
The dual roles of NRF2 in tumor prevention and progression: 
possible implications in cancer treatment

Eui Jung Moon and Amato Giaccia
Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford 
University, Stanford, CA 94305, USA

Abstract

The Cap’N’Collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses 

and shares structural similarities including basic leucine zipper (bZIP) and CNC domains,. They 

form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through 

antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, 

NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On 

the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive 

NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor 

progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in 

cancer prevention and progression depending on the cellular context and environment. Therefore, 

a better understanding of NRF2 will be necessary to exploit this complex network of balancing 

antioxidant pathways to inhibit tumor progression.
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Introduction

In response to intrinsic and extrinsic stimuli, cells activate various adaptive mechanisms to 

promote reactive oxygen species (ROS) detoxification. The Cap’N’Collar (CNC) family 

proteins are transcription factors, which contain basic leucine zipper (bZIP) and CNC 

domains. By regulating various antioxidative genes and phase II detoxifying enzymes, 

which is required for metabolic detoxification of xenobiotics, they play a pivotal role in the 

cellular response to oxidative or electrophilic stresses [1–3]. The CNC family consists of 

Nuclear factor erythroid-derived 2 (NF-E2), NF-E2-related-1 [Nrf1 or NF-E2-like 1 

(NFE2L1)], NRF2 (NFE2L2), NRF3 (NFE2L3), and distantly related Broad complex–

Tramtrack–Bric-a-brac (BTB) and CNC homology 1 (BACH1) and BACH2. Functionally, 
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the CNC transcription factors form heterodimers with small MAF proteins [4]. These 

heterodimers regulate genes containing the antioxidant response element (ARE) or the MAF 

recognition element (MARE) such as heme oxygenase 1 (HO-1), NADP(H):quinone 

oxidoreductase 1 (NQO-1), glutamylcysteine ligase (GCL), peroxiredoxin (PRDX), and 

superoxide dismutase (SOD), which are involved in detoxification and drug metabolism [5–

7]. The ARE core sequence, 5′-RGTGA(C/G)NNNGC-3′, acts as a cis-acting enhancer and 

shows significant homology to the MARE enhancer, 5′-TGCTGAG(C)TCAGCA-3′ [8]. 

Interestingly, many studies demonstrate that among CNC members, NRF2 is heavily 

involved in the regulation of antioxidant genes [9–13]. In various cell lines, NRF2 

expression increases ARE activity about four to six times higher than NRF1, NRF3, and NF-

E2. Knocking out Nfe2l2 in mouse fibroblast further supports that NRF2 regulates ARE-

dependent genes such as GCL and HO-1. On the other hand, BACH1 and BACH2 play a 

repressive role by competing with NF-E2 and NRF2 [14–19]. Thus, here we review how 

NRF2 contributes to various physiological and pathological conditions.

Structure of Nrf2 and its stabilization under antioxidant stresses

NRF2 is a soluble protein primarily localized to the cytoplasm. It is highly conserved across 

species and contains seven functional Nrf2-ECH homology (NEH) domains (Figure 1) [20]. 

The Neh1 domain possesses the CNC-bZIP domain that is responsible for 

heterodimerization and ARE binding. Neh2, located in the N-terminus, is the main 

regulatory domain of NRF2, containing seven lysine residues for ubiquitination, and DLG 

(Asp-Leu-Gly) and ETGE (Glu-Thr-Gly-Glu) motifs for Kelch-like erythroid cell-derived 

protein with CNC homology (ECH)-associated protein 1 (KEAP1) binding. Although Neh3, 

Neh4, and Neh5 act as activation domains by interacting with the transcriptional 

coactivators [21, 22], Neh6 regulates KEAP1-independent NRF2 stability by recruiting an 

ubiquitin ligase complex [23]. The Neh7 domain has recently been identified to interact with 

retinoic X receptor alpha (RXRα), a repressor of NRF2 [24].

