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The satellite cells are long regarded as heterogeneous cell population, which is intimately linked to the processes of muscular
recovery. The heterogeneous cell population may be classified by specific markers. In spite of the significant amount of variation
amongst the satellite cell populations, it seems that their activity is tightly bound to the paired box 7 transcription factor expression,
which is, therefore, used as a canonical marker for these cells. Muscular dystrophic diseases, such as Duchenne muscular dystrophy,
elicit severe tissue injuries leading those patients to display a very specific pattern of muscular recovery abnormalities. There have
been works on the application of precursors cells as a therapeutic alternative for Duchenne muscular dystrophy and initial attempts
have proven the cells inefficient; however later endeavours have proposed solutions for the experiments improving significantly
the results. The presence of a range of satellite cells populations indicates the existence of specific cells with enhanced capability of

muscular recovery in afflicted muscles.

1. Introduction

In the scientific literature, muscle tissue is often related to
the ability of considerably fast recovery from injuries, as well
as to the plasticity due to adaptation to stress provoked by
strenuous stimuli of the muscular fibers in various manners,
such as exercising [1, 2]. The recovery of the cytoarchitecture
of the muscular tissue has been reported to happen within
the considerably short period of two weeks [1]. The process of
restoration of the conditions of the tissue is subject to a series
of molecular events and cell signalization. Nevertheless, the
regeneration capacity of muscle tissue is limited to a certain
extent; and the fact that skeletal muscle cells fully differentiate
into myofibers which are known to be in mitotic arrest settled

due to the cell cycle inhibitor effect of the retinoblastoma
protein (pRB) [3-5] would suggest the muscle tissue to
lack plasticity and ability to recover from injuries. However,
the discovery of the presence of resident progenitors or
adult stem cells [ASCs] surrounding the myofibrils could
successfully explain the dynamics of this tissue [6, 7]. These
cells have been generally related to as satellite cells (SCs) due
to the very location they had in relation to the myofibrils;
howbeit, the general application of this term does not refer
formally to a specific ASCs population [6, 8]. In adult life,
the SCs are displayed in a quiescent state in skeletal muscles,
surrounding the myofibrils and placed adjacently to the basal
lamina. Upon stimuli caused by tissue injury those cells
regain activity and fuse to the myofibrils recovering them or
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between SCs in order to form new fully differentiated skeletal
muscle cells. In addition, the SCs undergo self-renewing
mitosis maintaining their number in the tissue after the
recovery [1, 9-13].

Considering the importance of the SCs in the recovery
of the muscular tissue, it allows us to predict the relevance
of those cells and other ASCs in proposing cell-based
therapies for myopathies as well as in the understanding
of their pathogenesis [9, 10]. Among the diseases afflicting
the skeletal muscle tissue is Duchenne muscular dystrophy
(DMD), which is caused by frame shift mutations in the
dystrophin gene located in the locus Xp2l. The mutated
protein may lead to severe muscle cellular damage due to
alterations in the cytoskeleton, characterizing this disease
as a congenital myopathy; however it must be considered
that the severity of the phenotype presented by the patient
is connected to the mutation site, giving rise to a variety
of conditions in response to this mutation [14-16]. DMD
is a disorder with early onset, in which the affected indi-
vidual presents weakness and difficulties in controlling the
muscular movements in the childhood and culminates with
severe conditions involving cardiomyopathy and respiratory
complications leading to death around the third decade of life
[14-17]. The lack of efficacious established treatment turns
necessary the evaluation of different approaches to attempt
treating the affected patients. Thus, the understanding of
the mechanisms of recovery performed by SCs gains great
importance in attempting to promote possible new cell-
based therapies for this disease. The present review aims at
compiling relating the molecular mechanisms underlying the
muscular recovery by the SCs, which may be involved in the
process in order to associate them with the pathogenesis and
possible treatment perspectives of DMD.

