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Abstract

Objective—Energetic adaptations induced by bariatric surgery have not been studied in
adolescents or for extended periods post-surgery. Energetic, metabolic and neuroendocrine
responses to Roux-en-Y gastric bypass surgery (RYGB) were investigated in extremely obese
adolescents.

Design and Methods—At baseline and at 1.5, 6 and 12 months post-baseline, 24-h room
calorimetry, body composition and fasting blood biochemistries were measured in eleven obese
adolescents relative to five matched controls.

Results—In RYGB group, mean weight loss was 44+19 kg at 12 months. Total energy
expenditure (TEE), activity EE, basal metabolic rate (BMR), sleep EE and walking EE
significantly declined by 1.5 months (p=0.001) and remained suppressed at 6 and 12 months.
Adjusted for age, sex, FFM and FM, EE was still lower than baseline (p=0.001). Decreases in
serum insulin, leptin, and T3, gut hormones, and urinary norepinephrine (NE) paralleled the
decline in EE. Adjusted changes in TEE, BMR and/or sleep EE were associated with decreases in
insulin, HOMA, leptin, TSH, total T3, PYY3-36, GLP2 and urinary NE and epinephrine
(p=0.001-0.05).

Conclusions—Energetic adaptations in response to RYGB-induced weight loss are associated
with changes in insulin, adipokines, thyroid hormones, gut hormones and sympathetic nervous
system activity, and persist 12 months post-surgery.

Keywords
bariatric surgery; basal metabolic rate; total energy expenditure; calorimetry

Address all correspondence to: Nancy F. Butte, Ph.D., Children’s Nutrition Research Center, Baylor College of Medicine, 1100 Bates
Street, Houston, TX 77030, Telephone: 713-798-7179, FAX: 713-798-7187,nbutte@bcm.edu.

Competing interests: The authors have no competing interests.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Butte et al.

Page 2

Introduction

Bariatric surgery induces massive reductions in body weight that are associated with
energetic adaptations that favor weight regain (1). These adaptations involve multiple
signals including regulatory hormones from the gastrointestinal tract and pancreas impacting
glucose homeostasis, adipokines affecting inflammation and insulin resistance, and the
hypothalamic-pituitary axis (HPA) regulating energy balance in part through thyroid,
autonomic nervous system, and adrenal mediators (2, 3).

The metabolic changes induced by bariatric surgery result in resolution or improvement in
obesity-related comorbidities including type 2 diabetes, hyperlipidemia, liver disease,
obstructive sleep apnea, pseudotumor cerebri, hypertension, and psychological disorders (3).
Inevitably, bariatric surgery induces some loss of fat-free mass (FFM) which is undesirable
since FFM is responsible for the majority of basal metabolism, regulation of core body
temperature, cardiopulmonary function, skeletal integrity and mobility.

For extremely obese adolescents who have been unable to achieve a healthy weight with
conventional treatment, Roux-en-Y gastric bypass surgery (RYGB) is an option (4). RYGB
is a diversionary procedure which creates a very small gastric pouch considerably restricting
meal size and promoting early satiety. A surgical anastomosis connects the gastric pouch to
the mid-jejunum using a 125-150 cm Roux limb, diverting ingested macro- and
micronutrients from the duodenum, decreasing the efficiency of micronutrient absorption

).

Dietary energy restriction and weight loss elicit energetic adaptations or compensatory
changes in energy expenditure that are greater than that accounted for by the residual active
tissue mass (9). Decreased sympathetic nervous system (SNS) tone and circulating
concentrations of leptin, and thyroid hormones act coordinately to favor weight regain.
Energetic adaptations to bariatric surgery have been documented in adults mainly using
portable respiration calorimeters (6), but also room respiration calorimetry (7) and doubly
labeled water (8).

