
Myelodysplastic Syndromes

Olatoyosi Odenike, M.D.a, John Anastasi, M.D.b, and Michelle M. Le Beau, Ph.D.c,d

aAssistant Professor of Medicine, Section of Hematology/Oncology, and the Comprehensive 
Cancer Center, University of Chicago

bAssociate Professor of Pathology, Hematopathology and Clinical Hematology Laboratory, and 
the Comprehensive Cancer Center, University of Chicago

c,dProfessor of Medicine, Section of Hematology/Oncology, and the Comprehensive Cancer 
Center, University of Chicago

Synopsis

The myelodysplastic syndromes are a diverse group of clonal stem cell disorders characterized by 

ineffective hematopoiesis, peripheral cytopenias, and an increased propensity to evolve to acute 

myeloid leukemia. The molecular pathogenesis of these disorders is poorly understood, but 

recurring chromosomal abnormalities occur in ~50% of cases, and are the focus of much 

investigation. The availability of newer molecular techniques has allowed the identification of 

additional genetic aberrations, including mutations and epigenetic changes of prognostic and 

potential therapeutic importance. This review will focus on the key role of cytogenetic analysis in 

MDS in the context of the diagnosis, prognosis, and pathogenesis of these disorders.
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Introduction

The myelodysplastic syndromes (MDS) include a large spectrum of clonal hematopoietic 

stem cell disorders that are characterized by peripheral cytopenia(s), morphologic dysplasia, 

ineffective hematopoiesis, and a variable propensity to transform to acute myeloid leukemia 

(AML).1,2 The cytopenia can be limited to a single cell line resulting in anemia, 
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thrombocytopenia, or neutropenia, and can be chronic and somewhat indolent, or profound 

involving all three lineages with life-threatening consequences. The morphologic dysplasia 

associated with the ineffective hematopoiesis may be subtle and difficult to recognize but, in 

some cases, it can be impressive and evident in both the bone marrow and peripheral blood. 

The variable increase in blasts relates, in part, to the risk for transformation to AML, 

although progression is not solely dependent on the blast percentage. MDS is a disease of 

older adults with a median age at diagnosis of ~70 years3. Other risk factors for the 

development of MDS include tobacco use and exposure to solvents, such as benzene and 

agricultural chemicals. In ~10–15% of cases, the disease arises as a late complication of 

cytotoxic therapy (radiotherapy and/or chemotherapy) for a prior disorder, and is referred to 

as a therapy-related myeloid neoplasm (t-MN). MDS is frequently associated with clonal 

cytogenetic abnormalities, of significant prognostic4,5 and emerging therapeutic importance. 

An in-depth analysis of some of these is providing significant insights into underlying 

molecular alterations, which may hold clues to unraveling the pathogenesis of these 

disorders. This review will focus on the key role of cytogenetic analysis in MDS, in the 

context of the diagnosis, prognosis and molecular pathobiology of these disorders.

Diagnostic Considerations

MDS Classification

The earliest recognition of myelodysplastic disorders came with the identification of an 

anemia that was long-standing and refractory, followed by the recognition that these were 

sometimes preleukemic.6 The classic myelodysplastic syndrome is exemplified in Figure 1, 

which illustrates pancytopenia with multilineage dysplasia. Although such a case is classic, 

it belies the wide pathologic spectrum of MDS, which includes cases that are diagnostically 

challenging and difficult to distinguish on one hand from other benign causes of cytopenia 

and, on the other hand, from AML and other more aggressive clonal myeloid neoplasms.

The disease spectrum was expanded with the first classification proposed by the French 

American British (FAB) group in 1982.7 In this classification scheme the myelodysplastic 

disorders were divided into 4 subtypes with increasing blast percentage, or as chronic 

myelomonocytic leukemia (CMML). The 4 entities included refractory anemia (RA), 

refractory anemia with ring sideroblasts (RARS), refractory anemia with excess of blasts 

(RAEB), and refractory anemia with excess of blasts in transformation (RAEB-T). These 

entities differed mainly by the percentage of blasts seen in the bone marrow (Table 1). In the 

FAB scheme, AML was defined by the presence of ≥30% blasts in the blood or marrow.

