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Abstract

Some FADS alleles are associated with lower DHA and ARA status assessed by the relative 

amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell 

(RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in 

a cohort of pregnant women and examined the relationship of FADS1rs174533 and 

FADS2rs174575 to DHA and ARA status before and after supplementation with 600 mg per day 

of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and 

corn oil) (n= 96) or 600 mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of 

pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not 

FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele 

homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-

allele carriers (P = 0.031), while in the DHA-supplemented group, all genotypes had higher DHA 

status compared to baseline (P = 0.001) and status did not differ by genotype (P = 0.941). 

Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both 

FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing 

the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele 

homozygotes of some FADS SNPs.
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Introduction

The long chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3) and 

arachidonic acid (ARA, 20:4n-6) are important constituents of neural tissue that play an 

important role in cognitive and visual development [1]. While ARA and DHA can be 

provided directly by the diet from animal fats, they may also be synthesized endogenously 

from their essential dietary precursors, linoleic acid (18:2 n-6) and α-linolenic acid 

(18:3n-3), respectively. The conversion pathway consists of a succession of desaturations 

and elongations, and two key enzymes, Δ-5 and Δ-6 desaturase (encoded by FADS1 and 

FADS2, respectively) govern their rate of synthesis. FADS1 and 2 are located in a cluster on 

chromosome 11 (11q12-13.1) with head-to-head orientation. Both Δ-5 and Δ-6 desaturase 

are expressed in the majority of human tissues, but the highest expression is found in the 

liver, brain, heart, and lung [2, 3] .

Several studies have demonstrated that specific single nucleotide polymorphisms (SNPs) in 

FADS1 and 2 influence plasma and RBC fatty acid composition in infants and adults with 

minor allele carriers having lower product to precursor ratios [4–12]. While some studies 

have also shown reduced proportions of ARA and DHA in plasma and RBC PL [5–7], 

others have not found an association between FADS SNPs and these long-chain metabolites, 

especially DHA [5, 13, 14]. To our knowledge, previous studies have not examined the 

interaction between DHA and ARA status and FADS alleles after DHA supplementation 

although Cormier et al. [15] reported a FADS genotype predicted the effect of fish oil 

supplementation on serum triacylglycerol concentration. The goals of our study were a) to 

determine DHA and ARA status using RBC-PL-DHA and ARA as biomarkers in a 

population of pregnant, low fish consumers and b) to determine the effect of DHA 

supplementation on RBC-PL-DHA and ARA across FADS1rs174553 and FADS2 rs174575 

genotypes. FADS1rs174553 and FADS2rs174575 SNPs were selected among those studied 

previously due to their relatively common minor allele frequencies (33% and 24%, 

respectively) and previously observed association with blood lipid and breast milk DHA [5, 

6, 8].

Subjects and Methods

Subjects

The study population was a subset of 205 women (placebo, n= 96; DHA, n=109) who 

enrolled in an NICHD-funded Phase-III clinical trial (NCT00266825) to determine the 

effects of consuming 600 mg/day of DHA throughout gestation on maternal and infant/

toddler outcomes. Women (n=208) whose children remained in follow-up after birth were 

asked to consent for genotype testing. Of those, one woman refused consent and 2 did not 

have a postpartum blood sample leaving a final sample of 205. The demographic 

characteristics of the women who enrolled for the larger study have been published [16]. 

Women were eligible for the primary study if they were English-speaking, between 16 to 

35.99 years of age, and between the 8th and 20th week of gestation. Subjects were excluded 

if they were expecting multiple infants or had any serious health condition likely to affect 

the growth and development of their fetus or the postnatal growth and development of their 
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newborn infants. These included, but were not limited to cancer, lupus, hepatitis, HIV/

AIDS, and pre-pregnancy or gestational diabetes mellitus.

Women were also excluded if they had a baseline BMI ≥ 40 or systolic blood pressure ≥ 140 

mm Hg as morbid obesity and elevated blood pressure present a high risk for obstetric 

complications, The research protocol and informed consent forms adhered to the Declaration 

of Helsinki (including the October 1996 amendment) and were approved by the Institutional 

Review Board/ethics committee at the participating institution, the University of Kansas 

Medical Center (HSC #10186).