Persistence of energetic adaptations beyond the period of active weight loss by conventional
means (9, 10) or bariatric surgery remains controversial (6). Studies demonstrate prolonged
reduction in EE (9, 11, 12), while others show no persistence (13, 14). Whether energetic
adaptations occur and persist in maturing adolescents is critical to understanding
mechanisms of weight loss maintenance, and in particular, recidivism after RYGB.

The primary study objective was to investigate energetic, metabolic and neuroendocrine
responses to RYGB in extremely obese adolescents at 1.5, 6 and 12 months after surgery.
Specific aims were to: 1) monitor changes in weight and body composition using a multi-
compartment model, 2) measure changes in neuroendocrine factors, 3) measure 24-h EE and
substrate utilization using room respiration calorimetry, and 4) identify neuroendocrine
factors associated with the changes in EE and substrate utilization.
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Methods

Human subjects

A 12-month prospective study design was used to investigate energetic, metabolic and
neuroendocrine responses to RYGB (n=11) in extremely obese adolescents. A control group
(n=5) matched for initial weight, body mass index (BMI) and body composition was used to
ascertain effects due to extreme obesity itself or protocol procedures. Anthropometry, body
composition, 24-h room respiration calorimetry, and 12-h fasting blood and 24-h urine
samples for neuroendocrine biochemistries were measured at baseline, and at 1.5, 6 and 12
months post-baseline to represent the following pre-surgical (baseline) and post-surgical
phases: rapid weight loss (1.5 months after surgery), moderate weight loss (6 months after
surgery), and minimal weight loss or weight maintenance (12 months after surgery).
Controls were studied at baseline, and at 1.5, 6 and 12 months post-baseline.

Subjects were recruited from the Texas Children’s Hospital (TCH) Adolescent Bariatric
Surgery Program. Adolescents electing surgery (RYGB group) or declining surgery and not
enrolled in conventional weight loss programs (controls) were asked to participate. Inclusion
criteria were Tanner stage 1V or V and BMI=50 kg/m? or BMI=40 kg/m? with
comorbidities. Exclusion criteria included a positive urine pregnancy test, and serious
psychiatric or cognitive disorders.

Study participation did not interfere with the routine clinical care of the RYGB patients.
Following bariatric surgery, regular and frequent follow-up visits assessed weight loss and
monitored for postoperative complications, dietary progression, and adequacy of physical
activity. Immediately postoperative until day 2, the patients ingested only clear liquids.
Thereafter, patients were slowly advanced from a sugar-free full liquid diet to a soft diet,
and finally to a regular diet. By six months post-surgery, the diet prescription was a regular
diet consisting of 3 meals and 2 snacks per day, with an emphasis on high protein sources. A
multivitamin mineral supplement with iron and supplemental calcium were prescribed.

Anthropometry

Body weight to the nearest 0.1 kg was measured with a digital scale (Tanita Corporation,
model TBF-410, Arlington Heights, IL) and height to the nearest 1 mm was measured with a
stadiometer (Seca, model 2261 Chino, CA). Waist circumference was measured using a non-
extensible metal tape measure.

Body Composition

Body composition was estimated using the Fuller three-compartment model based on total
body water (TBW) and body volume (15). TBW was measured by the 2H isotope dilution
following an oral dose (0.04 g/kg body weight) of deuterium oxide (2H,0). 2H abundances
of baseline, 4- and 6-h post-dose urine samples were measured by gas-isotope-ratio mass
spectrometry (16, 17). Body volume and body density were measured by air-displacement
plethysmography (ADP) utilizing the BodPod (Life Measurements, Inc. Concord, CA).
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Blood Chemistries

Serum glucose (Analox Instruments, Lundeburg, MA) and nonesterified fatty acids (NEFA)
were measured by enzymatic-colorimetric techniques (Wako Diagnostics, Richmond, VA).
Enzyme-linked-immunosorbent assays (ELISA) were used to measure serum insulin,
resistin, adiponectin and glucagon-like peptide-2 (GLP2) (Millipore, Billerica, MD) and C-
reactive protein (CRP) (Alpco Diagnostics, Salem, NH). Homeostatic model assessment
(HOMA) was used to quantify insulin resistance (18). Radioimmunoassays (RIA) were used
to measure serum leptin, peptide YY3-36 (PYY3-36), glucagon-like peptide-1(GLP1)
(EMD Millipore, Billerica, MA), and thyroid stimulating hormone (TSH), total and free
thyroxine (T4) and triiodothyronine (T3) and reverse T3 (Siemens, Deerfield, IL).

