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Summary

R3 receptor tyrosine phosphatases (RPTPs) are characterized by extracellular domains composed 

solely of long chains of fibronectin type III repeats, and by the presence of a single phosphatase 

domain. There are five proteins in mammals with this structure, two in Drosophila, and one in 

Caenorhabditis elegans. R3 RPTPs are selective regulators of receptor tyrosine kinase (RTK) 

signaling, and a number of different RTKs have been shown to be direct targets for their 

phosphatase activities. Genetic studies in both invertebrate model systems and in mammals have 

shown that R3 RPTPs are essential for tubular organ development. They also have important 

functions during nervous system development. R3 RPTPs are likely to be tumor suppressors in a 

number of types of cancer.

Introduction

Mammalian receptor tyrosine phosphatases (RPTPs) have been subdivided into 8 ‘subtypes’ 

(R1–R8) based on their domain compositions (see (Tonks, 2006)). R3 RPTPs are 

characterized by extracellular (XC) domains composed solely of long chains of fibronectin 

type III (FNIII) repeats, and by the presence of a single phosphatase homology domain in 

their cytoplasmic regions. There are five proteins with this structure encoded in the human 

and mouse genomes, two in Drosophila, and one in the nematode Caenorhabditis elegans 

(Fig. 1).

R3 RPTPs appear to be selective regulators of receptor tyrosine kinase (RTK) signaling, and 

a number of different RTKs have been shown to be direct targets for their phosphatase 

activities. Because RTKs become autophosphorylated after ligand binding, and their 
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phosphotyrosines are docking sites for downstream signaling proteins, dephosphorylation of 

the RTKs by R3 RPTPs would usually be expected to negatively regulate RTK signaling. 

However, if an R3 RPTP specifically targeted a phosphotyrosine residue that bound to a 

negative regulator of signaling, it could have a positive effect on RTK signaling.

Most R3 RPTPs have a C-terminal sequence that can be tyrosine-phosphorylated to form a 

binding site for the SH2 domains of Src-family TKs (SFKs). Binding of SFKs to this 

phosphotyrosine site disrupts interactions between their C-terminal phosphotyrosine 

residues (e.g., Y527 in chicken Src) and their SH2 domains, and this allows the 

phosphotyrosines to be accessible to dephosphorylation. Dephosphorylation of the C-

terminal tyrosine is part of the process of SFK activation. Thus, R3 RPTPs can both 

negatively regulate RTKs and positively regulate SFKs (reviewed by (Matozaki et al., 

2010)).

There are five R3 RPTP-like proteins in humans and mice: PTPRJ (DEP-1, CD148), PTPRB 

(VE-PTP), PTPRO (GLEPP1), PTPRH (SAP-1), and PTPRQ. The first four of these are 

tyrosine phosphatases. The PTPRQ protein, although its primary structure is very similar to 

that of the other R3 RPTPs, is a phosphatidylinositol (PI) phosphatase, and has little activity 

toward protein substrates. This has been shown to be due to mutations in PTPRQ that 

change its substrate binding properties. The replacement of the conserved WPD sequence 

with WPE, together with other changes, disorders the PTPRQ ‘M6 loop’ and flattens the 

catalytic pocket (Yu et al., 2013). PTPRQ is localized to the stereocilia of hair cells, and 

PTPRQ mutations cause deafness. (Pulido et al., 2013) have recently reviewed PTPRQ 

structure and function.

Drosophila has two R3 RPTPs, Ptp4E and Ptp10D. Ptp4E is very similar to Ptp10D, and 

was generated by a recent gene duplication (Jeon et al., 2008b). A third RPTP, Ptp52F, has 

an R3-like XC domain composed of FNIII repeats and a single PTP domain(Schindelholz et 

al., 2001), but it is not more closely related to R3 RPTPs than to other subtypes. Expansion 

of the vertebrate and fly R3 RPTP subfamilies occurred separately after the split between 

vertebrate and arthropod lineages, so there are no clear one-to-one orthologous relationships 

between Drosophila and mammalian R3 RPTPs (Fig. 1). However, the XC domains of the 

Drosophila R3 RPTPs are much more closely related to PTPRB than to other mammalian 

R3 RPTPs, suggesting that the three proteins might interact with similar ligands. C. elegans 

has a single R3 RPTP, DEP-1.

The (Matozaki et al., 2010) review provides detailed information and references for PTPRJ, 

PTPRB, PTPRO, and PTPRH. In this review, we describe the functions of R3 RPTPs in 

invertebrate models, which were not covered by (Matozaki et al., 2010), and examine some 

newer (post-2010) papers on vertebrate R3 RPTPs. Vertebrate and invertebrate R3 RPTPs 

have many properties in common. Both are selective regulators of RTK signaling, and both 

are required for development of tubular organs.

Regulation of receptor tyrosine kinase signaling by R3 RPTPs

Most of the known substrates of R3 RPTPs are RTKs, suggesting that a major function of 

this RPTP subtype is to regulate RTK signaling. Among the vertebrate R3 RPTPs, PTPRJ 
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binds to and/or dephosphorylates the epidermal growth factor receptor (EGFR)(Tarcic et al., 

2009); the hematopoietic Fms-like tyrosine kinase 3 (FLT3) (Arora et al., 2011); the 

platelet-derived growth factor receptor (PDGFR) (Jandt et al., 2003; Kappert et al., 2007); 

the vascular-endothelial growth factor receptor 2 (VEGFR2) (Grazia Lampugnani et al., 

2003); the hepatocyte growth factor/scatter factor receptor, MET (Palka et al., 2003); and 

the glia-derived neurotrophic factor (GNDF) receptor, RET (Iervolino et al., 2006). 

