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Abstract

Convex and continuous energy formulations for low level vision problems enable efficient search 

procedures for the corresponding globally optimal solutions. In this work we extend the well-

established continuous, isotropic capacity-based maximal flow framework to the anisotropic 

setting. By using powerful results from convex analysis, a very simple and efficient minimization 

procedure is derived. Further, we show that many important properties carry over to the new 

anisotropic framework, e.g. globally optimal binary results can be achieved simply by 

thresholding the continuous solution. In addition, we unify the anisotropic continuous maximal 

flow approach with a recently proposed convex and continuous formulation for Markov random 

fields, thereby allowing more general smoothness priors to be incorporated. Dense stereo results 

are included to illustrate the capabilities of the proposed approach.

1. Introduction

Convex and continuous approaches to low level vision tasks are appealing for two reasons: 

(i) the convexity of the formulation ensures global optimality of the obtained solutions; and 

(ii) setting the problem in a continuous (i.e. non-combinatorial) domain often results in 

intrinsically data-parallel algorithms, that can be significantly accelerated e.g. by modern 

graphics processing units. Typically, the main challenge is to find a convex (and optionally 

continuous) formulation of an apparently non-convex problem. For instance, solving a 

pairwise Markov random field with multiple labels and linear or convex discontinuity costs 

requires an embedding of the original formulation into a higher dimensional space (see [6, 

13, 11, 12] for combinatorial approaches and [20] for a continuous formulation).

Finding global optimizers for Markov random fields with pairwise and non-convex priors is 

generally NP-hard, and only approximation algorithms are known. Well-established 

approaches for MRF optimization in computer vision include belief propagation [26], graph 

cut methods [7, 15], message passing approaches [14, 16], and sequential fusion of labeling 

proposals [17, 25].

One major inspiration for this work is the continuous maximal flow framework proposed in 

[2], which provides globally optimal and efficient solutions to minimal surface problems for 

image segmentation (e.g. [9]) and stereo [21]. The original framework for continuous 

maximal flows uses isotropic, i.e. non-direction dependent, capacity constraints. The flow 

between neighboring nodes (as induced by the ℝN topology) is uniformly limited in all 
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directions. The utilization of anisotropic capacities allows the flow to prefer certain, 

spatially varying directions.

It turns out, that the flow field with capacity constraints directly corresponds to the dual 

vector field employed in efficient minimization of total variation energies [10]. The spatially 

varying isotropic capacity constraint in [2] recurs as weighted total variation [8]. Anisotropic 

total variation for image denoising was theoretically analyzed in [19], and joint image 

smoothing and estimation of local anisotropy orientation was proposed in [3].

This work is outlined as follows: Section 2 introduces anisotropic capacity constraints and 

analyzes the relationship with continuous minimal surface and maximal flow formulations. 

An iterative optimization procedure maintaining primal and dual variables is presented as 

well. Section 3 uses strong duality results from non-smooth convex optimization to deduce 

the corresponding dual energy, that provides further theoretical insights, and is a useful 

indicator to stop the iterations. In Section 4 the results obtained in the previous sections are 

used to derive novel procedures for certain classes of Markov random fields, thus providing 

an extension and unification of [2] and [20]. Section 5 concludes this work.

2. Anisotropic Continuous Maximal Flows

This section presents an extension of continuous maximal flows with isotropic capacity 

constraints as proposed in [2] to anisotropic node capacities. Fortunately, the approach used 

in [2] to prove the correctness and stability of the underlying partial differential equations 

for isotropic capacity constraints can be easily generalized to the anisotropic setting as 

shown in the next sections.

2.1. Wulff Shapes

The aim of this section is to introduce a technique allowing to rewrite non-differentiable 

terms like ‖ · ‖ as better manageable expressions: unconstrained optimization of certain non-

differentiable objective functions can be formulated as nested optimization of a scalar 

product term subject to a feasibility constraint induced by the respective Wulff shape (e.g. 

[19]):

Definition 1—Let ϕ : ℝN → ℝ be a convex, positively 1-homogeneous function (i.e. ϕ(λx) 

= λϕ(x) for λ > 0). The Wulff shape Wϕ is the set

(1)

where we denote the inner product in ℝN by 〈·, ·〉.

The Wulff shape Wϕ is a convex, bounded and closed set. Further 0 ∈ Wϕ. Given a Wulff 

shape Wϕ the generating function ϕ(·) can be recovered by
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(2)

For consistency with [2] and with the dual energy formulation (Section 3), we will use Eq. 2 

in a slightly modified form with negated dual variables, i.e.