2. Myogenic Stem Cell Populations the
Muscular Tissue

The distinct capacity for muscle regeneration has been long
thought to have the SCs which were the sole contributors;
however, the involvement of other ASCs populations has
been later determined [18-21], as well as the heterogeneity
of the very SCs [8]. The biological events involved in the
control of all stem cells which have a role in the process
of recovery of the muscle tissue are tightly controlled by
molecular mechanisms, which will later be discussed in this
review [22]. There seems to be varied cell populations within
the muscle to which the myogenic capacity may be attributed
[8]. Those are often referred to in the literature as muscle-
ASCs; nonetheless this review will focus on the heterogeneous
population defined as SCs, composed by cell types with a
more stem cell-like profile and more tissue-committed cells

[8].

2.1. Satellite Cells (SCs). In 1961, electron microscopy allowed
Mauro to first observe the presence of the SCs, mononucle-
ated cells localized in the periphery of the skeletal myofibers
of frogs [6]. The existence of this cell type was later discovered
in other animals, including humans, and their involvement in
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tissue regeneration was determined [23-25]. The very loca-
tion of these cells, juxtaposed to the myofibrils, would suggest
their involvement in muscle regeneration. This hypothesis
began to be proved by the experiments of Snow in 1977,
in which H® marked thymidine allowed inferring valuable
information on how these cells would contribute to the
muscular regeneration. These experiments indicated that the
SCs remain quiescent in the mature muscle and regain mitotic
activity following tissue injuries; in addition, differentiation
to myoblasts was stimulated, which then contributed to the
nuclei of the myofibrils resulting in the recovery of the injury
[26]. In 1975 two in vitro experiments had already given
important insights into how muscular recovery happens [27,
28]. On both studies cell culture techniques were used to
observe how regeneration occurred on single myofibers. The
mononucleated cells, presumed to be the SCs, were found to
soon enlarge and begin proliferation and finally fuse to the
multinucleated myofibrils resulting in their recovery [27, 28].

Although the SCs were known to participate in muscle
recovery, it was still unclear whether they were resident ASCs,
progenitor cells, or dedifferentiated cells. Later experiments
showed that SCs could both successfully differentiate into
myoblasts and recover injured myofibrils and undergo self-
renewal. Those characteristics allowed them to be classified
as ASCs. In 2005, Collins et al. performed experiments
to evaluate the self-renewal and differentiation capacity.
Single myofibers were transplanted into previously radiated
muscle, demonstrating that the limited number of SCs in
the transplanted fiber was sufficient to generate a significant
amount of multinucleated myofibrils as well as to recover
the tissue after experimental injury had been performed in
it [29]. Later, the findings of Kuang et al. corroborated to the
previous results, by concluding that the SCs would perform
self-renewal by asymmetric cell divisions. In addition, these
experiments also allowed the important observation that the
SCs were not composed of a single population of ASCs, rather
populations of ASCs and committed progenitor cells [30].

SCs were previously simplistically regarded as cells of
a single population with conserved markers throughout
distinct muscles of the body [27]. However, difference in
embryonary origin of some muscles has appeared as an
important indicator that the SCs populations were as well
distinct, once their origin is the same as the muscle where they
reside. Evidences from recent studies concerning the embryo-
genesis have shown the skeletal muscles of the trunk and
limbs share a common origin, whereas the muscles covering
the cranium are originated in other embryonary structures of
the cranial mesoderm [31-35]. Advances regarding molecular
biology in the last decades allowed observing the existence
of different SCs populations inside a certain muscle as well
as distinct molecular signatures specifically connected to the
anatomic position of the muscle [8].

There are significant dissimilarities among the composing
muscles of the body in what concerns their physiological
aspects. The cited embryonary distinction of the muscles
implicates differences in their rate of regeneration [36] as well
as in the propensity to express the phenotype of inherited
disorders [37]. As an extension, the specific populations of
SCs in the different muscles may be directly linked to the
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TABLE 1: Biomarkers expressed in most SCs.