Under basal conditions, NRF2 is anchored in the cytoplasm through a direct interaction with 

the KEAP1 protein that leads to ubiquitination and proteasomal degradation [20]. KEAP1 

contains three functional domains, a BTB domain, an intervening region (IVR), and a 

double glycine repeat (DGR) or a Kelch motif, which contains six copies of the conserved 

kelch repeat (two adjacent glycine residues and a tyrosine/tryptophan pairs separated by 7 

residues) that form β-propeller structure (Figure 1). The BTB domain is required for KEAP1 

homodimerization and the interaction with Cul3, which regulates KEAP1 through 

ubiquitination and proteasomal degradation. The Kelch/DGR domain includes six kelch 

repeats that mediate binding between KEAP1 and the Neh2 domain of NRF2. Twenty-seven 

cysteines within the IVR domain residues that act as active stress sensors in human Keap1 

[25]. Among these, Cys151, Cys257, Cys273, Cys288, and Cys297 are known to be highly 

reactive towards oxidative and electrophilic stresses [25, 26]. In response to stresses, these 

cysteine residues become oxidized and form disulfide bonds or covalent adducts. The 

cysteine modifications cause a conformational change in KEAP1 to prevent NRF2 

ubiquitination [27]. Free NRF2 then translocates into the nucleus, hetermodimerizes with 

small MAFs, and binds to antioxidant genes containing the ARE domain.
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Role of NRF2 in development and systemic defense mechanisms

Nfe2l2 knockout mice are viable and fertile, indicating that Nfe2l2 is dispensable for mouse 

development [28]. On the other hand, Keap1 knockout mice die postnatally due to 

malnutrition resulting from abnormal hyperkeratosis of the esophagus and forestomach [29]. 

In these mice, expression of Nfe2l2 as well as phase II enzymes targeted by Nfe2l2 such as 

Nqo1, Gcl, and Prdx1 is significantly increased, showing that NRF2 is constitutively 

activated. The lethality of Keap1 knockout mice can be rescued with deletion of Nfe2l2 as 

well as reduced expression of phase II enzymes. These results indicate that Keap1 is an 

upstream repressor of Nfe2l2, and Nfe2l2-Keap1 homeostasis is essential for cellular defense 

against oxidative stress.

Although there are no significant developmental deficits, dysregulation of ARE-dependent 

genes causes Nfe2l2 knockout mice to be highly susceptible to oxidative stress and 

xenobiotic toxicity (Table 1). Nfe2l2 knockout mice are more susceptible to hyperoxia due 

to increased oxidative lung injury and inflammation. Significantly lower expression of 

antioxidant and phase II enzymes in these mice suggests that Nfe2l2 contributes to the 

protection against oxidative lung injury [30, 31]. Likewise, although phase II enzymes are 

highly induced by phenolic antioxidants, butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT)), and N-acetyl-4-aminophenol (APAP, acetaminophen), their 

induction is largely inhibited in Nfe2l2 knockout mice, resulting in increased tissue toxicity 

and high mortality [32–34]. NRF2 also plays a radioprotective role since thoracic irradiation 

decreases survival of Nfe2l2 knockout mice when compared with Nfe2l2 WT mice [35]. 

These results reflect the critical role of NRF2 in coordinating the antioxidant response.

Tumor suppressive roles of NRF2

Enhanced susceptibility to chemical carcinogens is also observed in Nfe2l2 knockout mice 

[36, 37]. After benzo[a]pyrene (B[a]P) or N-titrosobutyl (4-hydroxybutyl) amine (BBN) 

exposure, Nfe2l2 knockout mice develop gastric neoplasia or urinary bladder carcinoma at 

significantly higher rates [36, 37]. In these studies cancer chemopreventive actions of 4-

methyl-5-[2-pyrazinyl]-1,2-dithiole-3-thione (oltipraz) are less effective in Nfe2l2 knockout 

mice because the induction of phase 2 detoxifying enzymes is significantly reduced. 

Treatment of 7,12-dimethylbenz(a)anthracene (DMBA), 12-O-tetradecanoylphorbol-13-

acetate (TPA), or azoxymethane/dextran sulfate sodium (DSS) also enhances incidence of 

skin, colorectal, or mammary tumors in Nfe2l2 knockout mice, indicating NRF2 plays a 

critical role in protecting against carcinogenesis [38–40].