Mammalian PTPRO dephosphorylates the TrkB and TrkC neurotrophin receptors, as well as 

RET (Gatto et al., 2013; Hower et al., 2009). Chick (but not mouse) PTPRO 

dephosphorylates the EphA and EphB RTKs(Gatto et al., 2013; Shintani et al., 2006), and 

zebrafish PTPRO dephosphorylates the fibroblast growth factor (FGF) receptor Fgfr1a(Liao 

et al., 2013). PTPRB binds to and dephosphorylates the angiopoietin (Ang) receptor RTK 

Tie-2, and dephosphorylates VEGFR2 (Hayashi et al., 2013; Mellberg et al., 2009; 

Winderlich et al., 2009).

Drosophila Ptp10D binds to EGFR (Jeon and Zinn, 2009) as does nematode DEP-1(Berset 

et al., 2005). Thus, interactions between R3 RPTPs and EGFR are conserved between 

vertebrates and invertebrates. The Drosophila R3 RPTPs also negatively regulate signaling 

by the FGFR and PDGFR/VEGFR orthologs, known as Breathless (Btl) and Pvr, but have 

not been shown to physically interact with them (Jeon et al., 2012; Jeon and Zinn, 2009b).

The in situ proximity ligation assay (in situ PLA) has recently been used to detect PTPRJ/

FLT3 and PTPRB/VEGFR interactions (Bohmer et al., 2013; Hayashi et al., 2013; Mellberg 

et al., 2009). In situ PLA allows visualization of protein-protein interactions at endogenous 

levels using fluorescence microscopy. The assay uses antibodies against two candidate 

interacting proteins that are conjugated to DNA strands. These strands are brought into close 

proximity when the two antibodies bind to the same protein complex, and this enables 

synthesis of single stranded DNA by rolling circle amplification. The synthesized DNA is 

detected using fluorescently labeled oligonucleotides (reviewed by (Soderberg et al., 2008)). 

This assay is more sensitive than traditional biochemical methods in detecting protein 

complexes that are present at low levels, and it also provides information about their 

subcellular localizations. However, in situ PLA experiments can only show that two proteins 

are in close proximity, and cannot demonstrate that they bind directly to each other. 

Therefore, determining which protein-protein interactions are direct requires additional 

experiments.

PTPRJ (DEP-1) was identified as a specific negative regulator of FLT3 signaling through an 

siRNA screen of 20 RPTPs and PTPs (Arora et al., 2011). FLT3 is a class III RTK involved 

in hematopoietic differentiation, and mutations that constitutively activate FLT3 are 

common in acute myeloid leukemia. D→A (“substrate-trapping”) (Flint et al., 1997) and 

C→S (catalytically inactive) PTPRJ mutants formed stable complexes with FLT3, while 

wild-type PTPRJ did not (Arora et al., 2011). In situ PLA showed that PTPRJ and FLT3 

interact in intact cells that express both proteins at endogenous levels. Complex formation 

was stimulated by FLT3 ligand, which would induce autophosphorylation of FLT3. 

Inhibition of FLT3’s kinase activity or inactivation of PTPRJ by oxidation disrupted 

complex formation, and knockdown of PTPRJ enhanced FLT3 signaling. These findings 
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support a model in which PTPRJ is recruited to autophosphorylated FLT3 and turns off 

FLT3 signaling by dephosphorylating it (Bohmer et al., 2013).

Interactions of PTPRB (VE-PTP) with VEGFR2 were detected by (Mellberg et al., 2009) 

using in situ PLA, and a later paper from the same group further investigated these 

interactions and showed that they are partially dependent on Tie-2(Hayashi et al., 2013). 

They found that PTPRB and Tie-2 bind to each other, as reported by (Winderlich et al., 

2009). However, anti-PTPRB could only precipitate VEGFR2 from lysates that had been 

enriched for Tie2-containing complexes by immunoprecipitation with anti-Tie-2. Anti-Tie-2 

was able to precipitate VEGFR2 in the absence of PTPRB. Examination of these 

interactions by in situ PLA showed that PTPRB-VEGFR2 complexes at cell junctions are 

increased in number by VEGF and further increased by adding the Tie-2 ligand Ang. 

Knockdown of Tie-2 with siRNA reduces the number of complexes per cell by ~30%. These 

results are consistent with a model in which Tie-2 forms separate complexes with PTPRB 

and VEGFR2, and also brings together PTPRB and VEGFR2 to form a trimeric complex. 

Whether PTPRB also forms a separate dimeric complex with VEGFR2 is unclear(Hayashi et 

al., 2013).

