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The traditional herb Plumula Nelumbinis is widely used in the world because it has many biological activities, such as anti-
inflammation, antioxidant, antihypertension, and butyrylcholinesterase inhibition. However, the action of Plumula Nelumbinis
on airway smooth muscle (ASM) relaxation has not been investigated. A chloroform extract of Plumula Nelumbinis (CEPN) was
prepared, which completely inhibited precontraction induced by high K+ in a concentration-dependent manner in mouse tracheal
rings, but it had no effect on resting tension. CEPN also blocked voltage-dependent L-type Ca2+ channel- (VDCC-) mediated
currents. In addition, ACh-induced precontraction was also completely blocked by CEPN and partially inhibited by nifedipine
or pyrazole 3. Besides, CEPN partially reduced ACh-activated nonselective cation channel (NSCC) currents. Taken together, our
data demonstrate that CEPN blocked VDCC and NSCC to inhibit Ca2+ influx, resulting in relaxation of precontracted ASM. This
finding indicates that CEPN would be a candidate of new potent bronchodilators.

1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD)
are highly prevalent diseases that currently affect more
than 300 million individuals worldwide. Excessive airway
obstruction is a cardinal symptom in asthma and COPD [1–
3]. Airway smooth muscle cells (ASMCs), one important cell
type in the respiratory system, contribute to the symptoms of
these airway obstructive diseases [4]. Excessive contraction
of ASMCs can narrow the airway lumen, which limits gas
exchange and threatens the lives of asthmatics and COPD
patients [5, 6]. Therefore, bronchodilators, such as 𝛽2 adren-
ergic agonists, are standard medicines that are widely used
for the pharmacological management of these diseases [7, 8].

However, the currently available bronchodilators have serious
side effects; thus, the development of novel effective and safe
bronchodilators is an important task for asthma and COPD
therapy.

Some of traditional herbs have long been used in the
treatment of asthma and COPD because they can effectively
relax ASM contraction [9–11]. This inspired us to iden-
tify novel bronchodilators from the traditional herbs. This
study investigated whether an extract of Plumula Nelumbinis
relaxed precontracted ASM induced by high K+ andACh and
the underlying mechanism.

Plumula Nelumbinis is the green germ of a mature
lotus (Nelumbo nucifera Gaertn) seed [12, 13]. This tradi-
tional medicine was documented in a well-known materia
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medica “Bencao Gangmu” by Shizhen Li during the Ming
dynasty (1596). Plumula Nelumbinis has many pharmacolog-
ical and physiological activities, including anti-inflammation
[14, 15], antioxidant [16], antihypertension [17], and butyryl-
cholinesterase inhibition [18]. Several active ingredients in
Plumula Nelumbinis exhibit beneficial biological activities
on smooth muscle: neferine markedly inhibits angiotensin
II-stimulated proliferation, reduces 45Ca-influx induced by
phenylephrine in vascular smooth muscle [19, 20], and
relaxes corpus cavernosum smooth muscle cells [21], and
isoliensinine possesses antiproliferative effects on coronary
arterial smooth muscle cells [22, 23]. However, the effects of
Plumula Nelumbinis extract on ASMC tension have not been
studied previously.

The present study investigated the relaxation effects of a
chloroform extract of Plumula Nelumbinis (CEPN) onmouse
ASM precontraction induced by high K+ and ACh. The
results show that CEPN inhibited VDCCs andNSCCs, which
then resulted in relaxation of precontracted ASM.

2. Materials and Methods

2.1. Plant Material. Plumula Nelumbinis, germs of Nelumbo
nucifera Gaertn seeds, were collected in Honghu City, Hubei
Province, China, in October 2013, and were identified by
Professor Dr. Ding-rong Wan, College of Pharmacy, South-
Central University for Nationalities. A voucher specimen
(SCUN201310006) is deposited at the Herbarium of the Col-
lege of Pharmacy, South-Central University for Nationalities,
China.

