the number
of offspring born per individual at age x. The Malthusian
parameter r, is the unique real root of the equation A'0 e-rx
1(x)mz(x)dx = 1. Clearly, we also have the identity

r = H -. [2.2]

S. We shall now consider a random mating population and
assume an arbitrary number mn of alleles at a single locus. Let
ljj(x) be the probability of survival of an AjAj individual
from birth to age x, and let nijj(x) be the rate at which a

member aged x, of the genotype AjAj, produce offspring.
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The Malthusian parameter of the genotype A jA j is defined to
be the unique real root of the equation

coIe-riiz lij(x')mij(x)dx = 1.

The entropy Hij of the genotype is defined by

pt1(x) log pij(x)dx
Hi>=

co

xpij(x)dsx
where

pjj(x) = e-riixlij(x)mii(x)
Let 4if denote the reproductive potential of the genotype
A1A j. Then as in 2.2,

rij = Hij- ij. [3.1]

Let xi denote the frequency of the ith allele A i, and x j the
frequency of the genotype A iAj.
Let

r1 and 4)f are defined analogously.
The expressions 4), r, and H will denote the mean reproductive
potential, rhean Malthusian parameter, and mean entropy,
respectively.
Under slow selection the rate of change of gene frequency is

given by

dxi = xi(ri - r). [3.2]dt

If the population is in Hardy-Weinberg equilibrium, then
xij = xjxj and the mean entropy

H = Hsij xj.
ij2

Hence

dt dt E dt

Using 3.1 and 3.2, we have

dH
2d = 2 aj xiHi(Hi- H) - 2 E xiHi(4i- 4)

= 2 , xj(H - HY2- 2 aj xi(Hi- I)(4i-4))
dt

= VH - CH.

where VH is the genetic variance in entropy and CH, is the
genetic covariance of entropy and reproductive potential.
We now have an analogue of Fisher's fundamental theorem.

I. In a random mating population in Hardy-Weinberg
equilibrium, the rate of increase of entropy is equal to the
genetic variance irn entropy minus the covariance of
entropy and reproductive potential.

If the reproductive potential of each genotype is zero, then
the entropy is equal to the Malthusian parameter and as a
corollary to I we have Fisher's theorem. In the following state-
ment of Fisher's theorem, fitness is measured in terms of the
Malthusian parameter.
II. In a random mating population in Hardy-Weinberg

equilibrium, the rate of increase of fitness is equal to the
genetic variance in fitness.

REMARK: Under strong selection, Equation 3.2 is no
longer valid, and departures from Hardy-Weinberg equilib-
rium occur (7). Refinements of If to accommodate these
changes are known. It has been shown by Kimura (see ref. 4
for a discussion and reference to the original papers) that

dr V Z ri ~ d i
dt + j dt +j dt

where V is the additive genetic variance in Malthusian param-
eter, dij the dominance deviation from linearity, and Af =
xij/xixj the departure from, Hardy-Weinberg proportions.
The entropy analogues are of the same form as above. De-

tails will appear elsewhere.
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