Regulation of RPTP signaling by size exclusion

The data discussed above suggest that the XC domains of R3 RPTPs could be involved in 

interactions with RTK XC domains in the same cell (cis-interactions), although this has not 

been demonstrated in most cases. R3 RPTP XC domains also interact in cis and in trans 

with other coreceptors and ligands (Lee et al., 2013; Nawroth et al., 2002), but only a few of 

these have been identified. Recent studies on PTPRJ (CD148) in T cells show that the XC 

domain regulates access to substrates at the immunological synapse. The data suggest that 

RPTP XC domains can regulate signaling simply by virtue of their large sizes, without the 

necessity to interact with specific ligands (Cordoba et al., 2013). T-cell activation occurs 

when a major histocompatibility complex molecule presenting the appropriate peptide 

(pMHC) binds to a T-cell receptor (TCR). This causes relocalization and activation of 

membrane-bound signaling molecules, including the SFK Lck, which can bind to PTPRJ 

and is a substrate for its catalytic activity. The large XC domains of PTPRJ (and of another 

RPTP, CD45) appear to exclude these RPTPs from TCR ‘microclusters’. These represent 

sites of TCR-pMHC contact, where the membranes of the T-cell and of the pMHC-

presenting cell are in close apposition. Expression of a truncated version of PTPRJ lacking 

most of the XC domain inhibited T-cell activation, and truncated PTPRJ was able to 

associate with TCR microclusters, presumably allowing it to access Lck and other 

substrates. However, a chimera in which the PTPRJ XC domain was replaced with the 

unrelated XC domain of CD43, which is of a similar size, did not cause inhibition and was 

excluded from TCR microclusters (Cordoba et al., 2013). These data suggest that the XC 

domain can regulate PTPRJ’s access to substrates simply by passive size exclusion.

Roles of R3 RPTPs in tubular organ development

In this section, we highlight recent data on PTPRB function during blood vessel 

development, and describe the functions of the Drosophila R3 RPTPs in regulating 
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development of the tracheal (respiratory) system, which has many similarities to the 

mammalian vascular system. We also briefly review the functions of nematode DEP-1 in 

vulval development and of PTPRO in the kidney.

a. PTPRB and blood vessel development and function

PTPRB (VE-PTP) is selectively expressed in endothelial cells (Baumer et al., 2006). It has 

been shown to have two distinct roles in the vascular system, during angiogenesis and in 

regulating endothelial barrier function. Early in embryogenesis, blood vessel formation 

initiates by a process called vasculogenesis, wherein precursor cells called angioblasts 

aggregate and differentiate to form a rudimentary network of blood vessels, the primary 

vascular plexus. Subsequently, new vessels sprout from the primary vascular plexus by a 

process called sprouting angiogenesis, and the vascular system transforms from a primitive 

network of undifferentiated vessels into a hierarchal network of arteries, veins and 

capillaries. Angiogenesis is the predominant form of vascular growth from late 

embryogenesis onwards. It involves remodeling of existing branches, as well as cell 

proliferation and differentiation to accommodate addition of new blood vessels (reviewed by 

(Geudens and Gerhardt, 2011)).

Two endothelial-specific RTK families, the VEGF receptor and Tie receptor families, play 

key roles during vascular system development (for review see (Jeltsch et al., 2013)). 

VEGFR2 is required for both vasculogenesis and angiogenesis. It is expressed in the 

mesodermal cells that differentiate to become angioblasts, and mice that are mutant for 

VEGFR2 or its ligand VEGF-A die around E9.5 due to loss of endothelial cells. Later in 

development, VEGFR2 is expressed in cells undergoing angiogenesis, and is required for 

endothelial cell proliferation, sprouting of new branches, and maturation of sprouts into 

blood vessels (reviewed by (Olsson et al., 2006; Siekmann et al., 2013)). Tie receptors, on 

the other hand, are required primarily during angiogenesis but not during vasculogenesis. 

Mouse embryos bearing mutations eliminating the Tie-2 receptor or its ligand Ang1 display 

defective cardiac development and abnormal remodeling of the primary vascular plexus.

In PTPRB−/− null mutant embryos, formation of the primary vascular plexus is observed, 

suggesting that vasculogenesis is normal, but the subsequent remodeling phase of 

angiogenesis is aberrant (Dominguez et al., 2007). PTPRB mutant mice that express only the 

XC domain have similar defects. Both sets of mice die around E10 due to defects in 

formation of higher-order branched vascular networks (Baumer et al., 2006).

PTPRB is likely to regulate angiogenesis through its interactions with Tie-2, VEGFR2, and 

VE-cadherin at endothelial cell junctions. PTPRB binds to and dephosphorylates Tie-2 

(Fachinger et al., 1999), and this dephosphorylation negatively regulates Tie-2 signaling 

(Winderlich et al., 2009). When cells were treated with antibodies against PTPRB, the 

PTPRB/Tie-2 complex was disrupted, phosphorylation of Tie-2 was increased, and Tie-2 

signaling was upregulated. This caused increased endothelial cell proliferation and 

enlargement of vessels. A similar phenotype was observed in newborn mice injected with 

anti-PTPRB antibodies or with the Tie-2 activating ligand Ang1 (Thurston et al., 2005; 

Winderlich et al., 2009). Interestingly, an activating mutation in the Tie-2 kinase domain 

causes vascular defects in humans(Vikkula et al., 1996).
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A direct physical interaction of PTPRB with VEGFR2 was not observed by co-

immunoprecipitation (Fachinger et al., 1999). Tie2, however, interacts with both PTPRB 

and VEGFR2, and may act as a ‘bridge’ to facilitate formation of a trimeric VEGFR2/Tie2/

PTPRB complex. In this complex, PTPRB can dephosphorylate and inactivate VEGFR2, 

and thus limit the duration and magnitude of the VEGFR2 signal. Dephosphorylation of 

activated VEGFR2 by PTPRB is important in limiting angiogenic sprouting, because 

PTPRB-deficient embryoid bodies displayed excess sprouting activity in response to VEGF, 

and the sprouts arising from mutant embryoid bodies had more phosphorylated VEGFR2 

than wild-type sprouts(Hayashi et al., 2013).