2.2. Extraction and Isolation. PlumulaNelumbinis (1 Kg)were
air-dried, milled into powder, and extracted at room tem-
perature with 95% ethanol (3 × 4 L, 2 h each). Extracts were
centrifuged, and the supernatants were collected.The ethanol
extract (193 g) was next evaporated to dryness under reduced
pressure using a rotary evaporator and immersed in a 2%HCl
solution (500mL). Residues were extracted with petroleum
ether (3 × 300mL, 4 h each) to remove lipids. Ammonia
adjusted the pH of the filtrate to 10, and the crude sample
was extracted with chloroform (5 × 300mL, 4 h each). The
chloroform extract was evaporated under reduced pressure,
and the extraction yield was 0.71% of the raw material dry
weight. The dried chloroform extract of Plumula Nelumbinis
(CEPN) was dissolved in 3% DMSO for the experiments.

2.3. Reagents. Nifedipine, acetylcholine chloride (ACh), nif-
lumic acid (NA), tetraethylammonium chloride (TEA), and
pyrazole 3 (Pyr3) were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). Other chemicals were purchased from
Sinopharm Chemical Reagent Co. (Shanghai, China).

2.4. Animals. Sexually mature male BALB/c mice were pur-
chased from the Hubei Provincial Center for Disease Control
and Prevention (Wuhan, China). Mice were housed at room
temperature (20–25∘C) and constant humidity (50–60%)
under a 12 h light-dark cycle in an SPF grade laboratory. The
animal study was performed according to the guidelines of

the Institutional Animal Care and Use Committee of the
South-Central University for Nationalities (Wuhan, China)
and approved by the Animal Care and Ethics Committee of
the South-Central University for Nationalities (QHL-2, 02-
03-2012).

2.5. ASM Contraction Measurement. Mouse ASM contrac-
tion was measured in tracheal rings [24, 25]. Mice were
sacrificed using an intraperitoneal injection of sodiumpento-
barbital (150mg/kg), and tracheae were isolated and quickly
transferred to ice cold PSS (composition in mM: NaCl 135,
KCl 5, MgCl

2
1, CaCl

2
2, HEPES 10, glucose 10, pH 7.4).

Connective tissues were removed, and small rings (∼5mm)
were cut from the bottomof tracheae. Each ringwasmounted
with a preload of 0.5 g in an organ bath with a 10mL capacity
containing PSS bubbled with 95% O

2
-5% CO

2
at 37∘C.

Tracheal rings were equilibrated for 60min, precontracted
with high K+ (80mM) or ACh (10−4M), washed, and rested 3
times. Experiments were performed following an additional
30min rest.

2.6. Isolation of Single ASMCs. Mouse ASMCs were isolated
as previous method [25, 26]. Briefly, tracheae were isolated
as described above and digested in an ice-cold low-Ca2+
physiological saline solution (LCPSS) (composition in mM:
NaCl 135, KCl 5, MgSO

4
1, glucose 10, HEPES 10, CaCl

2
0.1,

pH 7.4) containing 1mg/mL papain, 0.5mg/mL dithioery-
thritol, and 1mg/mL bovine serum albumin (BSA) at 37∘C
for 20min. Tissues were transferred to LCPSS containing
1mg/mL collagenase H, 1mg/mL dithiothreitol, and 1mg/mL
BSA and incubated at 37∘C for 20min. Tissues were washed
and gently triturated in LCPSS to yield single ASMCs for
experiments.

2.7. Measurement of VDCC Currents. VDCC currents were
measured using Ba2+ as the charge carrier and an EPC-10
patch-clamp amplifier (HEKA, Lambrecht, Germany). The
pipette solution contained the following (in mM): CsCl 130,
EGTA 10,MgCl

2
4,Mg-ATP 4, HEPES 10, TEA 10, and pH 7.2

(adjusted with CsOH). The composition of the bath solution
was (in mM) NaCl 105, CsCl 6, BaCl

2
27.5, glucose 11, HEPES

10, TEA-Cl 10, NA 0.1, and pH 7.4 (adjusted with NaOH).
ASMCs were patched and held at −70mV. Currents were
measured following depolarization for 1000ms from −70 to
+30mV in 10mV increments every 10 s.