ELISAs were used to quantify urinary norepinephrine (NE) and epinephrine (E) (Rocky
Mountain Diagnostics, Colorado Springs, CO). Urinary nitrogen concentrations were
determined by Kjeldahl digestion (Kjeltec Auto Analyzer 1030; Tecator, Hoganas, Sweden)
and a phenol-hypochlorite colorimetric reaction (19).

Room Respiration Calorimetry Protocol

Energy expenditure was measured for 24 hours in one of the two large 34-m3) calorimeters.
The design, instrumentation and performance of the calorimeters have been published (20).
During the 24-h calorimetry, subjects adhered to a schedule of physical activity (treadmill
walking), feeding and sleeping. Heart rate and physical activity were recorded using
Actiheart (CamNtech, Cambridge, UK). From the VO, VCO», and urinary nitrogen
excretion, TEE, nonprotein energy expenditure (NPEE), respiratory quotient (RQ), and net
substrate utilization (21).

During 24-h calorimetry, the diet prescribed for the RYGB patients was served to both the
RYGB and control groups. Food intake was provided as three meals and two shacks with a
macronutrient composition consisting of 30% protein, 25% fat and 45% carbohydrate. Food
intake was offered at 1.2 times BMR predicted for obese adolescents at baseline, and at 600,
1100 and 1400 kcal/d at 1.5, 6 and 12 months post-baseline, respectively.

BMR was measured after a 12-h fast upon awakening for 30 minutes. Sleeping EE was
measured for the entire night sleep period, confirmed by heart rate and motion sensors.
Activity energy expenditure (AEE) was computed as TEE-BMR-0.1TEE assuming diet-
induced thermogenesis to be 10% of TEE. Physical activity level (PAL) was defined as
TEE/BMR. Energy cost of walking was measured while walking at 2.5 mph for 15 minutes
on a treadmill (Vision Fitness T9600)(22). The energy economy of walking
(kcal-kg~1-km~1) was calculated as the ratio of the net EE standardized by weight per minute
(kcal-kg=1-min~1) divided by speed (km/min).

Statistical Methods

Statistical analysis was performed using STATA (version 13.0, Statacorp, College Station,
TX) and SAS (SAS Institute Inc., Cary, NC). Independent t tests for continuous variables
and chi-square tests for categorical variables were used for descriptive analyses. A nonlinear
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regression with an exponential decay model was used to fit the weight data of the RYGB
group (GraphPad Software, Inc., La Jolla, CA).

A linear mixed effects regression model for repeated measures was used where subjects
were treated as random effects and group assignment (RYGB or control), measurement time
from baseline, and potential interactions between group and time as fixed effects. As
necessary, natural logarithms were used to transform data to better satisfy the linearity and
distributional assumptions. Post-hoc comparisons using Tukey-Kramer for multiple
comparisons with two-tailed statistical tests between time points were performed.

A total of 11 adolescents (3M/8F) electing RYGB and 5 controls (3M/2F) participated.
Mean age at enrollment was 16.5 + 0.8 y in the RYGB and 14.8 1.2 y in controls (p=0.03).
At baseline, weight, height, BMI, waist circumference, body volume, FFM, FM and percent
FM did not differ between RYGB and controls.

Anthropometry and body composition of the RYGB and controls are summarized in Table
1. Adjusted for age and sex, significant group X time interactions were observed for all
parameters (p=0.000-0.019). Highly significant (p=0.001) time effects for weight, BMI,
waist circumference, and the body composition parameters were seen for the RYGB group
only.