PTPRB also physically interacts with the endothelial-specific adhesion molecule VE-

cadherin. VEGFR2 phosphorylated VE-cadherin in transfected fibroblasts, and coexpression 

of PTPRB reversed this phosphorylation (Nawroth et al., 2002). Addition of VEGF to 

endothelial cells caused dissociation of PTPRB from VE-cadherin and increased tyrosine 

phosphorylation of VE-cadherin, plakoglobin, and β–catenin, three major components of the 

endothelial cadherin complex (Nottebaum et al., 2008). A more recent paper (Hayashi et al., 

2013) links PTRPB’s roles in controlling the activity of the trimeric VEGFR2/Tie2/PTPRB 

complex and in regulating phosphorylation of VE-cadherin. This paper provides evidence 

that in unstimulated endothelial cells the trimeric complex is located away from cell 

junctions, and that PTPRB at the junctions is associated with VE-cadherin and stabilizes 

junctions by maintaining the cadherin complex in a dephosphorylated state. Addition of 

VEGF causes the trimeric complex to translocate to cell junctions, where it can 

phosphorylate VE-cadherin and its associated proteins. Its activity at these junctions is 

limited by dephosphorylation of activated VEGFR2 by PTPRB. The level of VEGFR2 

activity present in normal animals may cause limited phosphorylation of VE-cadherin, 

which destabilizes junctions in a controlled manner, allowing sprouts to mature into 

polarized and lumenized vessels. In vessels from PTPRB-deficient mice, VEGFR2 activity 

is increased, causing excess phosphorylation of the cadherin complex by VEGFR2. This 

leads to destabilization of cadherin junctions, and prevents normal polarization and lumen 

formation.

The detailed molecular mechanisms by which loss of PTRB affects lumen formation are 

unknown. However, (Bentley et al., 2014) have used computational modeling to show that 

differential dynamics of local adhesion mediated by VE-cadherin drive cell rearrangements 

that occur during sprouting and vessel maturation. Excess signaling through VEGFR2 

abolishes differential adhesion and prevents normal tubulogenesis. These results suggest that 

PTPRB fine-tunes cell adhesion and facilitates formation of appropriately polarized and 

lumenized vessels by controlling the activities of VEGFR2 and Tie2 and the 

phosphorylation level of the VE-cadherin complex.

An important function of the endothelial walls of blood vessels is to regulate passage of 

molecules from blood into surrounding tissue. There are a variety of ways in which 

molecules or cells can pass through the barrier formed by these endothelial cells. One is to 

move through the endothelial cells via transcytosis, and another is via a paracellular pathway 

in which interactions among adhesion molecules ‘loosen’ or ‘tighten’ to allow cell junctions 
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to open and close reversibly. In inflamed tissues, leukocytes preferentially cross the barrier 

by the paracellular pathway.

The role of PTPRB in endothelial barrier function has been recently reviewed (Kuppers et 

al., 2014; Vestweber et al., 2014). Knockdown of PTPRB decreases adhesion at VE-

cadherin junctions. This increases barrier permeability and permits increased leukocyte 

transendothelial migration. VEGF induces endothelial permeability, and also causes 

dissociation of PRPRB from VE-cadherin (Nottebaum et al., 2008). This dissociation is 

required for opening of junctions, because forced binding of PTPRB to VE-cadherin blocks 

induction of vascular permeability by VEGF or by lipopolysaccharide (LPS), an 

inflammatory signal (Broermann et al., 2011). These data suggest that PTPRB maintains 

barrier integrity via its interactions with VE-cadherin, and that induction of vascular 

permeability by immune cells or by soluble factors requires dissociation of the PTPRB-VE-

cadherin complex.

b. R3 RPTPs and development of the respiratory system in Drosophila

Like the mammalian vascular system, the Drosophila larval respiratory (tracheal) system is 

a highly branched tubular network that delivers oxygen to every cell in the animal. The logic 

of tracheal development has parallels to that of vascular development, in that tracheal cells 

migrate toward sources of the FGF ligand Branchless (Bnl), while vascular sprouts grow 

toward sources of VEGF. The pattern of Bnl expression in the embryo is genetically 

determined, and it directs primary and secondary tracheal branches to form a stereotyped 

network. Bnl, like VEGF, is also turned on when cells become hypoxic, and attracts terminal 

branches (tracheoles) to extend toward each hypoxic larval cell in order to supply it with 

oxygen.

Tube formation in the tracheal system involves complex morphogenetic events that differ 

between tube types. Multicellular tubes have lumens that are surrounded by the apical 

surfaces of several cells. Unicellular tubes are formed by rolling up of single cells to form 

‘autocellular’ junctions with themselves. The branches formed by terminal cells have 

proximal segments that are unicellular tubes and distal segments that are ‘seamless’ tubes 

without junctions. The seamless tubes are intracellular structures that form within terminal 

cells. Many genes have been identified that affect the formation and morphology of tracheal 

tubes (reviewed by (Affolter and Caussinus, 2008; Caviglia and Luschnig, 2014; 

Schottenfeld et al., 2010; Zuo et al., 2013).