(3)

where we introduce the negated Wulff shape,

An important set of functions ϕ satisfying the convexity and positive 1-homogeneity 

constraint are norms. The Wulff shape for the Euclidean norm, ‖ · ‖2 is the unit ball with 

respect to ‖ · ‖2. In general, the Wulff shape for the lp norm is the unit ball of the dual norm, 

‖ · ‖q, with 1/p + 1/q = 1.

One useful observation about Wulff shapes in the context of this work is the geometry of the 

Wulff shape for linear combinations of convex and positively 1-homogeneous functions. It 

is easy to see that the following holds:

Observation 1—Let ϕ and ψ be two convex, positively 1-homogeneous functions, and k ∈ 

ℝ > 0. Then, the following relations hold:

(4)

where A ⊕ B denotes the Minkowski sum of two sets A and B. Further,

(5)

This observation allows us to derive the geometry of Wulff shapes for positive linear 

combinations of given functions from their respective individual Wulff shapes in a 

straightforward manner.

In [19] is it shown, that we have ϕ (x) = 〈y, x〉 for non-zero x and y ∈ Wϕ if and only if

(6)

where ∂Wϕ denotes the boundary of the Wulff shape and NWϕ(y) is the set of outward 

pointing normals at y ∈ ∂Wϕ. Note that this observation is equivalent to the Fenchel-Young 

equation (see Section 3), but expressed directly in geometric terms.
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2.2. Minimal Surfaces and Continuous Maximal Flows

Appleton and Talbot [2] formulated the task of computing a globally minimal surface 

separating a known source location from the sink location as a continuous maximal flow 

problem. Instead of directly optimizing the shape of the separating surface ∂A, the indicator 

function of the respective region A enclosing the source is determined.

In this section we derive the main result of [2] for anisotropic capacity constraints. Let Ω ⊂ 

ℝN be the domain of interest, and S ⊂ Ω and T ⊂ Ω the source and sink regions, 

respectively. Further, let ϕx be a family of convex and positively 1-homogeneous functions 

for every x ∈ Ω. Then the task is to compute a binary valued function u : Ω → {0, 1}, that is 

the minimizer of

(7)

such that u(x) = 1 for all x ∈ S and u(x) = 0 for all x ∈ T. Note that we have replaced the 

usually employed weighted Euclidean norm by the general, spatially varying weighting 

function ϕx. In the following we will drop the explicit dependence of ϕx on x and will only 

use ϕ. Since ϕ is convex and positively 1-homogeneous, we can substitute ϕ(∇u) by 

maxy∈Wϕ 〈−y, ∇u〉 (recall Eq. 3) and obtain:

(8)

We will collect all dual variables y ∈ −Wϕ into a vector field p : Ω → −Wϕ. Hence, we 

arrive at the following optimization problem:

(9)

together with the source/sink conditions on u and the generalized capacity constraints on p,

(10)

In many applications the Wulff shape Wϕ is centrally symmetric, and the constraint −p(x) ∈ 

Wϕx is then equivalent to p(x) ∈ Wϕx.

The functional derivatives of Eq. 9 with respect to u and p are

(11)

subject to Eq. 10 and the source and sink constraints on u. Since we minimize with respect 

to u, but maximize with respect to p, the gradient descent/ascent updates are
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(12)

subject to −p ∈ Wϕ. These equations are exactly the ones presented in [2], the only 

difference lies in the generalized capacity constraint on p. The basic setup is illustrated in 

Fig. 1.

Correctness at Convergence—The first order optimality conditions are (recall Eq. 11):

(13)

(14)

(15)

The first equations implies that there are no additional sources or sinks in the vector field p 
and flow lines connect the source and the sink. If the generalized capacity constraint Eq. 10 

is active (i.e. p ∈ −Wϕx), we have ∇u ∈ NWϕ(−P) by Eq. 6. Further, we have 〈 −p, ∇u 〉 = 

ϕ(∇u) ≥ 0 whenever the capacity is saturated, since ϕ is a non-negative function. 

Consequently, u is a non-decreasing function along the flow lines of − p (or equivalently, u 

is non-increasing along the flow lines of p), which is the key observation to prove the 

essentially binary nature of u. The proof for the optimality after thresholding u by an 

arbitrary value θ ∈ (0,1) is an extended version of the one given in [2]. Since the proof relies 

on duality results derived later in Section 3, we postpone the proof to the appendix.