Biomarker Functions References
Regulates self-renewal in SCs; maintains of myogenic potential; prevents

Pax7 precocious differentiation; regulates the expression of Myf5; promotes de [38,78,79,111-113]
specification of the SCs
Regulates proliferation of the SCs in conjunction with Pax7; is involved in

Pax3 L. . . [114-119]
myogenic differentiation; regulates the expression of Myf5

i\l/\l/}[;(’)fgse)mc Regulatory factor 5 Is involved in embryonary myogenesis; promotes differentiation of SCs [49,120-123]

Barx2 Rfegulatgs Rostnatal ml.lsgle growtb and regeneration; promotes activation and [124-127]
differentiation of SCs; is involved in myoblast fusion
Cell adhesion protein; involved in cell-to-cell signalization that promotes

M-cadherin proliferation of SCs; involved but not essential to myoblast fusion to form [128-132]
myofibers

o-Met Re?qulrled for adult. skeletal muscle regeneration due to its role in myoblast [133-136]
migration and fusion

«7-integrin Laminin .receptor 1p the .SCs, involved in the formation of neuromuscular and [137-142]
myotendinous cell junctions

Cluster of differentiation (CD)  Promotes cellular motility of SCs due to its antiadhesive function; is involved in

. . [143-145]

34 the maintenance of the quiescence of SCs

Syndecan-3 Impl_lcated.m musFle regeneration; involved in the control of proliferation of SCs; [146-148]
role in angiogenesis

Syndecan-4 Implicated in muscle regeneration; involved in activation and proliferation of SCs [146, 147, 149, 150]

Chemokine receptor type 4
(CXCR4)

Receptor for the ligand alpha-chemokine stromal-derived factor 1 (SDF-1); the
activated receptor induces chemotaxis, calcium influx and activating the
mitogen-activated protein kinase (MAPK) and AKT serine-threonine kinase by

[151-154]

phosphorylation; involved in the control of SCs development

Caveolin-1

Modulates SCs activation during muscle repair

(142, 155-157]

Calcitonin receptor Related to the maintenance of the quiescence of SCs (158, 159]
Lamins A and C Nuclear envelope proteins, involved in the regulation of SCs differentiation [160, 161]
Emerin Involved in the signalization for SCs differentiation [161, 162]

muscular disorders such as DMD and, hence, bear relevance
while studying the molecular basis and possible treatments
for these diseases [36]. For that matter, the study of the
molecular markers in SCs populations gains noteworthiness,
not only as a basic research field but also for their clinical
correlation to muscular genetic disorders.

Substantial work has been performed in determining
the molecular biomarkers which appear in almost all the
quiescent SCs and, therefore, determine their identity. The
most widely documented SCs-related molecule is the paired
box homeotic protein (Pax) 7, which is a transcription
factor, related to the very embryonary development of those
cells and is constitutively expressed in both quiescent and
proliferating SCs [38]. In spite of the high variability of SCs
populations, there exist determining markers, which appear
in most of those cells and, therefore, may be used to identify
those cells. In order to review the molecular profile of most of
the adult skeletal muscle SCs, the already identified markers,
as well as Pax7, are summarized in Table 1.

Despite the fact that the markers displayed in Table 1 can
widely characterize SCs, there has been ongoing research on
elucidating molecules that enable the distinction between
different populations of those cells [8]. In addition to the
difference in the molecular profile of those cells, the different
muscles also exhibit a different density of this sort of cell

[29, 39-41]. Embryological origin seems to be tightly related
to the expression of some proteins in SCs; the differential
expression of Pax3 and Pax7 transcription factors have been
evaluated by several studies during the myogenesis, allowing
the conclusion that this expression is related to the various
myogenic states of the somite as well as to the embryo region
from which those cells derive ([42], for review, see [8]).
In 2005, Kassar-Duchossoy et al. successfully demonstrated
the Pax3+ and Pax7+ to be responsible for giving rise to
the muscle progenitor cells [43]. These results were largely
corroborated by other studies, which also showed the Pax-
dependency on the myogenetic process, in addition to the
differential expression of those markers in the various stages
of embryogenesis [38, 44-46]. Later, the roles of Mrf4 and
Myf5 in the muscle development have been elucidated and the
cells expressing those genes during embryonic period have
been shown to be responsible for giving rise to a significant
part of the SCs [47, 48].