In the RYGB group, mean total weight lost was 44 + 19 kg or 30 = 11% of initial body
weight at 12 months. Mean weight loss was —16, —18 and —10 kg from baseline to 1.5
months, 1.5 to 6 months and 6 t012 months, equivalent to 11, 14 and 9% of initial body
weight, respectively. Substantial variation was seen in the rate of weight loss (299 + 120 g/d
during the first 1.5 months, 110 + 62 g/d between 1.5 to 6 months, and 48 + 45 g/d between
6 and 12 months). Based on multiple clinical weights, individual patterns of weight loss in
the RYGB group were described by a negative exponential function (mean r2=0.98) (Figure
1). By 12 months, weight loss had reached a plateau in all (=5 = 5 g/d) but two RYGB
participants (=51 g/d and —77 g/d). No change in height was observed over the period of
study in either group.

Body composition changed significantly in the RYGB group (p<0.001), but not in the
controls. TBW and FFM loss occurred primarily in the first 1.5 months after surgery, with
only minor (non-significant) changes thereafter. Hydration of FFM averaged 73.4% and did
not differ by group or time. Total FFM loss averaged 8.3 + 3.7 kg or 12 + 5% of initial FFM.
In contrast, FM decreased steadily over the 12 months post-surgery; total FM loss was 36 +
20 kg or 47 + 22% of initial FM.

Fasting blood chemistries and 24-h urinary catecholamines are presented in Table 2.
Adjusted for age and sex, significant group X time interactions were seen for all parameters
(p=0.0012-0.048). Further analysis revealed significant time effects for the RYGB group
only. NEFA increased significantly in the RYGB group 1.5 months after surgery and then
declined (p=0.001). Glucose was significantly lower than baseline at 1.5, 6 and 12 months
post-surgery (p=0.001). Insulin and consequently HOMA were significantly lower after
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surgery (p=0.001). Adiponectin steadily increased and leptin decreased post-surgery
(p=0.001), but resistin did not change. The inflammation marker CRP declined post-surgery
(p=0.01). Thyroid status was altered by RYGB: fasting serum TSH (p=0.03) and total T3
(p=0.003) decreased post-surgery. Significant changes were not seen in total T4, reverse T3
or free T3 or T4. Fasting levels of PPY3-36 and GLP2 declined (p=0.001), but GLP1 did
not change. Urinary excretion of norepinephrine, but not epinephrine, decreased after
surgery (p=0.01).

Total energy expenditure and its components measured by 24-h calorimetry are summarized
in Table 3. Adjusted for age and sex, significant group X time interactions were seen for
TEE and its components (p=0.001-0.01); significant time effects were observed in the
RYGB group, but not controls. TEE, BMR, sleep EE declined by 24, 19, and 24% at 1.5
months, and then remained at the suppressed level at 6 and 12 months after surgery.
Adjusted for age, sex, FFM and FM, post-surgical TEE (kcal/d), BMR (kcal/min) and sleep
EE (kcal/min) were still significantly lower than baseline (p=0.001). TEE, BMR and sleep
EE as a function of FFM are graphically displayed in Figure 2; the downward shift in TEE,
BMR and sleep EE occurred in the initial 1.5 months post-surgery and then persisted.
Similar to the pattern in EE, heart rate throughout the 24-h decreased significantly at 1.5
months after surgery (p=0.001), and remained at the lower level at 6 months (p=0.001) and
12 months (p=0.002).

In addition to changes in basal energy requirements, the energy expended in physical
activity also fell. AEE declined by 41% and the energy cost of walking dropped by 28% at
1.5 months after surgery (p=0.001). Adjusted for age, sex, FFM and FM, post-surgical AEE
(kcal/d) and walking EE (kcal/min) were still significantly lower than baseline (p=0.001-
0.0001) (Figure 2). The energy economy of walking (kcal-kg=-km™1) also decreased at 1.5
months post-surgery (p=0.001) and persisted at the lower level at 6 and 12 months post-
surgery.