CMML was included by the FAB in the MDSs, although it was well recognized that CMML 

differed in that it had a proliferative component with increased circulating and marrow 

monocytes.8 At times, the peripheral leukocytosis was particularly elevated in the so-called 

myeloproliferative type, whereas the process was considered to be a dysplastic type and 

included in the MDS category when the count was less than 13K/uL.9

The classification of MDS presented by the WHO committee in 2001 resulted in significant 

changes to the classification of both MDS and AML (Table 1).10 Most notable was the 

reduction in the blast percentage required for a diagnosis of AML from 30% to 20% leading 
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to the elimination of RAEB-T. The new classification also included a new subtype of MDS 

that, despite the lack of increased blasts (less than 5%), had a more aggressive course, 

probably owing to the presence of more pronounced multi-lineage dysplasia.11 This 

category was called refractory cytopenia with multi-lineage dysplasia (RCMD), and it 

comprised a substantial proportion of cases previously grouped in the low grade RA and 

RARS categories. Although the recognition of RCMD as a relatively more aggressive MDS 

served to de-emphasize the importance of the blast percentage for prognosis, the new 

classification sub-divided the RAEB category into 2 types, with 5–9% blasts (RAEB-1) and 

10–19% blasts (RAEB-2), paradoxically emphasizing the prognostic significance of blast 

percentage in this category.12

A further significant change in the WHO 2001 classification scheme for MDS included the 

exclusion of CMML from the MDS category, and the development of a separate nosologic 

group for CMML and other diseases in which there were features of both myelodysplasia 

and myeloproliferation.13 These “overlap” disorders are called myelodysplastic syndromes/

myeloproliferative neoplasms (MDS/MPN) and include CMML, “atypical CML”, and a 

unclassifiable category, which includes a provisional entity called RARS-T, a disorder that 

resembles RARS, but has associated thrombocytosis.

Further refinements in the WHO classification scheme for MDS were made most recently in 

2008 (Table 1).14,15 These included expanding low grade MDSs from refractory anemia to 

refractory cytopenia with uni-lineage dysplasia (RCUD), in which there is involvement of 

only one cell line. The 2008 WHO classification scheme also placed emphasis on the key 

role of cytogenetic analysis in the diagnosis of MDS, particularly in cases where there is 

otherwise insufficient morphologic evidence to substantiate a diagnosis of MDS. This is 

reflected in the inclusion of the subtype, myelodysplastic syndrome unclassified (MDS-U), 

defined by the presence of cytopenia, less than 1% peripheral blasts, less than 10% 

dysplasia, less than 5% bone marrow blasts with the presence of a cytogenetic abnormality 

commonly seen in MDS (Table 2). In addition, the WHO 2008 classification now includes 

“MDS with an isolated del(5q)” as a separate entity. This entity, sometimes referred to as 

“the 5q- syndrome” 16, had been well known for some time, and is characterized typically 

by its presentation in middle-aged women with macrocytic anemia, splenomegaly, normal to 

elevated platelet counts, hypo-lobated megakaryocytes in the bone marrow, and an isolated 

del(5q).

Prognosis

The heterogeneity in outcome within the various morphologic categories identified by the 

FAB and WHO classification systems has led to a proliferation of prognostic tools and 

scoring systems that attempt to predict outcomes of patients with MDS more accurately. The 

ability to achieve greater precision in prognostication in MDS is of paramount importance, 

since therapeutic options vary from supportive care and growth factor use, to more intensive 

approaches, such as epigenetic modulators, and to approaches associated with significant 

potential for morbidity and mortality, such as intensive chemotherapeutic strategies and 

allogeneic stem cell transplantation. At present, the higher intensity approaches are reserved 
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for patients with high risk disease.17 All of the contemporary prognostic systems incorporate 

the cytogenetic pattern as a key element.18–21

The most widely used, and validated, prognostic scoring system in current use is the 

International Prognostic Scoring System (IPSS), which incorporates karyotype, bone 

marrow blasts and number of cytopenias, and identifies these factors as being the most 

critical in prognostication (Table 3a) 18. Nonetheless, there are a number of limitations that 

have led to the development of other scoring systems, as well as ongoing attempts to refine 

the IPSS.