The two Drosophila R3 PTPs, Ptp4E and Ptp10D, have high sequence similarity (89% 

identity within the PTP domain). Ptp10D is the ancestral gene, being present in all insects, 

while Ptp4E is the result of a recent gene duplication(Jeon et al., 2008b). Ptp4E and Ptp10D 

single mutants are viable and fertile, but Ptp4E Ptp10D double mutants die from respiratory 

failure at the end of embryogenesis(Jeon and Zinn, 2009a). Ptp4E Ptp10D double mutants 

have defects in lumen formation that are specific to unicellular tubes and tracheoles; 

multicellular tubes are unaffected. Unicellular branches undergo a remodeling process 

during development in which cells that are originally positioned as pairs along the length of 

the branch slide past each other to take on an end-to-end configuration. During this process, 

junctions that were originally formed between cells transform into autocellular junctions. 
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Terminal cells sprout branches containing seamless tubes late during development, after a 

continuous tracheal network has been built. In Ptp4E Ptp10D mutants, the cylindrical lumen 

within unicellular tubes is replaced by large bubble-like cysts. Even larger multicellular 

cysts develop at the junctions between unicellular tubes. Finally, seamless tubes are replaced 

by discontinuous bubbles (Fig. 2).

The Ptp4E Ptp10D cyst phenotype is enhanced by expression of activated (CA) EGFR and 

suppressed by expression of dominant-negative (DN) EGFR. This suggests that the 

phenotype is partially due to an increase in EGFR activity, and that these RPTPs are 

negative regulators of EFGR signaling. Ptp10D binds to EGFR when the two proteins are 

coexpressed in transfected Drosophila cells. Expression of activated EGFR in wild-type 

embryos, however, did not generate any cysts, indicating that there are likely to be other 

RTK pathways that are affected in Ptp4E Ptp10D mutants(Jeon and Zinn, 2009a). To 

identify these, CA and DN mutants of two other RTKs expressed in tracheal cells, Btl 

(FGFR ortholog) and Pvr (PDGFR/VEGFR2 ortholog) were expressed in the Ptp4E Ptp10D 

background. All three CA mutants enhanced the phenotype, and all three DN mutants 

suppressed it. Experiments in which CA mutants of one RTK were competed against DN 

mutants of another by simultaneously expressing them in the Ptp4E Ptp10D background 

showed that the three RTKs have partially interchangeable activities. Increasing the activity 

of one RTK can compensate for the effects of reducing the activity of another. These results 

imply that SH2-domain downstream effectors that are required for the phenotype are likely 

to be able to interact with phosphotyrosines on all three RTKs.

The results described above suggest that the unique Ptp4E Ptp10D cyst phenotype is the 

result of simultaneous elevation of the activities of EGFR, FGFR, and Pvr, and possibly of 

other RTKs as well. The fact that expression of two or three RTK CA mutants together did 

not produce cysts (Jeon et al., 2012) would seem to be inconsistent with this model. 

However, because tyrosine phosphatase activity normally is greatly in excess of tyrosine 

kinase activity, removal of R3 RPTP control of RTK activity probably has a much greater 

effect on tyrosine phosphorylation than does expression of CA RTK mutants. This can be 

seen by comparing the dramatic effects on phosphotyrosine levels of treating cells with 

pervanadate, a tyrosine phosphatase inhibitor, vs. the relatively subtle effects of expressing 

an activated TK (see (Bugga et al., 2009) for an example of this).

RTKs can signal through a wide variety of pathways. Two pathways that are relevant to the 

Ptp4E Ptp10D cystic phenotype are the MAP kinase pathway and the Rho GTPase pathway. 

Expression of CA mutants of MAP kinase kinase kinase (MAPKKK; Phl in Drosophila) or 

of Rho1 in the Ptp4E Ptp10D background enhanced the phenotype, while expression of DN 

mutants of Rho or Rac suppressed it. Like CA RTKs, however, neither of these CA mutants 

could induce cyst formation in a wild-type background. These data suggest that the 

phenotype occurs through simultaneous activation of multiple downstream RTK signaling 

pathways(Jeon et al., 2012).

In Ptp4E Ptp10D mutants, the lumen in unicellular branches expands to 6 or more times its 

normal diameter, and has a spherical rather than a cylindrical shape. The normal lumen and 

the abnormal cysts are both apical compartments. We suggest that the phenotype arises from 
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a failure to coordinate apical membrane expansion with the remodeling of the rest of the cell 

during its transformation into a tube. Perhaps there are common elements involved in the 

failure to form normal lumen in Ptp4E Ptp10D mutant tracheal branches and in PTPRB 

mutant blood vessels(Hayashi et al., 2013).

Two recent papers have identified new genes whose activities may be relevant to the control 

of tracheal lumen formation by R3 RPTPs. The first is a novel cytoplasmic Smad-like 

protein, Expansion (Exp). Remarkably, exp mutant embryos have cystic phenotypes 

restricted to unicellular and terminal branches that are identical to those of Ptp4E Ptp10D 

mutants, although the exp phenotype is weaker. Although extensive genetic screening has 

been performed for tracheal phenotypes, the Ptp4E Ptp10D cyst phenotype was unique until 

now. We had suggested that perhaps there was no single gene for which mutation could 

produce this phenotype, because it requires an increase in signaling by at least three RTKs. 

However, the discovery of exp shows that this is not the case. Exp is homologous to Smad 

proteins, which are downstream of TGF-β receptors, but Exp does not appear to participate 

in TGF-β signaling. Rather, genetic interaction studies showed that, like Ptp4E and Ptp10D, 

Exp is likely to be a negative regulator of RTK signaling (Iordanou et al., 2014).