In addition to preventing primary tumor growth, Nfe2l2 has a protective function against 

tumor metastasis [41]. After intravenous injection of Lewis lung carcinoma (3LL) cell lines, 

Nfe2l2 knockout mice show a significantly increased number of metastatic nodules in the 

lung. On the other hand, Keap1 conditional knockout mice using the Cre-Lox system exhibit 

a significantly decreased number of lung metastasis after injection of 3LL cells. These 

results indicate that although Nfe2l2 is dispensable during embryonic development, it is 

required for systemic protection against carcinogenesis and metastasis.
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Oncogenic roles of NRF2

Although knockout mouse studies indicate that loss of Nfe2l2 reduces cellular protection 

against oxidative stress and carcinogenesis, prolonged activation of the NRF2 protein is 

correlated with cancer progression in several cases. Increased NRF2 expression has been 

extensively studied in patients with head and neck cancer [42–44], lung cancer [45–50], gall 

bladder cancer [51, 52], epithelial ovarian cancer [53], osteosarcoma [54], breast cancer 

[55], bladder cancer [56], colorectal cancer [57], gastric cancer [58], glioblastoma [59, 60], 

and pancreatic cancer [61]. In these patients, Nrf2 expression is significantly correlated with 

increased proliferation and treatment resistance to radiation, cisplatin, and 5-fluorouracil (5-

FU), seemingly through the induction of antioxidant genes [44, 45, 48, 53, 55, 58]. Patient 

survival and multivariate analysis further demonstrate that NRF2 is a poor prognostic factor 

in cancer patients (Table 2).

Although loss-of-function mutations in KEAP1 contribute to constitutive activation of NRF2 

in tumors [45, 51, 53], oncogenes and oncogenic signaling pathways are also involved in 

increased NRF2 expression (Figure 2). Mouse embryonic fibroblasts (MEF) and NIH3T3 

fibroblasts transduced with oncogenic alleles of K-Ras, B-Raf, and Myc (K-RasG12D, B-

RafV619E (corresponding to human B-RafV600E), and MycERT2) increase Nfe2l2 

transcription and simultaneously, decrease ROS production [62]. In the K-Ras mutant mouse 

model of pancreatic cancer and B-RafV619E expressing mouse lung adenoma, NQO1 

expression is increased, whereas DNA oxidation, stained by 7,8-dihydro-8-oxo-29-

deoxyguanosine (8-oxo-dGuo) is decreased. Nfe2l2 deletion in these mice results in reduced 

cell proliferation and tumor burden as well as elevated DNA oxidation. Therefore, Nrf2 

activation, which is mediated by oncogenic signaling, contributes to tumor growth and 

progression through ROS detoxification.

In addition, a number of other oncogenic protein kinases also contribute to enhanced NRF2 

stability. Protein kinase C (PKC) phosphorylates NRF2 on Ser 40 and induces its 

dissociation from KEAP1 [63, 64]. Similarly, PKR-like ER kinase (PERK), which is 

essential for ER stress, also phosphorylates NRF2 and inhibits its binding to Keap1 [65]. 

PERK-mediated NRF2 activation promotes cell survival in response to ER stress. Inhibition 

of MAP kinases and PI3K blocks NRF2 nuclear translocation and ARE-mediated gene 

transcription [66–69]. Since oncogenic K-RAS signaling activates PI3K and PKC regulates 

the MEK-ERK pathway in cancer, there may be crosstalk between a variety of signaling 

pathways to regulate NRF2 [70, 71]. However, the direct roles of these oncogenic pathways 

in regulating NRF2-induced redox responses and tumor progression remain unclear.

The role of NRF2 in metabolism

Metabolic switches are one hallmark of cancer [72]. In addition to its role in antioxidative 

responses for cancer cell protection, microarray and ChIP-sequencing analysis further show 

that NRF2 regulates cell proliferation and survival by activating metabolic enzymes 

involved in pentose phosphatase pathways (PPPs) [73–75]. PPP prevents oxidative stress by 

generating NADPH. NRF2 mediates upregulation of metabolic genes such as glucose-6-

phosphate dehydrogenase (G6PD), phosphogluconate dehydrogenase (PGD), transketolase 
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(TKT), transaldolase 1 (TALDO1), malic enzyme 1 (ME1), and isocitrate dehydrogenase 1 

(IDH1), suggesting that Nrf2 regulates the PPP and NADPH production pathways. 

Mechanistically Nrf2-mediated changes in these metabolic genes alter glucose and 

glutamine metabolism to promote cancer cell proliferation. Fumarate accumulation due to 

fumarate hydratase (FH)-deficiency results in hereditary leiomyomatosis renal cell 

carcinoma (HLRCC) and type-2 papillary renal carcinoma (pRCC) [76]. A recent study also 

shows that fumarate, a metabolite of the Krebs cycle, activates NRF2 through the 

succination of cysteine residues of KEAP1 [77]. Elevated NRF2 expression in FH deficient 

pRCC further indicates that NRF2-mediated metabolic alteration plays a role in the 

aggressive growth of cancer.