The demographic characteristics of the subset studied are shown by group in Table 1. 

Women enrolled in the study answered questions about their intake of foods that contained 

DHA and about their supplement intake at baseline. In general, they were low consumers of 

food sources of DHA and were not consuming DHA supplements at baseline. Low 

consumption is consistent with the low DHA status of women when they began the study: 

baseline RBC-PL-DHA was 4.3 ±1.2 (mean ± SD) (Table 1). Compared to the subset of 

women who did not provide a DNA sample, those included in the present analysis were 

older, had achieved a higher level of education at enrollment, and were more likely to be 

Caucasian (all P < 0.001). They also consumed, on average, a greater number of capsules 

per week (P < 0.001) (data not shown) A description of women enrolled in the primary study 

has been reported [16].

Supplementation

Women were randomly assigned to capsules of a marine algal oil source of DHA or capsules 

containing half soybean and half corn oil (DSM, formerly Martek Biosciences, Columbia, 

MD) at a mean of 14.5 weeks gestation [16]. The fatty acid composition and other details 

about the capsules are shown in Table 2. All subjects were asked to consume three of their 

assigned capsules daily from enrollment until they delivered their baby. DSM Nutritional 

Products donated the capsules for the study but had no role in the study design, analysis, 

interpretation or dissemination. The University of Kansas Medical Center Investigational 

Pharmacy mailed placebo or DHA capsules to women in accordance with a randomization 

schedule provided by a biostatistician. The Pharmacy maintained a record of returned 

capsules. The weekly and overall capsule intake of each subject was calculated at the end of 

the treatment phase [16].

Analysis of red blood cell phospholipid DHA and ARA

Women provided a blood sample at baseline and before breakfast on the morning following 

birth. Blood samples were collected by venipuncture into 4 mL K2EDTA tubes (BD 

Vacutainer, Franklin Lakes, NJ). Plasma and RBC were separated by centrifugation 

(3000×g, 10 minutes; 4°C), frozen, and stored under nitrogen at 80°C until analysis. Lipids 

were isolated according to a modification of Folch et al. [17], and RBC lipids were 

fractionated [18] by thin-layer chromatography. RBC phospholipids were transmethylated 

with boron trifluoride-methanol [19], and the resulting fatty acid methyl esters (FAME) 

were separated using a Varian 3900 gas chromatograph with an SP-2560 capillary column 

(100 m; Sigma Aldrich) and a Star 6.41 Chromatography Workstation for peak integration 
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and analysis as previously reported [20]. Injector and detector temperatures were 

programmed at 260°C. The temperature program for the 41-minute column run was: 140°C, 

5 minutes; 4°C increase/minute to 240°C; 240°C, 11 minutes. Individual peaks were 

identified by comparison with a qualitative standard (PUFA No. 1 Marine Source 100 mg; 

PUFA No. 2 Animal Source 100 mg; Sigma Aldrich) and a weighed standard mixture 

(Supelco 37 Component FAME mix, Sigma Aldrich) was employed to adjust area percent to 

weight percent.

Genotyping

Genomic DNA was extracted from buccal collection brushes using the Gentra Puregene 

Buccal Cell Kit (QIAGEN, Hilden, Germany), and genotyping was performed with made-

to-order TaqMan SNP Genotyping Assays (Applied Biosystems, Foster City, CA) using 

real-time polymerase chain reaction. Five-microliter total reactions were prepared according 

to manufacturer instructions, and individual genotypes were determined with StepOne 

Software (Version 2.0; Applied Biosystems). Hardy –Weinberg equilibrium was assessed 

using chi-square analysis. Both FADS SNPs evaluated were in Hardy-Weinberg Equilibrium 

(P = 0.62 and P=0.73 for FADS1rs17553 and FADS2rs174575, respectively). Call rate was 

100%. The observed genotypic and minor allele frequencies for each SNP are shown in 

Table 3.

Statistical analysis

One way ANOVA was used to compare RBC-DHA and ARA across maternal FADS 

genotypes in samples collected at baseline and delivery. When indicated, Fisher's Least 

Significant Difference (LSD) was used to conduct pairwise comparisons. All data were 

analyzed with SPSS Statistics 17.0 software (SPSS, Chicago, IL), and P-values ≤ 0.05 were 

considered significant.