Exp clearly regulates the same aspects of RTK signaling as the R3 RPTPs, and is probably 

downstream of RTKs and RPTPs, because overexpression of Exp partially suppressed the 

Ptp4E Ptp10D phenotype. Also, like the Ptp4E Ptp10D phenotype, the exp phenotype is 

enhanced by expression of CA MAPKKK and CA Rho1, and suppressed by DN Rho and 

Rac(Iordanou et al., 2014). These data show that Exp is a critical component of the 

pathway(s) regulated by RTKs and R3 RPTPs that are relevant to the normal formation of 

tracheal lumen.

The Ptp4E Ptp10D double mutation causes cystic lumen dilation phenotypes both in 

unicellular tubes, which have junctions, and in seamless tubes in terminal cells, which do 

not. Because these tubes are very different types of structures, it is possible that cyst 

formation occurs by different mechanisms in the two tube types. Mutations in wheezy, which 

encodes Germinal center kinase III (GCKIII) cause lumen dilation in terminal cells within 

the ‘transition zone’ where a unicellular tube with an autocellular junction transitions to a 

seamless tube. Only terminal cells were affected in wheezy mutants. GCKIII proteins are a 

subfamily of Ste20-related serine/threonine kinases. GCKIII binds to Cerebral cavernous 

malformation 3 (CCM3), a gene mutated in a human vascular disease characterized by 

dilation of cerebral capillaries. The authors identified a CCM3 ortholog in Drosophila, and 

showed that Ccm3 mutants have a similar tracheal lumen dilation phenotype. This provides 

a further parallel between the Drosophila tracheal system and the mammalian vascular 

system. Finally, the wheezy terminal cell lumen dilation phenotype is associated with 

extension of septate junctions into the transition zone, and loss-of-function mutations of 

septate junction components were able to suppress the phenotype(Song et al., 2013).

c. DEP-1 and development of the C. elegans vulva

The C. elegans hermaphrodite vulva is a tubular organ that connects the gonad to the 

exterior environment. It develops from a group of epithelial cells called vulval precursor 

cells (VPCs), initially located on the body wall, that migrate internally and connect to the 
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somatic gonad to create an opening to the outside world. VPCs are equivalent until an EGF 

ligand, LIN-3, secreted from the anchor cell (AC) instructs them to take on different cell 

fates. The P6.p VPC located closest to AC receives the strongest EGF signal and takes on 

the primary cell fate, becoming the leading cell during the invagination process. The 

adjacent cells P5.p and P7.p receive intermediate levels of EGF signal, take on secondary 

cell fates, and become follower cells during vulval tube morphogenesis. These cell fate 

decisions are further reinforced by lateral inhibition through NOTCH/LIN-12 signaling, 

where P6.p inhibits P5.p and P7.p from taking on primary cell fates by upregulating 

expression of negative regulators of the EGFR/LET-23 pathway in P5.p and P7.p.

lip-1, which encodes a dual-specificity phosphatase that is the ortholog of vertebrate 

MKP-3, is one such negative regulator. The dep-1 mutation was isolated as an enhancer of 

lip-1. lip-1 and dep-1 mutant animals develop normal vulvae, while lip-1;dep-1 double 

mutants have defects in vulva development that resemble those produced by prolonged or 

hyperactivated EGFR signaling (Berset et al., 2005). Thus, DEP-1 and LIP-1 negatively 

regulate EGFR signaling in parallel pathways to regulate primary and secondary cell fate 

decisions. Interestingly, like Ptp4E and Ptp10D, DEP-1 and LIP-1 appear to have redundant 

activities with regard to tubular organ development. However, Ptp4E and Ptp10D are very 

similar to each other, whereas DEP-1 and LIP-1 are members of different phosphatase 

families.

Like mammalian DEP-1 and Drosophila Ptp10D, C. elegans DEP-1 binds directly to EGFR 

and is likely to function by regulating EGFR autophosphorylation in response to EGF 

stimulation(Berset et al., 2005). More recent data also implicate Rho signaling in 

development of lumen in the vulva. This may represent a further parallel to the Drosophila 

tracheal system. VPCs undergo three rounds of division, and the progenitors of primary and 

secondary cell fated VPCs form donut-shaped (toroidal) cells that build the walls of the 

vulva. EGFR signaling in primary toroids inhibits activation of the Rho kinase (ROK) 

LET-502, in order to allow expansion of the dorsal lumen that is closest to the junction with 

the somatic gonad. NOTCH/LIN-12 signaling in the secondary toroids activates ROK to 

induce actomyosin-mediated contractions that direct the vulva to grow dorsally towards the 

somatic gonad(Farooqui et al., 2012).

d. PTPRO and kidney filtration

PTPRO, also known as glomerular epithelial protein 1 (GLEPP1) is expressed in podocytes, 

which are specialized epithelial cells that surround the capillaries in the renal glomerulus. 

Podocytes play a critical role in filtration. The foot processes of podocytes interdigitate with 

those of neighboring podocytes to cover the surface of capillaries. In the spaces between the 

interdigitating foot processes are found a meshwork of cell adhesion molecules such as 

nephrins and cadherins that act as a sieve to allow passage of small solutes and retention of 

proteins and other large molecules. This molecular sieve is called the slit diaphragm. 

PTPRO’s functions in podocytes were reviewed by (Matozaki et al., 2010). Briefly, PTPRO 

is important for proper function of the slit diaphragm. In PTPRO mutant mice, podocyte foot 

processes have abnormal morphologies and the glomerular filtration rate is decreased 

(Wharram et al., 2000). PTPRO is likely to regulate slit diaphragm function by 
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phosphorylation of tyrosine residues on the cytoplasmic domains of slit diaphragm 

components like nephrin and P-cadherin.