The role of NRF2 in treatment resistance

NRF2 is also involved in resistance to cancer treatment. Inhibiting NRF2 expression in 

tumors enhances sensitivity to ionizing radiation and chemotherapeutic drugs such as 

doxorubicin, cisplatin, etoposide, and 5-FU [51, 78–83]. Doxorubicin, cisplatin, and ionizing 

radiation increase glutathione synthesis (GSH) levels and NRF2 activation [84, 85]. Levels 

of cellular GSH, which is catalyzed by GCS, are critical for detoxification of anticancer 

drugs [86]. Inhibition of NRF2 reverses GSH induction and radiation resistance, linking 

NRF2-mediated GSH induction and treatment resistance. Radiotherapy and chemotherapy 

induce multidrug resistance proteins (MRPs) [87, 88]. MRPs are ATP-dependent 

transporters that can efflux chemicals and metabolites. Thus, increased expression of MRP 

proteins is correlated with treatment resistance. Knockout mouse studies show that NRF2 is 

required for the induction of MRP1, MRP2, MRP3, and MRP4 [89–91]. In conclusion, 

NRF2 induces chemo- and radio-resistance while maintaining cellular homeostasis. 

Therefore, targeting NRF2-regulated pathways may be a good strategy to overcome 

resistance to cancer treatment.

Hypoxia-mediated regulation of Nrf2

Tumor hypoxia is caused by an imbalance between oxygen consumption and supply. HIF is 

a major regulator of hypoxic gene regulation, and HIF transactivates many downstream 

genes involved in crucial steps of tumor progression, including angiogenesis, glycolytic 

metabolism, and treatment resistance to both radiotherapy and chemotherapy [92–94]. HIF 

is a dimeric transcription factor comprising α and β subunits. Unlike HIF-1β, which is 

constitutively expressed, HIFα is regulated by various factors including oxygen, free 

radicals, and oncogenic signaling pathways [95–99]. Under normal conditions, HIFα is 

hydroxylated by prolyl hydroxylases (PHD) [100]. Prolyl hydroxylation leads to von 

Hippel-Lindau (VHL)-mediated proteasomal degradation of HIFα. Under hypoxia, PHD 

activity is inhibited, which results in HIFα stabilization and activation. Meanwhile, hypoxia 

is known to increase mitochondrial ROS production, suggesting a linkage between hypoxia, 

HIF, and the NRF2 pathway [101]. Indeed, several studies have shown that NRF2 

expression or its activation is induced by chronic or intermittent hypoxia [102, 103]. 

Microarray data also reveals that gain-of-function mutants of NRF2 are significantly 

correlated with hypoxia signatures in patients with head and neck cancer [47]. In terms of 

target gene regulation, NRF2 and HIF can act together or independently in regulating gene 
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expression such as HO-1, a common target of both NRF2 and HIF [104]. Interestingly, 

HO-1 can be induced in Chinese Hamster Ovary (CHO) cells even in the absence of HIF-1 

activity, indicating that Nrf2 regulates HO-1 in a HIF-independent manner. On the other 

hand, HIF-dependent NRF2 regulation is also reported in human colorectal cancer cell lines, 

HCT116 and HT29 [105]. Knocking down NFE2L2 inhibits the hypoxic induction of HIF-1 

as well as a pro-angiogenic factor, vascular endothelial growth factor (VEGF). As a result, 

in vivo tumor growth and tumor angiogenesis are significantly curtailed. In this study, it is 

suggested that competition between NRF2 and PHD for oxygen availability activates the 

HIF-VEGF pathway. In patients with glioblastoma, expression of NRF2 and HIF-1 is 

correlated, further indicating these two proteins may cooperate or interrelate for cancer 

progression [59]. Thus, NRF2 may be a valuable target for repression of HIF-mediated 

tumor growth and angiogenesis (Figure 3).

Modulation of NRF2 signaling: NRF2 activators

Given the fact that NRF2 plays a role in disease prevention, NRF2 is an attractive target for 

activation. Dimethyl fumarate (DMF or Tecfidera) is a methyl ester of fumaric acid (FA), 

which alkylates Cys151 of KEAP1, inhibits NRF2-KEAP1 binding, and hence, stabilizes 

NRF2 [106]. DMF treatment reduces inflammatory responses and promotes neuroprotection. 