In addition to the varied molecular profile of the cells
giving rise to the SCs, these progenitor cells also display
difference in the markers expressed in distinct muscles or dis-
tinct proliferation status of the cell, which may be related, to a
certain extent, to their physiological function in that anatom-
ical location or within the same muscle. In 2000, Beauchamp
et al. have found that CD34 and Myf5 are expressed in SCs



in different stages of muscle development. However, results
showed the existence of a CD34—, Myf5—, and M-cadherin—
population, which was then speculated to be representative of
a less differentiated population [49]. Later, the expression of
CD34 was compared to the regenerative capacity of the myo-
genic cells [50]; considerations made were that the CD34+
cells would more promptly fuse and regenerate muscular
injury, in a manner that their transplantation in dystrophic
host mice yielded a more extensive dystrophin restoration
[50]. Kuang et al. (2007) have perceived the heterogeneity of
the SCs population by evaluating the expression of Myf5. It
has been found that approximately 10% of the Pax7+ cells in
the sublaminar area did not express Myf5; however, the Pax7+
and Myf5— cells give rise to both Myf5-expressing and Myf5-
nonexpressing cells through asymmetrical mitosis. When the
SCs undergoing apical-basal-oriented mitosis, the apical cells
were Myf5+, whereas the basal cells did not [30], thus giving
rise to two different populations. The Myf5— population was
related to self-renewal of that SCs niche, while the Myf5+ cells
were concluded to be more committed [51].

SCs from muscles in different anatomical sites with
different embryonic origin display substantially different
features, which include the presence of varied markers, both
in embryonary and adult life [52]. The differences in those
SCs implicate altered behaviour during muscular recovery
and, thus, may be related to the ability to recover from injuries
inflicted by myopathies as well as from the propensity to
the affection by this class of diseases [52]. Although it is
predictable that the SCs resident in each muscle display a
slightly different pattern of biomarkers, only some anatomical
sites have been regarded in the scientific literature so far.
The SCs in the head (concerning their similar embryonic
origin) have been shown to significantly differ from those in
other muscles, that the SCs from the head show cardiogenic
potential being remarked, which did not appear in the other
SCs studied [34]. Sambasivan et al. (2009) have shown the
differential expression of some transcription factors and
other regulatory proteins to be involved in the fate of SCs
in different body locations, also allowing these proteins to
be used as possibly more specific markers to the progenitor
cells of some muscles. It has been noted that the SCs of
some specific muscles show considerably different patterns
of expression of their markers as well as distinct relations
of those molecules and the activation of those cells. In
extraocular muscles, either Myf5 or Mrf4 is indispensable for
the development of SCs; in the pharnyx, Mrf4 has been shown
to be necessary for the fate of SCs, being the transcription box
factor 1 (Tbx1) also found to be expressed in this location [35].
Furthermore, later reports by Ono et al. (2010) demonstrated
the difference in molecular profile between the extensor
digitorum longus (EDL), masseter (MAS), soleus (SOL), and
extensor carpi radialis (ECR) muscles (for review, see [39]).

The already cited experiments by Collins et al. also
started to provide early insight into the heterogeneity in the
functionality of SCs [29]. In these experiments, a single mice
myofiber with its surrounding SCs was transplanted into the
previously irradiated mice muscles. The results showed that
the myofibers originated from the tibialis anterior (TA) could
generate less new myofibers than those from the EDL or
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soleus [29]. These findings allow concluding the existence
of different regenerative capacity intrinsic to the very SCs.
Such difference may lead to important clinical correlations
regarding the recovery from myopathic injuries to be later
discussed (for review of markers and adult and embryonic
regions, see [8, 53]). These results have been corroborated by
the experiments by Sacco et al. (2008), where single SCs cells
were transplanted into radiation-ablated muscles showing
that the Pax7+ cells were responsible for the regeneration in
the recipient muscle [54].