Substrate utilization was significantly altered in the RYGB, but not controls (Table 4). At
1.5 months post-surgery, 24-h RQ and NPRQ declined sharply, reflective of increased fat
utilization and decreased carbohydrate utilization (p=0.001). Thereafter, the changes in fat
and carbohydrate utilization reversed, approaching baseline values. At 1.5 months post-
surgery, protein utilization dropped significantly (p=0.001), but was restored at 6 and 12
months. Adjusted for age, sex, FFM, FM and energy balance, the time effects for substrate
utilization were still significant (p=0.001-0.05).

Mixed-effects linear regression models adjusted for age, sex, FFM and FM were used to
explore neuroendocrine mechanisms associated with suppressed EE following RYGB (Table
5; Figure 3). Changes in TEE, BMR and/or sleep EE were associated with changes in
insulin, HOMA, adiponectin, leptin, TSH, total T3, PYY3-36, GLP2, and urinary NE and E.
Substrate utilization was not associated with neuroendocrine alterations; however, fat
utilization was positively associated with fasting serum NEFA.
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Discussion

Here within, we demonstrate that energetic adaptations in response to RYGB in severely
obese adolescents 1) are not totally explained by weight, FFM or FM loss; 2) are associated
with changes in insulin, leptin, adiponectin, T3, gut hormones, and SNS activity; and 3)
persist 12 months after surgery despite a diminishing rate of weight loss.

RYGB-induced energetic adaptations were observed in TEE and its components after
surgery. The majority of the adaptive thermogenesis occurred by 1.5 months after surgery,
coincident with the decline in FFM and biochemical changes. TEE, AEE, BMR, sleep EE
and walking EE declined by 24, 41, 19, 24, and 28% at 1.5 months, and then remained at the
suppressed level at 6 and 12 months after surgery. Heart rate paralleled the decline in EE,
probably driven by the autonomic nervous system (23). Despite the significant slowing of
weight loss by 12 months post-surgery, the pre-surgical relationship between EE and weight
or FFM was not restored. Lower energy economy of walking post-surgically also indicated
energy conservation. Within the confines of the calorimeter, AEE and PAL declined in both
groups, possibly due to habituation to the room calorimeter at follow-up.

As expected on very low calorie diets, negative energy balance caused a shift towards
increased fat oxidation. At 1.5 months after surgery, mean 24-h RQ was 0.76, and fat
utilization had increased markedly to 77% of EE, a finding likely explained best by a shift
from use of exogenous (dietary) energy intake to use of endogenous fat stores for fuel during
the rapid weight loss phase associated with hypocaloric dietary intake early postoperatively.
The measurements at 6 and 12 months demonstrated a decrease in fat utilization and an
increase in carbohydrate utilization, despite continued fat mass loss (utilization).

As first observed in the Minnesota Experiment by Keys et al. (24), caloric restriction
resulted in a reduction in basal metabolic rate (BMR) that was greater than that accounted
for by the loss in weight and FFM. In these adolescents, RYGB resulted in substantial
reductions in weight (30% of initial weight), as in other studies (25), and FM (47% of initial
FM) at 12 months post-surgery, but FFM (12% of initial FFM) appeared to be relatively
conserved. FFM loss occurred primarily in the first 1.5 months after surgery, and plateaued
thereafter. In these adolescents, the proportion of total weight loss was 22% as FFM, and
78% as FM at 12 months post-surgery. In adults, the proportion of weight loss was 31% as
FFM with RYGB (26).

The neuroendocrine mechanisms underlying the energetic responses to weight loss induced
by RYGB are not well elucidated but may involve insulin, adipokines, thyroid hormones,
gut hormones, and SNS activity. Our data demonstrates that decreases in fasting serum
insulin, leptin, and T3, and gut hormones, and 24-h urinary excretion of NE parallel the fall
in TEE, BMR and sleep EE, and that the effects on EE are statistically independent of FFM
and FM losses.