Currently DMF is approved by the FDA to treat patients with relapsing multiple sclerosis 

(MS). Other NRF2 activators are also being investigated in clinical trials for a variety of 

diseases [107, 108]. Sulforaphane (SFN) is an isothiocyanate that is naturally present in 

cruciferous vegetables such as broccoli and cabbage. SFN forms a covalent adduct with 

cysteine residues with KEAP1 at cysteine residues including Cys151 and enhances NRF2 

activation [109]. Promising preclinical studies demonstrate that SFN prevents mice from 

forming carcinogen-induced mammary tumors, colonic crypt foci, gastric cancer, and lung 

cancer [110–113]. Similarly, SFN inhibited prostate cancer progression and pulmonary 

metastasis from TRAMP transgenic mice harboring an adenocarcinoma of the mouse 

prostate [114]. In vitro, SFN mediates cell cycle arrest, apoptosis, and inhibition of 

endothelial cell proliferation and migration, suggesting its potential as an anti-cancer 

molecule [115–117]. SFN treatment is currently being investigated in clinical trials as an 

NRF2 activator in patients with breast, prostate, pancreatic, and colon cancers [118–121].

The synthetic triterpenoids, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) 

and its derivative, bardoxolone methyl (CDDO-me) are known for their anti-inflammatory 

and anti-tumor effects [122]. The interaction between CDDO and the BTB domain of 

KEAP1 inhibits binding to NRF2 and leads to NRF2 activation [123]. However, phase III 

clinical trials in patients with chronic kidney disease were terminated prematurely due to 

patients having severe chronic renal disease and adverse cardiovascular effects, indicating 

that a detailed understanding of NRF2 activation in tissues needs to be gained before the 

clinical use of the NRF2 activator [124].

Modulation of NRF2 signaling: NRF2 inhibitors

In contrast to NRF2 activators, NRF2 inhibitors block tumor progression. Brusatol, a plant 

extract from Brucea javanica, reduces ARE-dependent gene expression by enhancing 
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degradation of NRF2 [125]. Brusatol inhibits in vivo tumor growth while enhancing 

chemosensitivity, indicating its beneficial effect as a combinatorial therapy. Luteolin, a 

flavonoid that also exists in plants and vegetables, blocks subcutaneous lung tumor cell 

growth and proliferation in mice while increasing cytotoxicity of cisplatin treatment [126, 

127]. Ascorbic acid and all-trans-retinoic acid (ATRA), other natural compounds, suppress 

NRF2 activation by interfering with nuclear localization of Nrf2 or its binding to ARE [128, 

129]. Specifically, ATRA, a metabolite of vitamin A, inhibits NRF2 by activating RA 

receptor α (RARα). RARα directly interacts with NRF2 and prevents its binding to ARE 

[128]. However, these inhibitors are electrophiles that share non-specific off-target effects 

and can target cysteine residues in other proteins or enzymes [108]. Therefore, development 

of NRF2-targeting agents with enhanced specificity is required to improve the effectiveness 

of cancer treatment. Additionally, conflicting roles of NRF2 in cancer prevention and cancer 

progression indicate that more questions need to be addressed to determine the optimal use 

of NRF2 activators or inhibitors in the clinic.

The relationship between NRF2 and small MAF family proteins

Consisting of MAFF, MAFK, and MAFG, the small MAF proteins are essential binding 

partners of the CNC family [4, 6, 130]. Both bZiP protein arrays and ChIP-sequencing 

analysis indicate the fact that Nrf2 forms heterodimers mainly with small MAFs [74, 131]. 

Specifically, ChIP-sequencing data indicates significant overlap between NRF2 and MAFG 

binding sites. The JUN family (JUN, JUND, and JUNB) [11, 132], FOSB [133, 134], and 

ATF4 [135] are also known to bind to Nrf2. However, specific roles of these complexes are 

still under investigation.

The original MAF protein was first described as a viral oncogene, v-Maf from 

musculoaponeurotic fibrosarcoma, in chickens [136]. The MAF family contains the basic 

DNA binding domain and the leucine zipper dimerization domain [6]. The extended 

homology region (EHR), which is highly conserved in MAF family members, is also 

required for DNA binding (Figure 1). MAF proteins can be divided into two groups: large 

MAFs and small MAFs. Large MAF proteins, including MAFA (L-MAF), MAFB [137], c-

MAF (MAF) [138], and Neura Retinal (NRL), comprise an acidic TAD in their N-terminus. 