2.3. Numerical Considerations

Discretization—For finite lattices the gradient operator ∇ and the divergence operator div 

need to be dual. We do not employ the staggered grid approach proposed in [2], but use the 

same underlying grids for u and p in our implementation. ∇u is evaluated using forward 

differences, whereas div p is computed by backward differences. In order to ensure that the 

negated gradient and the divergence are adjoint linear operators, in the finite setting, suitable 

boundary conditions are required [10, 8].

The gradient descent equations in Eq. 12 are applied using an explicit Euler scheme with a 

uniform time step τ. Since these equations are the same discrete wave equations as in [2], 

the same upper bound on the time step holds, i.e. τ < 1/√N. The update of p is followed by a 

reprojection step to enforce p ∈ −Wϕ.

Complex Wulff Shapes—In many cases this reprojection step is just a clamping 

operation (e.g. if ϕ is the L1 norm) or a renormalization step (if ϕ is the Euclidean norm). 

Determining the closest point in the respective Wulff shape can be more complicated for 

other choices of ϕ. In particular, if the penalty function is of the form (ϕ + ψ), then it is easy 
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to show that maintaining separate dual variables for ϕ and ψ yields to the same optimal 

solution – with the drawback of increased memory consumption.

Terminating the Iterations—A common issue with iterative optimization methods is a 

suitable criterion when to stop the iterations. An often employed, but questionable stopping 

criterion is based on the length of the gradients or update vector. In [2] a stopping criterion 

was proposed, that tests whether u is sufficiently binary. This criterion is problematic in 

several cases, e.g. if a reasonable binary initialization is already provided. A common 

technique in optimization to obtain true quality estimates for the current solutions is to 

utilize strong duality. The current primal energy (which is minimized) yields a upper bound 

on the true minimum, whereas the corresponding dual energy provides a lower bound. If the 

gap is sufficiently small, the iterations can be terminated with guaranteed optimality bounds. 

Since the formulation and discussion of duality in the context of anisotropic continuous 

maximal flows provides interesting connections, we devote the next section to this topic.

3. Dual Energy

Many results on the strong duality of convex optimization problems are well-known, e.g. 

primal and dual formulations for linear programs and Lagrange duality for constrained 

optimization problems. The primal energy Eq. 7 is generally non-smooth and has constraints 

for the source and sink regions. Thus, we employ the main result on strong duality from 

convex optimization to obtain the corresponding dual energy (e.g. [5]).

3.1. Fenchel Conjugates and Duality

The notion of dual programs in convex optimization is heavily based on subgradients and 

conjugates:

Definition 2—Let f : ℝN → ℝ be a convex and continuous function. y is a subgradient at x0 

if

The subdifferential ∂f(x) is the set of subgradients of f at x, i.e. ∂f(x) = {y : y is a subgradient 

of f at x}.

Intuitively, for functions f : ℝ → ℝ, subgradients of f at x0 are slopes of lines containing (x0, 

f(x0)) such that the graph f is not below the line.

Definition 3—Let f : ℝN → ℝ be a convex and semi-continuous function. The Fenchel 

conjugate of f, denoted by f* : ℝN → ℝ is defined by

(16)

Zach et al. Page 6

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2015 February 25.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



f** = f if and only if f is convex and semi-continuous. From the definition of f*, we obtain

(17)

i.e. the graph of f is above the hyperplane [y, 〈z, y〉 − f*(z)] (Fenchel-Young inequality). 

Equality holds for given y, z if and only if z is a subgradient of f (or equivalently, y is a 

subgradient of f*, Fenchel-Young equation).

Let A ∈ ℝM × N be a matrix (or a linear operator in general). Consider the following convex 

optimization problem for convex and continuous f and g:

(18)

The corresponding dual program is [5]:

(19)

Fenchel's duality theorem states, that strong duality holds (under some technical condition), 

i.e. p = d. Further, since the primal program is a minimization problem and the dual program 

is maximized,

(20)

is always true for any y ∈ ℝN and z ∈ ℝM. This inequality allows to provide an upper bound 

on the optimality gap (i.e. the distance to the true optimal energy) in iterative algorithms 

maintaining primal and dual variables.

3.2. Dual Energy for Continuous Maximal Flows

Now we consider again the basic energy to minimize (recall Eq. 7)

Without loss of generality, we assume Ω to be 3-dimensional, since our applications are in 

such a setting. Let A denote the gradient operator, i.e. A(u) = ∇u. In the finite setting, A will 

be represented by a sparse 3|Ω| × |Ω| matrix with ±1 values at the appropriate positions.