2.8. Measurement of NSCC Currents. The pipette solution
contained the following chemicals for the measurement of
NSCC currents (in mM): CsCl 18, cesium acetate 108, MgCl

2

1.2, HEPES 10, EGTA 3, CaCl
2
1, and pH 7.2 (adjusted with

Tris). The free Ca2+ concentration was approximately 70 nM,
as calculated usingWEBMAXC STANDARD.The bath solu-
tionwas PSSwithoutK+ containing 10𝜇Mnifedipine, 100𝜇M
NA, and 10mM TEA to block VDCC, Cl−, and K+ currents,
respectively. ACh-induced NSCC currents were recorded
with a ramp using a perforated whole-cell configuration with
a holding potential of −60mV.The ramp was performed over
500ms from −80 to +60mV.
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Figure 1: Relaxant effects of CEPN on high K+-induced precontraction. (a) High K+ induced a steady-state contraction in a mouse tracheal
ring, which was inhibited by CEPN in a concentration-dependent manner. (b) Dose-relaxation curve of CEPN based on the results of
7 different experiments shown in (a). (c) High K+-induced precontraction was completely blocked by nifedipine. This experiment was
performed in 8 tracheal rings from 8 mice, and the result was reproducible across experiments. (d) CEPN had no effect on resting tension in
4 rings. These results indicate that the CEPN-induced relaxation might result from blockade of VDCCs.

2.9. Statistical Analysis. Statistical analysis was performed
with Student’s 𝑡-test using Origin 9.0 software (OriginLab,
Northampton, USA). Statistical significance was defined as
𝑃 < 0.05. Data are expressed as the means ± SEM.

3. Results

3.1. CEPN Inhibits High K+-Induced Precontraction. We
observed the effects of CEPN on high K+-induced ASM
precontraction to investigate whether CEPN relaxed ASM.
High K+ (80mM) induced contraction in a mouse tracheal
ring, and CEPN (1 𝜇g–3.16mg/mL) was cumulatively added
to the organ bath. ASM contraction was gradually reduced
to baseline (Figure 1(a)). CEPN was then removed and the
high K+-induced contraction will restore to 26.7 ± 6.2%
(𝑛 = 6) after 30min. The results from 7 experiments yielded
a half-maximal inhibition (IC

50
) of 35.4 ± 1.4 𝜇g/mL and

a maximal relaxation of 103.4 ± 1.3% (Figure 1(b)). It is

well known that high K+ induces depolarization resulting
in the activation of VDCCs, which allows a Ca2+ influx to
trigger contraction [27, 28]. This pathway was confirmed
using a selective blocker of VDCCs, nifedipine (10 𝜇M),
which completely blocked 80mM K+-induced contractions
(Figure 1(c)). CEPN inhibited precontraction, but it did not
alter resting tension in 4 tracheal rings (Figure 1(d)). These
data indicate that CEPN relaxed high K+-precontracted ASM
via VDCC inhibition.

The above results suggest that the relaxation induced
by CEPN might be due to the termination of VDCC-
mediated Ca2+ influx. This hypothesis was examined in the
following experiments. Figure 2(a) shows that high K+ did
not induce contraction under Ca2+-free conditions (0mM
Ca2+ and 0.5mM EGTA); however, contraction immediately
occurred following Ca2+ restoration (2mM), and CEPN
(1mg/mL) completely inhibited contraction. However, a
Ca2+ restoration-induced contraction was not observed in



4 Evidence-Based Complementary and Alternative Medicine

0

4

8

12

0 5040302010
Time (min)

60

Fo
rc

e (
m

N
)

80mM K+

1mg/mL CEPN

2 Ca2+0 Ca2+

(a)

0 302010
Time (min)

0

4

8

12

40

Fo
rc

e (
m

N
)

80mM K+

1mg/mL CEPN
2 Ca2+0 Ca2+

(b)

Figure 2: CEPN blocks high K+-evoked Ca2+ influx. (a) A representative tracing of 4 experiments. Under Ca2+-free conditions (0 Ca2+ and
0.5mM EGTA), high K+ did not evoke contraction in a tracheal ring. After the restoration of 2mM Ca2+, a sustained contraction occurred,
which was fully inhibited by CEPN. (b) In the presence of 1mg/mL CEPN, the identical experiments as above were performed. A Ca2+
restoration-provoked contraction was not noted.This experiment was conducted in 6 tracheal rings.These results suggest that CEPN inhibits
Ca2+ influx.
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Figure 3: CEPN blocks VDCC currents. (a) The protocol used to measure VDCC currents in single ASMCs. (b) VDCC currents, recorded
following depolarizations, were blocked by CEPN and nifedipine, respectively. (c) 𝐼-𝑉 relationships constructed based on the results of 5 to
6 experiments. These data indicate that CEPN blocks VDCCs.
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Figure 4: CEPN inhibits ACh-induced precontraction. (a) ACh induced a contraction in a tracheal ring that was inhibited completely by
CEPN.This experiment was repeated in 6 rings. (b) Nifedipine partially reduced the ACh-induced contraction in a dose-dependent manner.
The resistant contraction was inhibited by CEPN.The summary results from 6 experiments are shown in (c). (d) In the presence of nifedipine,
ACh induced a typical contraction, which was dose-dependently inhibited by CEPN. The summary results from 6 experiments exhibited in
(e). These results show that CEPN inhibits VDCCs and another pathway to induce relaxation.