Limitations of the IPSS include the fact that it was validated in previously untreated patients 

with de novo MDS, which limits the ability to use this tool to predict outcomes in patients 

with MDS treated with contemporary treatment approaches. In addition, although the 

numbers of cytopenias are factored into the IPSS, the severity of cytopenias is not taken into 

account; in particular, transfusion dependency, which has been identified as a poor 

prognostic marker in recent scoring systems, is not considered. Furthermore, the IPSS 

includes a limited number of cytogenetic abnormalities (Table 3b), and there are concerns 

that high risk cytogenetic aberrations are not accorded sufficient emphasis.

To address some of the concerns associated with the IPSS, newer systems such as the WHO 

classification based prognostic scoring system (WPSS) have emerged.20 The WPSS is 

dynamic, and can be applied at diagnosis and during follow up, and is now being validated 

in patients with MDS undergoing contemporary treatment modalities, such as allogeneic 

stem cell transplantation.22 Prognostic factors of import included in this model are WHO 

subtype, transfusion dependency, and karyotype subgroup, as defined by the IPSS. Five risk 

groups are recognized in the WPSS, with median survivals ranging from 12 months to 103 

months.

The MD Anderson Cancer Center (MDACC) prognostic scoring system was also proposed 

recently to address some of the limitations associated with the IPSS.19 This model is also 

dynamic, can be applied at any time during the disease course, and encompasses a broader 

patient population, including patients with t-MDS and CMML. Four risk categories are 

identified that predict overall survival ranging from a median of 54 months in low risk 

patients to 6 months in high risk patients.

Despite the development of newer systems, there continues to be significant heterogeneity in 

outcome, particularly in patients identified by current models as being in the lower risk 

category, emphasizing the need for continued refinement of these models based on a broader 

range of anomalies of emerging prognostic significance.23 An updated cytogenetic system 

has been proposed which involves an international collaborative effort using data sets 

originating from the German-Austrian Working Group, the International Risk Analysis 

Workshop, the Spanish Cytogenetics Workshop and the International Cytogenetics Working 

Group of the MDS Foundation. This 4-tiered cytogenetic risk stratification system (Table 4) 

involves 20 cytogenetic subgroups; median survival ranged from 5.7 months to 50.6 months, 

and time until 25% of patients evolved to AML ranged from 3.4 months to 71.9 months.23
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There is also ongoing concern that the IPSS accords more prognostic weight to an increase 

in bone marrow blasts as compared to poor risk karyotypes, e.g., 2 points are assigned for 

BM blasts in the 21% to 30% range, and 1.5 points for the 11% to 20% range, whereas poor 

risk karyotypes are assigned 1 point (Table 3a). In a recent retrospective study of 2,351 

patients with MDS, the prognostic impact of a poor risk karyotype, was as unfavorable as 

the presence of a significant increase in blasts >20% blasts.24

In addition to the broad prognostic variables incorporated in the various systems outlined 

above, it is clear that gene mutations25 and epigenetic aberrations play a critical role in the 

pathobiology of MDS 26,27 including the determination of prognosis. These genetic and 

epigenetic determinants, described in more detail in the following sections, deserve 

consideration for inclusion in a contemporary prognostic model developed for 21st century 

use.

Cytogenetic Analysis

Clonal chromosome abnormalities can be detected in marrow cells of 40%-100% of patients 

with primary MDS at diagnosis (Tables 1 and 2).5,18 The proportion varies with the risk that 

a subtype will transform to AML, which is highest for RCMD and RAEB. Most recurring 

cytogenetic abnormalities found in MDS are unbalanced, most commonly the result of the 

loss of a whole chromosome, a deletion of part of a chromosome, or an unbalanced 

translocations (Fig. 2). The most common cytogenetic abnormalities encountered in MDS, 

del(5q), −7, +8, and del(20q), have been incorporated into the more robust prognostic 

scoring systems of MDS outlined above. The recurring translocations characteristic of acute 

leukemia without prior MDS, such as the t(15;17), inv(16) and t(8;21), are almost never 

seen. With the exception of MDS with isolated del(5q), the chromosome changes show no 

close association with the morphologic subtypes of MDS. Clones with unrelated 

abnormalities, one of which typically has +8, are seen at a greater frequency in patients with 

MDS (5% vs. 1%), than in patients with AML.