After RYGB, there was a rapid improvement in insulin sensitivity associated with changes
in total T3, leptin and adiponectin. The fall in insulin (27) and leptin with weight loss (29)
acts to decrease SNS activity (30), thereby lowering BMR independently of changes in
weight. Changes in NE likely contribute to the suppressed EE through direct effects on
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skeletal muscle and indirect effects on thyroid hormones (28). Adipokines (leptin,
adiponectin, resistin) interact both centrally and peripherally to regulate energy intake and
EE (29). Leptin can reduce FM centrally through inhibition of appetite, stimulation of
thermogenesis and fat oxidation. In these adolescents, leptin correlated closely with FM loss.
Leptin was a strong predictor of the adaptations in TEE, BMR and sleep EE. We did not
observe a significant effect of leptin on substrate utilization.

Thyroid hormones, specifically TSH and T3, decreased after RYGB-induced weight loss in
these adolescents. Elevated TSH and T3 levels in obese individuals have been shown to
normalize with substantial weight loss (30). The changes in T3 were associated with
adaptations in TEE, BMR and sleep EE, confirming the role of thyroid hormones in the
regulation of energy metabolism. A reduction in thyroid activity acts to decrease oxygen
consumption, slow cellular metabolism and conserve energy stores (31). In conventional
weight loss, plasma T3 fell in conjunction with 24-h TEE (32).

Changes in gut hormones after RYGB have been hypothesized to mediate enhanced satiety,
while effects on EE are uncertain. In humans, the effects of GLP1 and PYY on EE are
emerging but inconsistent (6). PY'Y was positively correlated with resting EE (33) and
negatively correlated in another study (34). Infusion of PYY3-36 tended to reduce EE in
lean and obese adults (35). In our study, fasting PY'Y3-36 and GLP2 declined after RYGB,
and were positively associated with TEE, BMR and sleep EE.

A series of studies explored whether energetic adaptations were a result of caloric restriction
during active weight loss or maintenance of a reduced weight after conventional weight loss
(9, 23,28, 36, 37). Maintenance of reduced weight was accompanied by increased skeletal
muscle work efficiency, decreased serum T3 and urinary norepinephrine excretion (28). Our
results corroborate these findings in that energetic adaptations were not observed in controls
subjected to acute caloric restriction during 24-h calorimetry, and TEE and its components
remained suppressed after RYGB-induced weight loss plateaued at 12 months.

Controversy exists over the persistence of energetic adaptations after weight loss (6, 10, 36,
38). The suppression of TEE, BMR, sleep EE, AEE and walking EE observed in these
adolescents after RYGB clearly persisted, despite the fact that weight loss had plateaued in
most cases. In 12 adults undergoing RYGB, TEE and sleep EE were reduced at 6 months
and persisted at 12 months (7). In another study, patients who regained weight two years
after RYGB had lower resting EE (39). After conventional weight loss, a disproportionate
reduction in EE persisted in individuals who maintained a body weight reduction of >210%
for greater than one year (9).

RYGB, when used for appropriate patients, clearly can afford substantial health benefits for
extremely obese adolescents. This study demonstrated that RYGB improved insulin
sensitivity, decreased heart rate and reduced inflammation, but also induced persistent
energetic, metabolic and endocrine adaptations that favor weight regain. Elucidating the
adaptations induced by weight loss after RYGB will be instrumental in guiding the clinical
management of these patients to prevent recidivism and future research into alternate
surgical and non-surgical treatments for morbid obesity.
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Figure 1.
Patterns of weight loss in adolescents undergoing RYGB surgery described by a negative

exponential function
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Figure 2.
Relationship between total, basal, sleeping and walking energy expenditure and fat-free

mass in RYGB and control groups at baseline and 1.5, 6 and 12 months post-baseline
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Figure 3.
Changes in total energy expenditure (TEE), basal metabolic rate (BMR), and fasting serum

hormones in adolescents at baseline and 1.5, 6 and 12 months post-surgery
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