The function g represents the primal energy,

(21)
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(A ∘ u)(x) denotes ∇u(x) Since A is a linear operator and ϕx is convex, g is Convex with 

respect to u.

The second function in the primal program, f, encodes the restrictions on u. The value 

attained by u(x) should be 1 for source locations x ∈ S, and 0 for sink regions, u(x) = 0 for x 
∈ T. W.l.o.g. we can assume u(x) ∈ [0,1] for all x ∈Ω. Without this assumption it turns out 

that the dual energy is unbounded (−∞) if div p(x) ≠ 0 for some x ∈ Ω not in the source or 

the sink region (see below). We choose f as

(22)

We denote the space of functions satisfying the constraints (equivalently, with finite f(u)) by 

.

The dual variable is a vectorial function (vector field) p : Ω → ℝ3. Since g(∇u) is a sum 

(integral) of ϕx acting on independent components of ∇u, we have for the conjugate 

function g*:

(23)

Since all ϕx share the same properties, we drop the index and derive the Fenchel conjugate 

for any convex, positively 1-homogeneous function ϕ(y). First, note that the Wulff shape Wϕ 

is nothing else than the subdifferential of ϕ at 0, i.e. Wϕ = ∂ϕ(0):

where we made use of ϕ(0 · y) = 0 · ϕ(y) = 0. Hence, we obtain for every z ∈Wϕ (by the 

Fenchel-Young equation)

(24)

If z ∉ Wϕ, then there exists a y such that 〈z, y〉 > ϕ(y). Further, 〈z, λy〉 > ϕ(λy) = λϕ(y) for 

any λ > 0, and therefore ϕ*(z) = supy [〈z,y〉 − ϕ(y)] is unbounded. In summary, we obtain

(25)

i.e. the conjugate of ϕ is the indicator function of the respective Wulff shape.
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The conjugate of f, f*, can be computed directly. The argument of f* is a mapping from Ω to 

negated divergences, q : Ω → ℝ with

where A* is the adjoint operator to A (recall that ∇* = − div). Further, let Ω̊ denote the 

domain without the source and sink sets, i.e. Ω̊ = Ω \ (S ∪ T), then

(26)

(27)

(28)

(29)

since u is fixed to 1 x ∈ S, u (x) = 0 for x ∈ T, and between 0 and 1 for locations neither at 

the source nor the sink.

In summary, the primal energy to evaluate is given in Eq. 7, and the dual energy (recall Eq. 

19) is given by

(30)

(31)

subject to p(x) ∈ − Wϕx. The two terms in the dual energy have direct interpretations: the 

first term,

(32)

measures the total outgoing flow from the source, while the second term, ∫Ω̊ min(0, div p) 

dx, penalizes additional sinks in the interior of Ω. Thus, it corresponds directly to the well-

known min-cut/max-flow theorem.

If we do not add a bounds constraint on u, here u(x) ∈ [0,1], then it is easy see show that a 

strict penalizer on the divergence outside S and T is obtained. The dual energy contains just 

the source term,
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(33)

subject to p ∈ −Wϕx and div p = 0 in Ω̊. For p not satisfying these constraints the dual 

energy is −∞. Algorithms as the gradient descent updates in Eq. 12 achieve div(p) = 0 only 

in the limit, hence the strict penalty on div(p) ≠ 0 is not beneficial. Nevertheless, Eq. 33 is 

useful for analysis after convergence.

The bounds constraint u(x) ∈ [0,1] is redundant for the primal energy, since u(x) ∈ [0,1] is 

always true for minima of Eq. 7 subject to the source and sink constraints. In the dual setting 

this range constraints has the consequence, that any capacity-constrained flow p is feasible. 

Any additional flow generated by p at the source S, but vanishing in the interior is subtracted 

from the total flow in Eq. 31, hence the overall dual energy remains the same, and bounded 

and unbounded formulations are equivalent. In practice, we observed substantially faster 

convergence if u is clamped to [0,1] after each update step, and a meaningful value for the 

duality gap is thus obtained.

3.3. Equivalence of the Dual Variables

It remains to show, that the dual vector field p introduced in Section 2 (Eq. 9) in facts 

corresponds to the dual vectorial function p introduced in the dual energy formulation (Eq. 