Unlike large MAFs, small Maf proteins, which are 18 kDa in size, lack a TAD. Small MAF 

family proteins form homodimers or heterodimers with CNC family proteins, FOS, and 

FOSB and binds to MARE or ARE [4].

Although small MAF proteins interact with NRF2 to activate antioxidant response genes 

through ARE pathways, increased expression of small MAFs in response to oxidative and 

electrophilic stresses indicates that they are also regulated by redox pathways [139, 140]. 

Interestingly, the repressive role of small MAF family proteins has also been identified 

when they are overexpressed. Overexpression of MAFG and MAFK inhibits the NRF2-

mediated induction of NQO1, Glutatione S-transferase (GST), and GCS [86, 141]. 

Excessive expression of small MAF proteins may lead to formation of small MAF 

homodimers, which inhibit antioxidant gene transcription. Therefore, functional 

consequences of small MAFs are highly dependent on the quantitative balance between 

small MAF and its CNC partners [142–144].
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Similarly to NRF2, small MAF proteins are also associated with carcinogenesis. 

Comparative genomic hybridization arrays reveal that DNA copy number of MAFG is 

amplified in lung adenocarcinoma [145]. A study of lung epithelial cells suggests that 

negative regulation of mir-218 increases MAFG after smoking and possibly leads to lung 

carcinogenesis [146]. In hepatocellular carcinoma patients with CTNNB1 (β-catenin) 

mutations, MAFG is also highly expressed, indicating that MAFG might be a proto-

oncogene [147]. In addition, genetic disruption of small MAF proteins has also been 

reported in familial pancreatic cancer and CML patients, indicating a broader oncogenic role 

[148, 149]. In contrast, high expression of MAFF in patients with ovarian and prostate 

cancer is correlated with prolonged survival, suggesting a role for MAFF in tumor 

suppression [150].

Small MAFs also respond to microenvironmental changes. The interaction of HIF-1α with 

MAFG or MAFK has been shown by yeast two-hybrid and surface plasmon resonance 

[151]. In this study, MAFG and MAFK bind to the PAS-A domain of HIF-1α. Knocking 

down MAFG inhibits nuclear localization of HIF-1α and, as a result, decreases expression 

of erythropoietin (EPO), one of HIF-1α’s target genes under hypoxia. On the other hand, 

MAFG does not affect protein levels of HIF-1α, indicating its specific role in HIF-1α 

translocation. Interestingly, overexpression of MAFG also decreases the accumulation of 

HIF-1α in nuclei as well as EPO expression, suggesting that it acts as an activator and a 

repressor depending on its abundance. In addition to hypoxia, small MAF proteins are 

regulated by extracellular pH [152]. For example, acidic pH (pH 6.6) significantly increases 

small MAF expression as well as FOSB. Co-localization studies show that both MAFG and 

FOSB are expressed and interact with each other in the nucleus, and that this heterodimer 

can activate MMP1 by binding to an AP-1 consensus site in the MMP1 promoter.

Taken together, small MAF proteins play either repressive or activating roles in antioxidant 

responses and carcinogenesis and these might be due to competition between small MAF 

homodimers and NRF2–small MAF heterodimers for binding to ARE embedded in MARE. 

However, other than quantity based regulation, the factors that determine the formation of 

different binding complexes still need to be investigated. Overall, these results indicate that 

small MAF expression must be finely tuned in order to activating or repressive effects on 

Nrf2 and other transcription factors.

Conclusion

In response to oxidative and carcinogenic stimuli, NRF2 transactivates various genes 

involved in defensive and adaptive pathways to prevent normal tissue damage. As a result, 

NRF2 deficiency causes mutant mice to be more susceptible to oxidative challenge and 

carcinogen exposure. Ironically, its roles in tumor progression indicate that NRF2 should be 

considered as a potential therapeutic target as well. NRF2 activity is also controlled by 

oncogenic signaling pathways, metabolism, and cellular microenvironment. Additional 

studies reveal NRF2 is also involved in pathogenic pathways and physiological changes, 

such as angiogenesis, and metastasis. As binding partners of NRF2, small MAF proteins 

fulfill both positive and negative functions depending on their formation of homo- or 

heterodimers. Thus, whether NRF2 inhibits or activates carcinogenesis is highly context 
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dependent. Therefore, it is still important to determine whether NRF2 is activated or 

suppressed in various environments and under the influence of diverse stimuli.
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• NRF2, a Cap’N’Collar (CNC) transcription factor, plays dual roles in cancer 

prevention and progression depending on the cellular context and environment.