Although the frequency of FADS minor alleles differs between individuals of European and 

African descent [21, 22], race was not included as a covariate in the present analyses. 

Neither did we include other covariates as these would have introduced multicolinearity into 

the model and dramatically reduced our power to observe differences in RBC-DHA and 

ARA across maternal genotypes. Preliminary analyses were performed to evaluate the 

homogeneity-of-regression (slopes) assumption. The normality and homogeneity of variance 

assumptions were satisfied, and the preliminary analysis evaluating the homogeneity-of-

regression (slope) assumption indicated that the relationship between average weekly 

capsule intake and postpartum RBC-DHA and ARA did not differ significantly as a function 

of genotype (P = 0.421 and 0.519 for FADS1 DHA and ARA, respectively; P = 0.449 and 

0.827 for FADS2 DHA and ARA, respectively) so no adjustment was made for capsule 

compliance.

Results

Enrollment

Carlson et al (2013) reported significant effects of prenatal supplementation on DHA with 

this sample; this observation held true for the subset of the sample for whom SNP analyses 
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were conducted; the two groups did not vary statistically at enrollment (placebo: 4.30%, SD 

= 1.25; supplemented: 4.43%, SD = 1.12), but did vary (P < 0.001) at delivery (placebo: 

4.71%, SD = 1.19; supplemented: 7.54%, SD = 2.10). Means for all subsequent analyses of 

FADS genotypes as a function of group assignment are presented in Table 4.

FADS1—At enrollment, the FADS1 genotype was significantly related to DHA (P = 

0.034); mothers with two minor alleles showed more than 20% less DHA than mothers with 

either one (P = 0.028) or two (P = 0.009) major alleles. The FADS1 genotype was similarly 

related to ARA (P = 0.002), as mothers with two minor alleles showed significantly less 

ARA than mothers with either one (P = 0.014) or two (P = 0.002) major alleles.

FADS2—The FADS2 genotype was not significantly associated with differences in either 

DHA (P = 0.167) or ARA (P = 0.237) at enrollment.

At baseline, FADS1rs174553 genotype was significantly related to both RBC-DHA (P = 

0.035) and ARA (P = 0.002) (Table 4). Specifically, minor allele homozygotes had a lower 

proportion of RBC-DHA than major allele homozygotes and heterozygotes (P = 0.010 and 

0.027, respectively), and minor-allele carriers had a lower proportion of RBC-ARA than 

major allele homozygotes (P = 0.009 and 0.003 for A/G and G/G, respectively). FADS2 

rs174575 genotype was unrelated to RBC-DHA (P = 0.164) or ARA (P = 0.300) at 

enrollment (Table 4).

Delivery

FADS1—As expected, mothers in the placebo group with the FADS1 genotype showed the 

pattern of DHA and ARA at the time they delivered their infants seen at enrollment. DHA 

was again significantly lower (P = 0.018) in individuals with two minor alleles than 

individuals with either one (P = 0.030) or two (P = 0.005) major alleles; thus, in mothers not 

receiving supplementation, genetic determination of DHA levels was sustained. ARA levels 

in mothers in the placebo group with the FADS1 genotype were also unaffected (P = 0.252).

In DHA supplemented mothers, genotype was not significantly associated with DHA levels 

at delivery (P = 0.954). However, genotype significantly affected ARA (P < 0.001) in 

mothers at delivery in the supplemented group. Mothers with two minor alleles had 

significantly lower ARA than mothers with either one (P = 0.004) or two (P < 0.001) major 

alleles; in addition, heterozygous mothers had significantly (P = 0.038) lower ARA than 

mothers homozygous for major alleles. Thus, the lower DHA levels seen at enrollment in 

mothers who were homozygous for minor FADS1 alleles were successfully remediated by 

supplementation, but prenatal supplementation was associated with in a significant drop in 

blood ARA levels at delivery.