R3 RPTPs and neural development

Of the four vertebrate R3 RPTPs, only PTPRO has been shown to have clear functions 

during neural development. Here we discuss the neural functions of the Drosophila R3 

RPTPs, which were not reviewed by (Matozaki et al., 2010), as well as three newer papers 

on neuronal PTPRO (Gatto et al., 2013; Liao et al., 2013; Tchetchelnitski et al., 2014).

a. Ptp10D and development of the embryonic Drosophila CNS

In Drosophila, five of the six RPTPs are selectively expressed in neurons, and their 

functions have primarily been studied in the context of nervous system development. 

Ptp10D is expressed only on central nervous system (CNS) axons and tracheal (respiratory) 

cells during embryonic development (Tian et al., 1991; Yang et al., 1991). The other R3 

RPTP, Ptp4E, appears to be expressed in most cells at roughly equal levels, although Ptp4E 

mRNA is enriched in the gut in late embryos (Jeon et al., 2008a; Oon et al., 1993).

Null mutations in three of the six Drosophila Rptp genes (Lar, Ptp52F, Ptp69D) confer 

lethality and produce embryonic axon guidance phenotypes. Mutations in the other three 

(Ptp4E, Ptp10D, Ptp99A) produce no known embryonic phenotypes, and mutant adults are 

viable and have no obvious defects. The viability of Ptp4E and Ptp10D mutants is due to 

redundancy between these closely related R3 RPTPs, because Ptp4E Ptp10D double 

mutants die at the end of embryogenesis(Jeon et al., 2008a, b; Jeon and Zinn, 2009b). The 

only single mutant phenotype that has been reported for an R3 RPTP is a defect in long-term 

memory formation in Ptp10D mutant adults (Qian et al., 2007).

Due to genetic redundancy, the embryonic functions of R3 RPTPs have primarily been 

studied by making double and triple mutants lacking expression of multiple RPTPs. These 

studies revealed that Ptp10D and the Type IIa RPTP Ptp69D have partially redundant roles 

in preventing longitudinal axons in the CNS from abnormally crossing the ventral midline of 

the embryo. In Ptp10D Ptp69D double mutants, many axons that would normally extend 

anteriorly or posteriorly in the longitudinal tracts instead grow across the midline within the 

anterior and posterior commissures (Sun et al., 2000; Sun et al., 2001). Interestingly, double 

mutants (Ptp4E Ptp10D) lacking both R3 RPTPs, as well as Ptp4E Ptp69D double mutants, 

do not have strong axon guidance phenotypes. Ptp4E Ptp10D Ptp69D triple mutants have 

phenotypes that are very similar to Ptp10D Ptp69D double mutants (Jeon et al., 2008a). 

These data suggest that Ptp10D and Ptp69D share some substrate(s) whose 

dephosphorylation is essential in preventing abnormal midline crossing. Despite its very 

similar catalytic domain sequence, Ptp4E cannot compensate for the absence of Ptp10D in 

Ptp10D Ptp69D double mutants. This may indicate that Ptp4E cannot dephosphorylate these 

putative neuronal Ptp10D/Ptp69D substrate(s), perhaps because it has a different substrate 

specificity or because it is not expressed at sufficiently high levels on axons to be able to 

compensate for the absence of Ptp10D. We favor the latter explanation, because Ptp4E and 

Ptp10D appear to target the same RTKs in tracheal cells (Jeon et al., 2012; Jeon and Zinn, 
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2009). The TKs whose signaling is regulated by Ptp10D and Ptp69D in neurons have not 

been identified.

A recent paper identified a cell-surface ligand/coreceptor required for Ptp10D function, 

Stranded at second (Sas) (Lee et al., 2013). The XC domain of Ptp10D binds to Sas in vitro 

and on the surfaces of cultured cells. Sas is a large single-pass transmembrane protein 

containing von Willebrand C (VWC) domains and FNIII repeats in its XC region. It has a 

short cytoplasmic domain containing putative SH2 and PTB domain binding sites. Sas has 

no clear vertebrate ortholog, although there are many vertebrate cell-surface proteins that 

contain VWC and FNIII domains.

Sas is expressed on both neurons and glia in the embryo, and has distinct roles in these two 

cell types. Neuronal Sas is required for Ptp10D’s functions in preventing abnormal midline 

crossing by longitudinal axons. The evidence for this is that sas Ptp69D double mutants, like 

Ptp10D Ptp69D double mutants, have ectopic midline crossing phenotypes, and these are 

rescued by restoring expression of Sas in neurons. Glial Sas interacts in trans with neuronal 

Ptp10D, and this interaction affects glial migration and morphogenesis. Ptp10D negatively 

regulates Sas signaling in glia. This is demonstrated by findings that: 1) glial organization is 

disrupted in embryos in which Sas is overexpressed in glia, and, 2) this glial Sas gain-of-

function phenotype is enhanced by removal of Ptp10D from neurons (Lee et al., 2013).

b. PTPRO in the vertebrate nervous system

PTPRO is involved in motor and retinal axon guidance in the chick, and can 

dephosphorylate the Eph and TrkC RTKs (Hower et al., 2009; Shintani et al., 2006; 