Serial cytogenetic evaluations can be informative, particularly when there is a change in the 

clinical features of a patient. Cytogenetic evolution is the appearance of an abnormal clone 

where only normal cells have been seen previously, the acquisition of additional 

abnormalities within an abnormal clone, or the progression from the presence of a single 

clone to multiple related, or occasionally unrelated, abnormal clones. Karyotypic evolution 

in MDS is associated with transformation to acute leukemia in about 60% of cases, and 

reduced survival, particularly for those patients who evolve within a short period of time 

(less than 100 days).5,18

Fluorescence In Situ Hybridization Analysis

In the past decade, molecular cytogenetic techniques, such as fluorescence in situ 

hybridization (FISH) have become a powerful adjunct to classical cytogenetic analysis.28 

FISH can be performed on marrow or blood smears, or fixed and sectioned tissue, since it 

does not require dividing cells. Advantages of FISH include (1) the rapid nature of the 

method and the ability to analyze large numbers of cells; (2) its high sensitivity and 

specificity; (3) the ability to obtain cytogenetic data from samples with a low mitotic index 
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or terminally-differentiated cells; and (4) the application to histologically-stained cells 

allowing a direct correlation of the status of the genetic target within morphologically 

characterized cells. The major disadvantage is the inability to interrogate more than a few 

abnormalities, and to identify the full spectrum of abnormalities in each clone, the presence 

of multiple clones, and clonal evolution.28 In a clinical setting, cytogenetic analysis could be 

performed at the time of diagnosis to identify the chromosomal abnormalities in bone 

marrow cells from an individual with MDS. Thereafter, FISH with the appropriate probes 

could be used to detect residual disease or early relapse, and to assess the efficacy of 

therapeutic regimens. Commercially-available probes have been developed for the detection 

of 11q23/MLL translocations, −Y, del(5q)/t(5q), −7/del(7q), +8, del(20q), del(13q), 

del(11q), and −17/loss of 17p. In MDS, FISH analysis of cases with a normal karyotype by 

cytogenetic analysis detected recurring abnormalities in 10–15% of cases.29

Cytogenetic Findings in MDS

Normal Karyotype

A normal karyotype is found in ~50% of patients with MDS. This group of patients is 

almost certainly genetically heterogeneous, where technical factors precluded the detection 

of chromosomally abnormal cells, or where leukemogenic alterations occur at the molecular 

level and are not detectable with standard cytogenetic methods. Nonetheless, these cases are 

a standard reference for comparison of outcomes. The IPSS found that patients with a 

normal karyotype fall within the favorable risk group (Table 3b).18

−Y

The clinical and biological significance of the loss of the Y chromosome, −Y, is unknown. 

Loss of the Y chromosome has been observed in a number of malignant diseases, but is also 

associated with aging in healthy males.30 Patients with a hematological disease have a 

significantly higher percentage of cells with a –Y (52% vs. 37%, p=0.036), and –Y in >75% 

of metaphase cells accurately predicted a malignant disease.30 Although loss of a Y 

chromosome may not be diagnostic of MDS, once the disease is identified by clinical and 

pathologic means, the IPSS found that −Y as the sole cytogenetic abnormality conferred a 

favorable outcome.18

+8

A gain of chromosome 8 in MDS is observed in all MDS subgroups in ~10% of 

patients. 18,31,32 Determining the significance of the gain of chromosome 8 in MDS patients 

is complicated in that +8 is often associated with other recurring abnormalities known to 

have prognostic significance, e.g., del(5q)t(5q) or −7/del(7q), and may be seen in isolation 

as a separate clone unrelated to the primary clone in up to 5% of cases. The IPSS18, as well 

as the time-dependent WPSS20 ranked this abnormality in the intermediate risk group; 

however, several subgroups found that +8 as a sole abnormality had a poorer outcome than 

expected for an intermediate IPSS risk group.31,33 Hematopoietic cells with trisomy 8 

express higher levels of many genes that localize to chromosome 8, including the MYC 

gene, and antiapoptotic genes
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del(20q)