31). This is easy to see: after convergence of the primal-dual method, the primal-dual energy 

is

since u is one in S and zero in T, and div p = 0 in Ω̊. Consequently, the primal-dual energy in 

terms of p after convergence is identical to the total flow emerging from the source, i.e. 

equal to the dual energy. Thus, p as maintained in the primal-dual formulation is equivalent 

to the argument of the pure dual one.

4. Application to Markov Random Fields

In this section we address the task of globally optimizing a Markov random field energy, 

where every pixel in the image domain can attain a label from a discrete and totally ordered 

set of labels ℒ. Without loss of generality, we assume that the labels are represented by non-

negative integers, i.e. ℒ = {0,…, L − 1}. Similar to [22, 21, 2, 20], we formulate the label 

assignment problem with linearly ordered label sets as a segmentation task in higher 

dimensions.

4.1. From Markov Random Fields to Anisotropic Continuous Maximal Flows

We denote the (usually rectangular) image domain by ℐ and particular pixels in bold font, 

e.g. x ∈ ℐ. We will restrict ourselves to the case of two-dimensional image domains. A 
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labeling function Λ : ℐ → ℒ, x ↦ Λ(x) maps pixels to labels. The task is to find a labeling 

function that minimizes an energy functional comprised of a label cost and a regularization 

term, i.e. to find the minimizer of

(34)

where c(x, Λ(x)) denotes the cost of selecting label Λ(x) at pixel x and V(·)is the 

regularization term. Even for convex regularizers V(·)is optimization problem is generally 

difficult to solve exactly, since the data costs are typically highly non-convex. By 

embedding the labeling assignment into higher dimensions, and by appropriately restating 

the energy in Eq. 34, a convex formulation can be obtained. Let Ω be the product space of ℐ 

and ℒ i.e. Ω = ℐ × ℒ.

In the following, we introduce the level function u,

(35)

Since one label must be assigned to every pixel, we require that u(x, L) = 1 for all x ∈ ℐ. 

Further, u(x, 0) = 0 by construction. In particular, the gradients of these function in spatial 

direction (∇x) and in the label direction (∇l) play an important role, i.e.

Finally, ∇u specifies the full gradient of u in spatial and label directions, ∇u = (∂u/∂x, ∂u/∂y, 

∂u/∂l)T.

We assume, that the regularization energy in Eq. 34 can be written in terms of the gradient 

of the level function, i.e. V(·) can be formulated as

(36)

where ψx,l is a family of convex and 1-positively homogeneous functions, that shapes the 

regularization term. The same technique as proposed in [20] can be applied to rewrite the 

data term:

(37)

(38)
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where |∇lu| ensures that costs stay positive even for general choices of u, that attain any real 

value and are not monotonically increasing in their label argument.

By combining the data fidelity and regularization terms, we can rewrite the original energy 

Eq. 34 purely in terms of u (where we omit the explicit dependence of x and l),

(39)

Since ψx,l and c| · | are convex and 1-positively homogeneous, their sum ϕx,l(·) : = ψx,l(·) + 

cx,l |·| shares this property. Finally, we can rewrite Eq. 39 as

(40)

Since ϕx,l is again a family of positively 1-homogeneous functions, the anisotropic 

continuous maximal flow approach described in Section 2 can be applied. Specifically, the 

solution u after convergence is essentially binary and monotone in the label direction, thus 

the optimal labeling function Λ can be easily recovered from u.

4.2. Choices for ψ

In [20] a different approach is taken to analyze the particular choice ψx(∇u) = ‖∇xu‖2 

(resulting in a special case of the updates in Eq. 12). By the co-area formula it can be shown, 

that this choice for ψx corresponds to the total variation regularization of the underlying 

labeling function Λ,

(41)

As such, using ψx for the smoothness term results in the preference of piecewise constant 

assigned labels. The corresponding Wulff shape Wϕx,l of ϕx,l = ‖ ∇xu‖2 + αc|∇lu| is a 

cylinder with its height proportional to the label cost c(x, l). Since the regularization term is 

isotropic in the image domain, i.e. the smoothness term does not depend on the actual image 

content, we denote this particular regularization as homogeneous total variation. Note that it 

is easy to “squeeze” this cylinder depending on the strength and orientation of edges in the 

reference image in the stereo pair (Figure 2). In order to use only relevant image edges, the 

structure tensor of the denoised reference image can be utilized to shape the resulting Wulff 

shape. We use the phase field approach [1] for the Mumford-Shah functional [18] to obtain 

piecewise smooth images. The positive impact on the resulting depth maps (with the 

sampling insensitive Birchfield-Tomasi matching cost [4]) is illustrated in Figure 3.