the presence of 1mg/mL CEPN (Figure 2(b)). This result
suggests that CEPN-evoked relaxation of high K+-induced
precontraction was completely dependent on the inhibition
on VDCC-mediated Ca2+ influx.

3.2. CEPN Blocks VDCC Currents. We used patch-clamp
techniques to measure VDCC currents (Ba2+ as the carrier
charge) [25] with voltage steps from −70 to +30mV to further
confirm the ability of CEPN to block VDCCs (Figures 3(a)
and 3(b)). Currents were abrogated following applications
of CEPN and nifedipine. Current-voltage (𝐼-𝑉) curves were
constructed based on the results of 5 to 6 experiments
(Figure 3(c)).These data indicate that CEPNblockedVDCCs.

3.3. CEPN Inhibits ACh-Induced Precontraction. We next
observed whether CEPN inhibited ACh-induced precontrac-
tion. Figure 4(a) shows that 1mg/mL CEPN fully relaxed
100 𝜇M ACh-induced contraction (100.7 ± 0.4%, 𝑛 = 6).
If CEPN was removed, the ACh-induced contraction will
recover to 92.2 ± 3.4% (𝑛 = 7) within 30min. Moreover,

the precontraction was partially blocked following additions
of nifedipine and the resistant component was totally inhib-
ited by 1mg/mLCEPN (Figure 4(b)).Themaximal inhibition
by nifedipine and CEPN was 52.1 ± 2.2%and 105.2 ± 2.0%,
respectively (𝑛 = 6; Figures 4(b) and 4(c)). These results
indicate that VDCCs and an unknown pathway mediate
CEPN-induced relaxation of ACh-induced precontraction.
Our data have showed that CEPN blocked VDCCs to induce
relaxation of high K+-evoked precontraction. Therefore, we
only focused on defining the unknown pathway. We first
observed the role of the unknown pathway in the dose-
response of CEPN relaxation. Figure 4(d) shows that VDCCs
were blocked with 10 𝜇M nifedipine, and ACh was added to
induce a steady-state contraction. Contractions continuously
declined to resting levels following cumulative additions
of CEPN. The dose-response curve was constructed based
on 6 experiments (Figure 4(e)). These data demonstrate
that CEPN completely reduced ACh-induced precontraction
through the inhibition of VDCCs and an unknown pathway.

In addition, NSCCs predominantly mediate ASM con-
traction [29]. We used Pyr3 (an inhibitor of nonselective
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Figure 5: Pyr3 inhibits ACh-induced contraction. (a) Pyr3, a blocker of TRPC3 and Orai1 channels, partially inhibited ACh-induced
contraction in a dose-dependent manner. The remained contraction was completely blocked by 1mg/mL CEPN. The dose-response from 4
experiments is shown in (b). (c) Comparison of the relaxant effects of CEPN, nifedipine, and Pyr3 on ACh-induced contraction. ∗∗𝑃 < 0.01,
∗∗∗

𝑃 < 0.001.

cation channel TRPC3 and Orai1 [30]) to examine whether
TRPC3/Orai1 channels mediated ACh-induced contraction
[31, 32] and found which was partially prevented by Pyr3 in
a dose-dependent manner (Figures 5(a) and 5(b)). The Pyr3-
inducedmaximal inhibitionwas 26.8± 6.2% (Figure 5(c), 𝑛 =
4, 30 𝜇MPyr3) and the remained contraction was completely
blocked by CEPN (Figures 5(a) and 5(b)). The Pyr3-induced
relaxation was about half of that induced by nifedipine (52.1
± 2.2%) as shown in Figure 5(c), suggesting that both VDCCs
and NSCCs are involved in CEPN-induced relaxation.