A deletion of the long arm of chromosome 20, del(20q), is seen in approximately 5% of 

MDS cases and 7% of t-MDS cases.5,31 Features characterizing MDS patients with a 

del(20q) include low risk disease (usually RA), low rate of progression to AML, and 

prolonged survival (median of 45 months vs. 28 months for other MDS patients), and 

prominent dysplasia in the erythroid and megakaryocytic lineages.34 The IPSS noted that 

patients with a del(20q) in the context of a complex karyotype identified a poor-risk group 

(median survival, 9.6 months), whereas the prognosis for patients with an isolated del(20q) 

was favorable.18 Although a commonly deleted segment (CDS) has been identified on 20q, 

containing 19 genes, there is no definitive evidence linking these genes to the pathogenesis 

of myeloid neoplasms.35,36

Deletions of chromosome 5

A deletion of the long arm of chromosome 5, del(5q), or an unbalanced translocation leading 

to loss of 5q are observed in 10–20% of MDS patients more commonly, in RAEB 1, 2 in 

association with a complex karyotype, and 40% of patients with t-MDS (Fig. 3).37 

Abnormalities of 5q are associated with a significant occupational exposure to potential 

carcinogens, as well as previous exposure to standard and high dose alkylating agent 

therapy, including use in immunosuppressive regimens.38,39 Clinically, the patients with 

del(5q) coupled with other cytogenetic abnormalities have a high frequency of TP53 

mutations, a poor prognosis with early progression to leukemia, resistance to treatment, and 

short survival.40,41 MDS with an isolated del(5q) represents a distinct clinical syndrome “the 

5q minus syndrome”. These patients have a favorable outcome, in fact the best of any MDS 

subgroup, with low rates of transformation to AML and a relatively long survival of several 

years duration.16,18 The immunomodulatory agent, lenalidomide, has been associated with 

significant responses in IPSS low or intermediate-1 risk MDS with the del(5q), including red 

cell transfusion independency (67% of patients), and complete cytogenetic responses.42

A recent study showed that minor subclones of TP53-mutant cells were present in some 

patients prior to lenalidomide therapy, and were associated with lenalidomide-resistance and 

trend towards a higher risk of evolution to AML.43 The molecular mechanisms underlying 

the clinical effectiveness of lenalidomide in del(5q) MDS remain obscure, but 

haploinsufficiency of two dual-specificity cell cycle phosphatases encoded by genes on 5q, 

CDC25C and PP2A have been implicated in the sensitivity to lenalidomide.44 However, 

treatment with lenalidomide is unlikely to be curative since del(5q) malignant stem cells 

persist in remission, and clinical and cytogenetic progression was associated with recurrence 

or expansion of the del(5q) clone.45

Several groups of investigators have defined a CDS (Fig. 4) on the long arm of chromosome 

5, band 5q31.2, predicted to contain a myeloid tumor suppressor gene that is involved in the 

pathogenesis of the more aggressive forms of MDS and AML.46,47 A second, distal CDS of 

1.5 Mb within 5q33.1 has been identified in MDS with an isolated del(5q).48 Despite intense 

efforts, the identification of tumor suppressor genes (TSGs) on chromosomes 5 has been 

challenging, as a result of the fact that the deletions of 5q are typically large, and encompass 

both of these regions. Molecular analysis of the 19 candidate genes within the CDS of 
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5q31.2 and 44 genes in the 5q33.1 CDS did not reveal inactivating mutations in the 

remaining alleles, nor was there evidence of transcriptional silencing48–50 [Godley and Le 

Beau, unpublished data]. Moreover, copy-neutral loss of heterozygosity (also known as 

acquired uniparental disomy) is not seen on 5q in MDS or AML. These observations are 

compatible with a haploinsufficiency model in which loss of one allele of the relevant 

gene(s) on 5q perturbs cell fate, rather than the biallelic inactivation of a tumor suppressor 

gene.51 A number of genes and several miRNAs located on 5q, including RPS14 52, 

miRNA-14553,54, EGR1 55, APC56, CTNNA157, HSPA958, and DIAPH159, have been 

implicated in the development of myeloid disorders due to a gene dosage effect, and several 

of these are reviewed below. Together, these studies support a haploinsufficiency model, in 

which loss of a single allele of more than one gene on 5q act in concert to alter 

hematopoiesis, promote self-renewal of HSPCs, induce apoptosis of hematopoietic cells, and 

disrupt differentiation.