FADS2—The FADS2 genotype was not associated with differences in DHA levels in 

mothers in the placebo (P = 0.404) or supplemented (P = 0.573) groups at delivery. In 

addition, there were no significant differences in ARA levels in mothers as a function of 

FADS2 genotype at delivery (P = 0.852). However, FADS2 was significantly associated 

with ARA levels at delivery in the supplemented group (P = 0.049); as with the FADS1 
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group, mothers homozygous for FADS2 minor alleles had lower ARA than mothers with 

either one (P = 0.033) or two (P = 0.015) major alleles.

Discussion

To our knowledge, this study is the first to examine the interaction among FADS1rs174553 

and FADS2rs1747575 genotypes for DHA and ARA status in persons randomly assigned to 

DHA supplementation. As expected women supplemented with 600 mg DHA per day for 

the last two trimesters of pregnancy (approximately 26 weeks) had significantly higher DHA 

status (RBC-PL-DHA) at birth compared to placebo and compared to baseline. The lower 

DHA status of FADS1rs174553 minor allele homozygotes observed at baseline and in the 

placebo group at birth was not observed after DHA supplementation.

Previous studies regarding the influence of FADS alleles of various SNPs on ARA and 

DHA status have produced conflicting results. While some find lower proportions of ARA 

and DHA in plasma and RBC phospholipids [5–7], others do not find an association 

between FADS SNPs and ARA and DHA, especially DHA [7, 13]. For example, Xie and 

Innis [8] observed a significantly lower proportion of RBC-PL-ARA, but not DHA in minor 

allele homozygotes for the same FADS1 SNP studied here (rs174553). Interestingly, after 

DHA supplementation we also find no difference in DHA status but a significant difference 

in ARA status in women carrying the minor allele. Because Xie and Innis were studying 

women consuming their usual diet, a possible explanation for our differences is that our 

population has a lower usual DHA status than theirs. Indeed this is suggested by comparing 

RBC-PL-DHA of our cohorts at baseline (4.3% by weight of total fatty acids compared to 

approximately 7.9% in their subjects). The conflicting results in the literature may be due to 

differences in DHA intake among populations. Our data suggest that in populations 

consuming little DHA, minor allele carriers of some FADS SNPs could exhibit lower DHA 

and perhaps lower ARA, while those consuming more DHA may exhibit only lower ARA 

status. Indeed, the mean RBC-PL-DHA (weight %) in the population examined by Xie and 

Innis (7.9%) is similar to that observed in our cohort after DHA supplementation (7.5%) 

(Table 1).

It is generally accepted that ARA status is reduced by DHA supplementation, for example 

see [23–26]. Our results suggest this effect may be explained by a reduction in ARA status 

in individuals carrying some minor alleles of FADS1 and FADS2. Major-allele 

homozygotes of the two FADS SNPs studied here had similar ARA status regardless of 

whether they were assigned to the placebo or DHA group. Gillingham et al. [13] found 

lower plasma ARA in FADS1 (rs174561 and rs174537) and FADS2 (rs174583 and 

rs174545) minor-allele carriers consuming a diet enriched in the precursor of DHA, α-

linolenic acid. The mechanism by which DHA reduces ARA status is likely different. α–

Linolenic acid may compete with linoleic acid for the enzymes of elongation and 

desaturation, whereas the reduction in ARA with DHA supplementation may be due to a 

negative feedback of the product of elongation and desaturation. Studies in both rats and 

preterm infants show diminished FADS expression [27] and endogenous LCPUFA synthesis 

[28, 29] when diets containing LCPUFA are provided, Individuals susceptible to impaired 

enzymatic function and/or transcription (FADS minor-allele carriers) may be prone to 
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further reductions in endogenous LCPUFA production with either increased α-linolenic acid 

or DHA intake.

A limitation of this study is that we used a sample of convenience from a trial powered to 

examine the influence of prenatal DHA supplementation on birth outcomes. Relatively few 

women were homozygous for the minor allele of the genes examined so small sample size is 

a potential concern. However, we did find statistically significant effects of DHA 

supplementation on ARA status of homozygote minor alleles for both SNPS studied. We 

also found a significant reduction in ARA status in the larger group of FADS1 allele 

heterozygotes (n=42). FADS 2 heterozygotes (n=44) trended lower. We do not consider the 

potential conversion of α-linolenic acid to DHA in the placebo group to be a limitation of 

the study. Consumption of 3 placebo capsules provided approximately 60 mg of α-linolenic 

acid, which is a precursor for DHA that could theoretically result in approximately 10 mg of 

DHA per day [30], an amount far below that provided by the treatment capsules (600 mg 

DHA/day).