3.4. CEPN Blocks ACh-Activated Ca2+ Influx. Contraction
is primarily dependent on the intracellular Ca2+ increase
[33, 34]. Therefore, we investigated whether the unknown
pathway involved Ca2+ influx. ACh induced a transient
contraction in the presence of nifedipine (10 𝜇M) and Ca2+-
free conditions (0mM Ca2+ and 0.5mM EGTA) (Figure 6).

Addition of 2mM Ca2+ triggered a sustained contraction,
which was blocked by 1mg/mL CEPN.These results indicate
that the steady-state contraction induced byAChwas due to a
nifedipine-resistant Ca2+ influx that was inhibited by CEPN.
Therefore, the nifedipine-resistant Ca2+ influx was defined as
the unknown pathway.

3.5. CEPN Inhibits NSCCs. We measured ACh-activated
NSCC currents and observed the effects of CEPN on these
currents to further determine the nature of the Ca2+ influx
because ACh activates NSCCs to increase intracellular Ca2+
[25, 35, 36]. ACh-induced NSCC currents were purely iso-
lated in the presence of nifedipine, NA and TEA, and were
recorded by a ramp (Figure 7(a)). NSCC currents were
partially blocked by CEPN (Figure 7(b)). Two representative
ramp current traces at time points b and c (indicated in
Figure 7(b)) are shown in Figure 7(c).The leak ramp currents
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at time point a (indicated in Figure 7(b)) were subtracted.The
mean values of current amplitudes at −70mV were −14.5 ±
0.5 pA and −7.8 ± 0.5 pA at time points b and c, respectively
(𝑛 = 8, Figure 7(d)). These data indicate that CEPN partially
inhibited ACh-induced NSCCs.

4. Discussion

The present study demonstrated that CEPN induced strong
relaxation in precontracted mouse ASM induced by high
K+ and ACh through blockade of Ca2+ influx mediated by
VDCCs and NSCCs. This finding suggests that CEPN may
be a potential bronchodilator.

High K+ induces membrane depolarization, which opens
VDCCs that mediate extracellular Ca2+ influx and induce
contractions [27, 28]. The present study showed that CEPN
completely inhibited high K+-induced contractions in ASM
(Figures 1(a) and 1(b)), which suggests that this inhibition
was due to the blockade of VDCCs by CEPN. We designed
three different experiments to further support this result and
showed that the selective blocker of VDCCs nifedipine totally
inhibited high K+-evoked contractions (Figure 1(c)), CEPN
inhibited Ca2+ influx-induced contractions (Figure 2), and
CEPN directly blocked VDCC-mediated currents (Figures
3(b) and 3(c)). These data demonstrate that CEPN blocked
VDCCs, which terminated the Ca2+ influx that leads to the
relaxation of high K+-induced precontracted mouse ASM.

The muscarinic receptor agonist ACh activates both
VDCCs and NSCCs, which leads to Ca2+ influx and an
increase in intracellular Ca2+ to trigger ASM contraction [35,
36].This pathwaywas demonstrated in our recent results [25].
The present findings implied that CEPN-induced relaxation
of ACh-evoked contraction (Figure 4(a)) resulted from the
inhibition of both VDCCs and NSCCs by CEPN. This is
because the fact that (1) CEPN completely blocked ACh-
induced contraction (Figure 4(a)), (2) the selective blocker
of VDCCs, nifedipine, partially inhibited ACh-induced con-
traction and the remaining component was blocked by CEPN

(Figures 4(b), 4(c), 4(d), and 4(e)), and the latter was due
to the inhibition of Ca2+ influx by CEPN (Figure 6), (3)
ACh-induced NSCC currents, which mediate Ca2+ influx,
were partially blocked by CEPN (Figure 7), and (4) ACh-
induced contraction was partially blocked by Pyr3, a selective
blocker of nonselective cation channel TRPC3 and Orai
(Figure 5).Therefore, we conclude that CEPN blocks VDCC-
and NSCC-mediated Ca2+ influx to result in relaxation of
ACh-precontracted ASM.

5. Conclusions

CEPN induced relaxation of precontracted mouse ASM
through the inactivation of VDCCs and NSCCs. This study
supports the development of new drugs from CEPN to
treat airway hyperresponsiveness in asthmatic and COPD
patients. Further investigation will be required to identify the
components that are responsible for the relaxation action.
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suggest that CEPN partially inhibits NSCCs.

Li), and the Natural Science Foundation of Hubei Province,
China (2013CFB455 to Weiwei Chen).
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