• Overexpression of NRF2 in many human cancers, is significantly involved in 

tumor metabolism, angiogenesis, and treatment resistance, which results in poor 

patient survival.

• Conflicting roles of NRF2 in cancer prevention and cancer progression remain 

to be challenged to determine the optimal use of NRF2 activators or inhibitors in 

the clinic.
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Figure 1. Structural domains of NRF2 and KEAP1
NRF2 includes the CNC-bZIP domain and functional Neh domains. The CNC-bZIP domain 

including Neh1 is required for DNA binding and interaction with ubiquitin conjugating 

enzymes. The TAD that consists of Neh5, Neh2 is involved n Keap1 binding [20]. KEAP1 

contains the BTB domain for KEAP1 homodimerization and interaction with Cul3. Six 

kelch repeats in the Kelch/DGR domain interact with the Neh2 domain of NRF2 for binding. 

The IVR domain links the BTB and Kelch/DGR domains and has several critical cysteine 

residues for KEAP1 activation and NRF2 repression. Cysteine residues such as Cys151, 

Cys257, Cys273, Cys288, and Cys297 act as stress sensors to activate Keap1 and to repress 

NRF2 [25, 26]. Small MAF proteins utilize the highly conserved extended homology region 

(HER) for DNA binding [6]. The basic DNA binding domain and the leucine zipper 

dimerization domain are also required for their biological functions.
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Figure 2. Oncogenic signaling pathways involved in NRF2 expression and activation
Oncogenic mutation of K-Ras, B-Raf, and Myc (K-RasG12D, B-RafV619E (corresponding to 

human B-RafV600E), and MycERT2) increase Nfe2l2 transcription while reducing production 

of free radicals and DNA oxidation which results in enhanced cell proliferation and tumor 

burden [62]. Protein kinase C (PKC) and PKR-like ER kinase (PERK) also phosphorylate 

and activate NRF2 by inhibiting its binding to KEAP1 [65]. While inhibition of MAP 

kinases and PI3K reduce NRF2 nuclear translocation and ARE-dependent activation, a 

crosstalk between various signaling pathways may be involved in regulating NRF2 [66–69].
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Figure 3. Activation of NRF2 and HIF under various environmental stimuli
Hypoxia inhibits prolyl hydroxylation of HIFα, which leads to its stabilization and 

activation as a heterodimer transcription factor with HIFβ. Free radicals produced by 

oxidative stresses are also known to activate the HIF-pathway. NRF2, a main regulator of 

the antioxidative responses, has been recently recognized as a tumorigenic factor, which 

plays a role under hypoxia. In human colorectal cancer cells, when NRF2 is deficient, the 

HIF-VEGF pathway and tumor angiogenesis are inhibited, indicating that these two proteins 

may cooperate for tumor progression [105].
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Table 1

Examples of Nfe2l2-mediated protection against redox-mediated injury and carcinogenesis in knockout mouse 

model.

Stressors Symptoms Reference

Nfe2l2 knockout mice

Hyperoxia Acute lung injury & Inflammation [31]

Butylated hydroxytoluene (BHT) Increased mortality & pulmonary injury [33]

N-acetyl-4-aminophenol (APAP, Acetaminophen) Increased mortality & hepatic damage [34]

Radiation (16Gy) Increased mortality [35]

Benzo[a]pyrene (B[a]P) Increased gastric neoplasia [36]

N-titrosobutyl (4-hydroxbutyl) amine (BBN) Increased incidence of urinary bladder 
carcinoma [37]

7,12-dimethylbenz(a)anthracene (DMBA) &12-O-
tetradecanoylphorbol-13-acetate (TPA) Increased skin tumorigenesis [38]

Azoxymethane/dextran sulfate sodium (DSS) Increased incidence of colorectal tumor 
& inflammation [39]

Medroxyprogesterone acetate & DMBA Increased progression of mammary 
carcinoma [40]

Tail vein injection of 3LL cells Enhanced tumor lung metastasis [41]
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