The total variation regularization on the depth map is rather inappropriate if the labels 

directly correspond to metric depth values in 3D space instead of pure image disparities. A 

more suitable choice is ψ = ‖∇u‖, if we assume that labels represent equidistantly sampled 

depth values. This particular choice penalizes the 3D surface area and yields smoother 3D 

models largely suppressing staircasing artifacts. This specific choice for regularization 

complies with smoothing the depth map based on an induced surface metric [24]. It can be 
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readily verified that the respective Wulff shape is a capsule-like shape (i.e. a cylinder with 

half-spheres attached to its base and top face). Figure 4(a–b) visually compares the 3D 

meshes for the “Dino ring” dataset [23] obtained using total variation regularization ‖∇xu‖ 

(Fig. 4(a)) and 3D regularization ‖∇u‖ (Fig. 4(b)). Figure 4(c) and (d) display the 3D models 

obtained for a brick wall, for which a laser scanned reference range image is available. The 

RMS for (c) is 5.1cm, and 3.2cm for (d) with respect to the known range image.

The underlying update equations Eq. 12 are very suitable to be accelerated by a modern 

GPU. Our current CUDA-based implementation executed on a Geforce 8800 Ultra is able to 

achieve two frames per second for 320 × 240 images and 32 disparity levels (aiming for a 

2% duality gap at maximum).

5. Conclusion

This work analyzes the relationship between continuous maximal flows, Wulff shapes, 

convex analysis and Markov random fields with convex and homogeneous pairwise priors. 

It is shown that strong results from isotropic continuous maximal flow carry over to flows 

with anisotropic capacity constraints. The underlying theory yields extensions to a recently 

proposed continuous and convex formulation for Markov random fields with total variation-

based smoothness priors. The numerical simplicity and the data-parallel nature of the 

minimization method allows an efficient implementation on highly parallel devices like 

modern graphics processing units.

Future work will address the extension of this work to more general classes of MRFs by 

investigating other linear operators than ∇, e.g. using ‖∇x ∇lu‖ in the regularization term 

corresponds to the LP-relaxation of MRFs with a Potts discontinuity prior.

A. The Potential u is Essentially Binary

This section shows, that thresholding of a not necessarily binary primal solution u* of the 

anisotropic geodesic energy Eq. 7 yields to a equally globally optimal solution. Let u* and 

p* be a pair of primal and dual globally optimal solutions for the continuous maximal flow 

energy Eq. 9. Recall that the optimal dual energy is the total flow leaving the source S (Eq. 

33):

(42)

and that v* is equal to the primal energy E(u*) = ∫ ϕ(∇u*). The thresholded result of u*, uθ, 

is given by
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Further, define Aθ := {x ∈ Ω : u*(x) ≥ θ}. Note that for x ∈ Ω with ∇uθ(x) ≠ 0 (or 

equivalently x ∈ ∂Aθ) we have ∇u*(x) ≠ 0 by construction. Even a stronger relation holds: 

∇uθ(x) = k(x) ∇u*(x) for a positive scalar k(x), since both gradients point in the same 

direction. Further, the capacity constraint is active at x ∈ Aθ: −p*(x) ∈ ∂Wϕx. Thus, for all x 
∈ Aθ (omitting the explicit dependence on x)

Overall we have:

since div p* = 0 in Ω̊ and uθ is 1 in S and 0 in T. This means, that the binary function uθ has 

the same energy as u* and is likewise optimal.
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Figure 1. 
Basic illustration of the anisotropic continuous maximal flow approach. The minimum cut 

separating the source S and the sink T, the flow field p, and one anisotropic capacity 

constraint Wϕ (convex shape) are depicted.
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Figure 2. 
The Wulff shape for homogeneous (left) and edge driven (right) total variation regularizers.
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Figure 3. 
Depth maps with and without edge driven regularization. (a) is based on homogeneous total 

variation regularization, and (b) utilizes edge driven regularization. Observe that in (a) the 

low data fidelity weight yields to substantial loss of detail in the depth map, which is clearly 

better preserved in (b).
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Figure 4. 
3D meshed obtained for ψ = ‖∇xu‖ (a, c) and ψ = ‖∇u‖ (b, d). Clearly, ‖∇xu‖ favors piece-

wise constant results. In (d) the strong matching term causes a visible step structure 

especially in the foreground. Using a lower value of λ in (c) removes the floor (bottom part 

of the mesh).
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