SCs have been reported to diminish in number and
myogenic capacity in a direct relation to the age of the
individual. There is evidence for the reduction in number of
those cells; nevertheless, the myogenic capacity does not seem
to be affected, suggesting the necessity for further research on
the remaining cell populations and underlying mechanisms
of the myogenic capacity with the advance of the age [55-62].

The data reviewed above allows characterizing the SCs as
important cell populations involved in muscle recovery. In
spite of the largely debatable age-dependent SCs depletion
and loss of myogenic capacity [55-62], those cells keep an
important role in muscle physiology and, thus, have great
potential to be explored in the possible cell-based therapies
for severe myopathies, such as DMD, which will be later
discussed.

3. Isolation and Culture of SCs

A significant portion of the experiments cited relies to some
extent on cell culture techniques and isolation of SCs, which
are relevant for both studying the very cell population and
for allowing their subsequent transplantation. Considering
the relevance of the procedures involved in cultivating SCs
and the distinction upon comparison to the methods used for
other cell types, it becomes important to present the accepted
techniques for that purpose [53, 63, 64]. The adherent feature
of the SCs plays a major role in the practical aspect of
harvesting those cells for further isolation procedures, as later
described, and all in vitro assays regarding these lineages.

In 2004, Fukada et al. have successfully isolated murine
SCs by employing a novel monoclonal antibody. In this study,
the antibody SM/C-2.6 could bind specifically to the SCs in
muscle preparations. In addition, the SM/C-2.6+ cells isolate
via fluorescence-activated cell sorting (FACS) which could
be successfully differentiated into myoblasts and myotubes
in vitro, under specific differentiation conditions. In vivo
differentiation into myofibers has also been performed with
cells isolated from GFP-expressing mice by using the same
antibody. These results indicate the antibody developed by
the group to be a useful novel tool for initiating culture
procedures with SCs in order to enable further studies
regarding those cells [63].

Direct isolation of SCs has also been successfully achieved
through flow cytometry techniques. The cells were isolated
from preparations of adult GFP-expressing mice diaphragm
muscle. The fraction selected was of Pax3+ and the experi-
ments performed allowed concluding that those cells are a
homogenous population of SCs, also expressing Pax7+ and
CD34+ after cell sorting [64].
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TABLE 2: Summarized protocol for isolation and culture of SCs on Matrigel.

Step

Procedure

Muscle collection

Muscle preparation

Obtaining a single-cell Solution

Cell counting and concentration

Obtaining the whole cell suspension

Properly dissect an entire muscle from the euthanized animals and transfer to ice-cold PBS for
washing

(i) Dissect the muscle under light microscope in order to remove connective tissue, blood vessels,
nerve fibers, and adipose tissue

(ii) Cut and mince tissue for enzymatic digestion

(iii) Digest with 0.2% collagenase with 10% fetal bovine serum (FBS) in DMEM medium

(i) Triturate mixture in order to obtain a single cell solution in up to 50 mL of DMEM with 2% FBS
(ii) Pass the cell suspension through a 70 ym cell strainer

(i) Count cells on hemocytometer

(ii) Perform successive centrifugations to attain cells in a 200 yL suspension

(iii) The usual number of cells obtained from one mouse is of 2 x 10°

(iv) Suspension is to be done in 2% FBS in DMEM

SCs antibodies

Magnetic beads addition
Cell washing and suspension on
MACS buffer

Cell suspension elution and
collection

Isolation

(i) 1 pL of antibodies against CD31-PE, CD45-PE, integrin-«7, and Sca-1-PE should be added to
the 200 pL cell suspension

(ii) Incubation for 30 minutes on ice

(iii) Wash cells with 1 mL of 2% FBS in DMEM by centrifuging at 2000 rpm for 3 minutes at 4°C
(iv) Resuspend cells in 200 L of the 2% FBS and DMEM solution

(i) Add 10 uL of anti-PE magnetic beads

(ii) Incubate on ice for 30 minutes

(i) Wash the cells twice in 1 mL of MACS buffer

(ii) Resuspend in 1 mL of MACS buffer

Proceed MACS protocol by eluting the cell suspension through the column in order to obtain
only the cells marked by the SCs-related antibodies