Stepanek et al., 2005). Its functions in mouse neural development have been less well 

understood. However, a recent paper shows that target innervation by trigeminal ganglion 

(TG) neurons is altered in PTPRO−/− embryos (Gatto et al., 2013). In particular, one of the 

arbors of the ophthalmic branch of the TG is more complex and covers a bigger area in 

mutant animals. The TG contains TrkA+ (nociceptive), TrkB+ and Ret+ (mechanoreceptive), 

and TrkC+ neurons. PTPRO is primarily expressed in TrkB+ and Ret+ neurons, and cultured 

TG neurons from PTPRO−/− embryos extend longer axons than wild-type neurons in 

response to BDNF (the ligand for the TrkB RTK) and to GDNF (the ligand for the Ret 

RTK), consistent with this expression pattern. PTPRO colocalizes with TrkB and Ret when 

expressed in HeLa cells, and can dephosphorylate both of these RTKs. Interestingly, mouse 

PTPRO does not appear to affect Eph signaling in TG or retinal neurons, and has a reduced 

ability to dephosphorylate an Eph RTK in HEK293 cells relative to chick PTPRO. These 

data suggest that the mammalian and avian PTPROs may have evolved to have different 

substrate specificities and functions (Gatto et al., 2013).

Mouse PTPRO is required for survival and axonal projection of a subset of dorsal root 

ganglion (DRG) neurons (Gonzalez-Brito and Bixby, 2009). A recent paper, however, 

analyzed several RPTPs expressed in DRG neurons, and found that shRNA knockdown of 

PTPRO or of two different Type IIa RPTPs did not measurably affect Trk signaling 

(Tchetchelnitski et al., 2014). These data suggest that, as in Drosophila (Sun et al., 2000), 

the R3 RPTP PTPRO might function redundantly with one or more Type IIa RPTPs in 

regulating Trk signaling and neural development. However, this has not yet been proven.
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Finally, a recent study of zebrafish PTPRO found that morpholino knockdown caused 

cerebellar defects. Both granule and Purkinje neurons were reduced in number. FGF8 is 

required for cerebellar development, and dusp6, a gene whose expression is controlled by 

FGF signaling, is upregulated when PTPRO is knocked down. These results suggested that 

PTPRO might regulate the FGF receptor RTK. This was confirmed by studies in transfected 

293T cells showing that coexpression of PTPRO reduces tyrosine phosphorylation of Fgfr1a 

(Liao et al., 2013). FGFRs had not been previously implicated as targets of vertebrate R3 

RPTPs, so this provides a further parallel between the vertebrate and Drosophila systems, in 

which Ptp10D and Ptp4E regulate signaling by the FGFR ortholog in tracheal cells.

R3 RPTPs and cancer

PTPRJ is implicated in a variety of cancers in mice and humans (for a recent review see 

(Hendriks and Pulido, 2013)). PTPRJ was identified as a candidate for the Suppressor of 

colon cancer 1 (Scc1) locus in the mouse, but PTPRJ knockout mice do not spontaneously 

develop cancer. No mutations affecting the PTPRJ coding sequence have yet been found in 

human cancer, although loss or silencing of one copy of PTPRJ is very common in many 

tumor types. Another R3 RPTP, PTPRH, is upregulated in human colon and pancreatic 

tumors, suggesting that its activity might favor tumor formation rather than suppress it. 

However, loss of PTPRH inhibited tumorigenesis in a mouse model of colon cancer 

(reviewed by (Matozaki et al., 2010)).

A recent paper showed that PTPRB qualifies as a genuine tumor suppressor in a rare tumor 

type, angiosarcoma, which is associated with exposure to ionizing radiation. PTPRB was the 

most frequently mutated gene in angiosarcomas, with probable loss-of-function PTPRB 

alleles being found in 10 of 39 (26%) of tumors. In four of these tumors, mutations in both 

copies of PTPRB were found, and in two cases both mutations were truncating. These data 

suggest that PTPRB is a recessive tumor suppressor gene for this tumor type. PTPRB is a 

negative regulator of angiogenesis, and small-molecule inhibitors of the VEGFR2 RTK 

suppressed the increased angiogenesis caused by siRNA knockdown of PTPRB in human 

umbilical vein endothelial cell cultures. These results suggest that VEGFR2 inhibitors might 

be useful in treating the subset of angiosarcomas that harbor PTPRB mutations (Behjati et 

al., 2014).
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Fig. 1. Structure and evolution of R3 RPTPs
(A) The generic structure of an R3 RPTP. The XC domain consists of a long chain of FNIII 

repeats, followed by a single transmembrane domain and a single PTP homology domain. 

(B) Evolutionary tree of human, Drosophila, and C. elegans R3 RPTP PTP domain 

sequences.
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Fig. 2. Dramatic alterations of tracheal tube morphology produced by loss of R3 RPTP activity 
and hyperactivation of RTK signaling
(A) Four segments of the normal tracheal network in a Drosophila embryo. (B) Four 

segments of the tracheal network in a Ptp4E Ptp10D double mutant embryo that also 

expresses an activated mutant EGFR (EgfrEllipse) in tracheal cells. Note that all tracheal 

branches are converted to large bubble-like cysts, except for the multicellular dorsal trunk 

(large horizontal tube at the top), which is relatively unaffected. Expression of EgfrEllipse in 

a wild-type embryo produces no cysts. For further information and diagrams and images of 

wild-type and mutant tracheae, see (Jeon et al., 2012; Jeon and Zinn, 2009).
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