In summary, we studied a group of pregnant women who had low DHA status and found 

that their DHA and ARA status at baseline were significantly lower if they were 

homozygous for the minor allele of FADS1rs174533 compared to women with at least one 

copy of the major allele. After DHA supplementation, DHA status increased and the 

genotype difference was lost. At the same time, ARA status was decreased by DHA 

supplementation in women homozygous for the minor allele of both FADS1rs174533 and 

FADS2rs1747575. Our data suggest that variations in DHA intake in populations could be 

related to the variability of DHA and ARA status in minor allele carriers observed among 

studies. In addition, DHA supplementation appears to have a larger impact on the DHA to 

ARA ratio in persons homozygous for the minor alleles of both FADS SNPs studied 

compared to persons carrying one or more major allele. The physiological significance of 

this effect on the DHA to ARA ratio, if any, is unknown.
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Highlights

• RBC DHA and ARA are lower in women homozygous for the minor allele of 

FADS1rs174533

• DHA and ARA status were not significantly influenced by FADS2rs174575 

genotype

• DHA supplementation during pregnancy resulted in higher RBC DHA in all 

genotypes

• DHA supplementation reduced ARA status in minor allele homozygotes of both 

genotypes

• DHA supplementation had no effect on ARA status of major allele homozygotes
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Table 1

Characteristics of pregnant women by group1

Placebo n = 96 DHA n = 109 P-value

Age (year ±SD) 26.3±4.6 26.4±4.3 NS

Education (years ± SD) 14.3±2.8 14.3±2.6 NS

Baseline BMI 26.8±4.9 27.8±5.3 NS

Baseline RBC PL DHA (%) 4.3±1.2 4.4±1.1 NS

Baseline RBC PL ARA (%) 15.0±2.2 14.9±1.9 NS

Postpartum RBC PL DHA (%) 4.7±1.2 7.5±2.1 P=0.001

Postpartum RBC PL ARA (%) 13.2±1.6 12.3±2.1 NS

Cord blood RBC PL DHA (%) 5.9±1.5 7.5±1.7 P=0.001

Cord blood RBC PL ARA (%) 16.8±2.2 16.2±2.7 NS

Total study capsule intake (#) 17.3±4.1 17.5±4.0 NS

Fish intake (servings/wk) 1.5±1.8 1.4±1.4 NS

1
Values were analyzed using Student’s t-test; NS, not significant
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Table 2

Capsule fatty acid composition1

Fatty acid profile (weight percent) Placebo DHA

Caprylic acid (8:0)2 1.5 None

Capric acid (10:0) 0.9 2.1

Lauric acid (12:0) <0.1 5.4

Myristic acid (14:0) <0.1 15.5

Palmitic acid (16:0) 10.6 14.6

Palmitoleic acid (16:1) <0.1 1.6

Stearic acid (18:0) 4.6 0.6

Oleic acid (18:1n-9) 21.4 14.9

Vaccenic acid (18:1n-7c) 1.5 <0.1

Linoleic acid (18:2n-6) 51.2 0.8

Gamma-linolenic acid (18:3n-6) 0.4 <0.1

Alpha-linolenic acid (18:3n-3) 6.3 1.4

Arachidic acid (20:0) 0.4 5.0

Dihomo-gamma-linolenic acid (20:3n-6) None <0.1

Arachidonic acid (20:4n-6) None <0.1

Eicosapentaenoic acid (20:5n-3) None <0.1

Eicosenoic acid (20:1n-9) 0.3 None

Behenic acid (22:0) 0.5 None

Docosapentaenoic acid (22:5n-3) None 0.2

Docosahexaenoic acid (22:6n-3) None 41.5

Lignoceric acid (24:0) 0.2 None

1
500 mg capsules, size 10 oval, orange flavored; analysis provided by DSM Nutritional Products and rounded to the nearest 0.1%;

2
fatty acid designation is #carbons:#double bonds:#carbons from the methyl carbon.
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