Culture

Resuspend cells in medium containing

(i) Hams F10 medium

Resuspension on myoblast medium (ii) 20% FBS

(iii) Basic fibroblast growth factor (bFGF)

Plating

Maintenance
confluence

Cells should be plated in Matrigel-coated 10 cm plates containing 8 mL of the appropriate medium
Medium should be changed every 2 days and passaging is to be done before reaching 50%

Motohashi et al. have recently proposed a more recent
isolation and culture protocol for the same purpose. The
protocol involving magnetic-activated cell sorting (MACS)
reduces the costs of the process in relation to FACS [53]. The
protocol is summarized in Table 2.

4. Molecular Response Involved in Muscle
Recovery by SCs

4.1. Earlier Experiments Regarding SCs Activation and Prolif-
eration. Muscular recovery relies greatly on the activity of
SCs, which involves, simplistically, these cells leaving their
quiescent status in order to undergo mitosis and fuse to the
injured myofibers, reestablishing their cytoarchitecture and
functionality [65]. In order to fulfill their role, SCs must be
able to respond to the various stimuli, which may afflict the
muscles and require their restorative activity. In 1986, Bischoff
provided the earliest insights into the mechanisms of this
recovery. It was shown that the quiescent SCs would enter
cell cycle after exposure crushed muscle in order to elicit
the stimulation, thus allowing prediction of the existence

of a certain mitogen in the muscle, which stimulated SCs
activation [66]. In other experiments, the author showed that
the unstimulated SCs displayed little proliferative capacity;
however mitosis could be induced by the addition of chick
embryo extract or fibroblast growth factor [67]. Subsequently,
transforming growth factor-b (TGF-b), insulin-like growth
factor I (IGF-I), and fibroblast growth factor (FGF) was
discovered to be implicated in the cellular mechanisms for
controlling both proliferation and differentiation of SCs.
While TGF-b was found to depress the proliferation rate
and inhibit differentiation, IGF-I has positive effect over
both factors (TGF-b and FGF) and over FGF stimulated
proliferation, inhibiting differentiation, corroborating to the
findings by Bischoff [68-70]. Later studies evaluated the effect
of TGF-b over the porcine SCs proliferation in the presence
of other cell signalization factors. The various combinations
between TGF-b and platelet-derived growth factor (PDGF),
FGE IGF-I, and epidermal growth factor (EGF), resulted
in observing distinct roles for the TGF-b depending on the
factor with which it interacts, thus showing the mitosis and
differentiation regulatory system of SCs to be dependent on



various factors rather than specifically on one molecule [71-
75]. The findings thus far allowed identifying the existence of
an intricate underlying pathway for controlling SCs prolifer-
ation and differentiation, in addition to the occurrence of a
mitogen for those cells in the very muscle.

4.2. Events Related to SCs Self-Renewal and Activation.
The advances in the molecular biology techniques allowed
unraveling the intrinsic mechanisms involved in both the
processes of self-renewal and activation followed fusion to
the damaged myofiber. Self-renewal capacity is essential for
those cells to maintain their needed number to perform their
tissue regeneration role. As already stated, among the SCs
populations, there may be identified two distinct populations
being the Myf5— cells less committed to the myogenic lineage
and more prone to self-renewal than the Myf5+ [51]. In
addition to that single gene expression, there exist various
factors which implicated the self-renewal potential. This
capability is directly related to the maintenance of tissue
regeneration, considering that depleting those cells would
implicate a severe decrease in the ability to recover from
injuries, in a manner that it is tightly bound to the dystrophies
myogenesis, considering the occurrence of muscle injuries
in an extended time in those conditions [14-16, 52]. Pax7
and Pax3 expression seem to have a more direct role on
the self-renewing process. It has been shown to lie upstream
as a transcription factor in the regulatory pathways of
the myogenic determinant genes, Myf5, MyoD, Mrf4, and
myogenin [52]. Mice knocked out for the Pax7 gene displayed
both defective muscle formation during embryonary period
and reduced muscular regeneration capacity [38, 76, 77].
Lepper et al. (2009) have performed experiments regarding
the conditional expression of Pax3 and Pax7, which showed
that those transcription factors are only essential during the
early life, being not determinant for muscular recovery in
adult life [46]. Nonetheless, more recent works have shown
Pax7 to remain essential for muscle regeneration in adult
life. Pax7-expressing cells have been demonstrated to be
important to regulate the environment in a sense that they
might regulate other cell types during the postinjury period
[78]. Besides, studies by von Maltzahn et al. (2013) showed
disagreement to the previous study [46] by determining
Pax7 to be necessarily expressed to regulate and maintain
the myogenic potential of SCs [79]. More studies showing
the relevance of the expression of other regulatory proteins
for self-renewal have already been performed, allowing also
elucidating the roles of MyoD, Myf5, and myogenin in this
regulation. Those findings have been reviewed this year
by Motohashi and Asakura [52]. MyoD has a noteworthy
role in controlling apoptosis in SCs through the regulation
of microRNAs (miR-1 and miR-206), which target binding
sites in the 3'UTR of the Pax3 transcript. MyoD expression
downregulates Pax3 and the antiapoptotic proteins Bcl-2 and
Bcl-x. Considering that MyoD is downregulated in quiescent
SCs, it reveals its involvement in the maintenance of this cell
niche, by suppressing apoptosis [80].

Recent research at the protein level has elucidated the role
of the Fas-associated death domain (FADD) in the mainte-
nance of self-renewal in SCs. Phosphorylation of FADD at
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a specific site is directly connected to the noncommitment
of SCs. Cells which underwent asymmetrical mitosis have
displayed different distribution of the phosphorylated and
unphosphorylated protein, in a fashion that the cells in which
the phosphorylated protein accumulates tend to exhibit a less
committed behaviour in addition to a stem-cell-like marker
profile [81]. The asymmetrical divisions happening in SCs are
coordinated by the differential activation of p38a mitogen-
activated protein kinase (p38a/MAPK). The daughter cell
where p38a/MAPK is activated begins to be determined as a
more committed cell, since this pathway upregulated MyoD
expression, whereas the cells with no p38a/MAPK activation
remain MyoD- and less differentiated, replenishing the SCs
pool [82].

The signalling for activation seems to be varied and is
triggered in both physiological and pathological conditions
and, thus, relevant for recovering muscle injuries as well as
for the very formation and hypertrophy of those tissues. The
p38a/MAPK-dependent asymmetrical division is also rele-
vant considering its role of generating cells with upregulated
myogenic regulatory factors. In vitro studies have reported
nitric oxide (NO) and hepatocyte growth factor (HGF) as
being relevant for their activation [83, 84]. Chemotaxis and
activation of SCs were later also related to angiotensin II [85].
Not surprisingly, the coordination of SCs activation is also
tight to the inflammatory pathways, conferring those cells
the ability to respond to a proinflammatory environment,
common in various sorts of myopathies and other conditions,
which require muscular regeneration. In 2012, Paulsen et al.
demonstrated the SCs responsiveness to cyclooxygenases 1
and 2 (COX1and COX 2) [86]. Tumour necrosis factor (TNF)
interacts with the p38a/MAPK resulting in the repression of
the Pax7 locus, so that SCs activation is induced [87]. More
recently, further studies have been performed and confirmed
the SCs response to a proinflammatory environment [86].

4.3. Myogenic Regulatory Genes. It may be noted that the
fate taken by the SCs is tightly related to the appearance of
the product of certain genes; the differential expression of
Pax3, Pax7, MyoD, Myf5, and Mrf4 seems to be connected
to the self-renewal or differentiation towards a state of lesser
potency. Thus said, the alternative fate for the SCs to self-
renewal is its stimulation to perform muscle recovery by dif-
ferentiating into myoblasts. Regulator proteins not expressed
in self-renewing SCs tend, intuitively, to be expressed in the
ones undergoing the process of differentiating into myoblasts.
Thus, the myogenic process is tightly bound to the upregu-
lation of MyoD, Myf5, and Mrf4 [88-91]. The regulation of
those myogenic regulatory factors was also linked to Pax7
and Pax3 function, as discussed for the maintenance of the
potency of the cell population [91].

5. Possibility of Stem Cell-Based
Therapy in DMD

DMD is a genetic-based condition in which the afflicted
individual suffers extensive and progressive muscular injuries
as a result of frame shift mutations in the dystrophin gene.
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The great size and exon numbers in this gene result in a range
of possible phenotypes and differing severity of the condition
depending on the patient [14-17]. Nevertheless, the DMD
patients tend to suffer severe muscular damage leading to
outcomes ranging from diminished muscle control to loss of
the cardiac and pulmonary functions, culminating in death
[14-17]. Considering the SCs indispensable participation in
muscular recovery, they have been regarded as important
candidates to mediate cell-based therapies for DMD.

Earlier in 1989, the injection of myoblasts in mice models
of DMD could successfully convert the myofibers to a
normal expression of dystrophin [92]. However more recent
attempts to induce regeneration of DMD-related damage in
human dystrophic patients by transplanting myoblasts in
vitro expanded and differentiated from SCs did not prove to
be very promising. The negative results have been reported to
be due to the insufficient migration of the myoblasts, immune
reaction against the non-self-myoblasts transplanted, and
death of the myoblasts [93-95]. The issues related to the
inefficiency of the transplantation began to be addressed by
further experimentation in both mice and monkeys. The
increase in number of myoblasts injected has proved to be
coherent with the amount of regenerated fibers [96]. Applica-
tion of radiation to the affected muscles in order to enhance
the release of myogenic related factors has also increased
the success rates of the transplantations [97-100]. These
later experiments have reached considerable increase in the
restoration of dystrophin; however, they are still not ideal,
taking into consideration that they are still inferior when
compared to the already existing therapeutical approaches
(101]. The immunogenicity of the myoblasts transplanted
has been sought to be overcome both by the advances
in immunosuppressants [101] and by inducing immune
tolerance [102]. Other attempts have been done through
transfection of the dystrophin microgene or full gene with
viral vectors in order to genetically modify myoblasts to be
transplanted [103-105]. Nonetheless, the restricted feasibility
of those techniques for a clinical trial, concerning efficacy,
safety, and cost, must be mentioned.

Earlier reports have demonstrated the augmentation in
number of SCs in muscular tissue of DMD patients as a
response to the disease. This evidence endorses the initial
ideas of the potentiality of these cell populations for the
treatment of the disease [106]. However, the depletion of
SCs due to a Notch signalling deficiency seems to be a
physiopathological issue regarding the abnormal muscle
regeneration in mice models of DMD. The Notch signalling
pathway has been shown to be necessary in order to keep
the quiescent state of SCs [107]. Notch-reporter DMD-model
mice enabled the authors to elucidate the mechanism by
which this depletion takes place, since the model mice
expressed a diminished activation of the Notch signalling
leading to lack of proliferation control [107-109]. Taking into
consideration that the increased number of SCs in DMD
muscle is followed by depletion of those cells, it is suggested
that allogeneic SCs populations with greater regenerative
capability may become useful for cell-based therapies [106—-
109]. This year, the SCs derived from the extraocular muscle
have successfully been transplanted into dystrophic animal

models, in which they demonstrated great efficiency in
regenerating dystrophin deficiency [110].

6. Conclusion

In spite of the many limitations inherent to cellular therapies,
the SCs have been regarded for long as promising in the
recovery of DMD-related injuries and in promoting mitiga-
tion of the outcome of the disease. The hopes for using SCs as
a therapeutic alternative have been encouraged by the sum of
positive results of some of the experiments cited throughout
the text. Considering the accumulated knowledge on the
existence of different SCs populations, it seems plausible to
consider the use of specific populations in the therapeutic
of dystrophic diseases, regarding the differential restorative
capabilities of each of those populations. Specific SCs have
been showing different capacities of injured muscle recover-
ing, fomenting the search of SCs populations with the ideal
profile to be used therapeutically for DMD-related injuries.
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