RPS14—The gene encoding RPS14, which is required for the processing of 18S pre-rRNA, 

is located at 5q33.1, and is involved in MDS with an isolated del(5q).52 Downregulation of 

RPS14 in CD34+ bone marrow cells blocks the differentiation and increases apoptosis of 

erythroid cells via a TP53-dependent mechanism.60 Of interest, the ribosomal processing 

defect caused by haploinsufficiency of RPS14 in MDS is highly analogous to the functional 

ribosomal defect seen in Diamond-Blackfan anemia. Other studies have shown that 

haploinsufficiency of two micro-RNAs, miR-145 and miR-146a, encoded by sequences near 

the RPS14 gene, cooperate with loss of RPS14.53,54 The Toll-interleukin-1 receptor domain-

containing adaptor protein (TIRAP) and FLI1 are targets of these miRNAs. 

Haploinsufficiency of miR-145 may account for several features of MDS with an isolated 

del(5q), including megakaryocytic dysplasia; however, neither RPS14 nor miR-145 

haploinsufficiency is predicted to confer clonal dominance.

APC—APC is a multifunctional tumor suppressor involved in the pathogenesis of colorectal 

cancer via regulation of the WNT signaling cascade. The APC gene is located at 5q22.2, and 

is deleted in >95% of patients with a del(5q).47 Conditional inactivation of a single allele of 

Apc in mice leads to the development of severe macrocytic anemia, a block in erythropoiesis 

at the early stages of differentiation, and an expansion of the short-term and long-term 

HSCs.56 Apc heterozygous myeloid progenitor cells display an increased frequency of 

apoptosis, and decreased in vitro colony-forming capacity, recapitulating several 

characteristic features of myeloid neoplasms with a del(5q).

EGR1—The early growth response 1 gene (EGR1) encodes a member of the WT-1 family 

of zinc finger transcription factors, and mediates the cellular response to growth factors, 

mitogens, and stress stimuli.61 Recently, Egr1 has been shown to be a direct transcriptional 

regulator of many known TSGs, e.g., Tp53, Cdkn1a/p21, Tgfb, and Pten, and acts as a TSG 

in several human tumors, including breast non-small cell lung cancer. 61 Egr1-null mice 

show spontaneous mobilization of HSPCs into the periphery, identifying Egr1 as a 

transcriptional regulator of stem cell migration.55,62 Moreover, loss of a single allele of Egr1 

cooperates with mutations induced by an alkylating agent in the development of malignant 
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myeloid diseases (MPD with ineffective erythropoiesis) in mice, indicating that Egr1 is a 

haploinsufficient myeloid suppressor gene.55

Loss of Chromosome 7 or del(7q)

A −7/del(7q) is observed as the sole abnormality in ~5% of adult patients, in ~50% of 

children with primary MDS, and in ~55% of patients with t-MDS (Fig. 3). 33,37,39,63 As with 

del(5q), occupational or environmental exposure to mutagens including chemotherapy, 

radiotherapy, benzene exposure, and smoking, as well as severe aplastic anemia (regularly 

treated with immunosuppressive agents alone) have been associated with −7/del(7q). 18 The 

IPSS considers the −7/del(7q) to be a poor prognostic cytogenetic finding.18 “Monosomy 7 

Syndrome” has been described in young children, and is characterized by a preponderance 

of males (~4:1), hepatosplenomegaly, leukocytosis, thrombocytopenia, and a poor 

prognosis.63 Juvenile myelomonocytic leukemia (JMML) is a MDS/MPD disease in the 

WHO classification, and shares many features with this entity.63 An emerging paradigm is 

that −7/del(7q) cooperates with deregulated signaling via the RAS pathway as a result of 

mutations in the NRAS or KRAS gene, inactivating mutations in the gene encoding NF1, a 

negative regulator of RAS proteins, or activating mutations in the gene encoding the 

PTPN11/SHP2 phosphatase, a positive regulator of RAS proteins, as well as RUNX1 

mutations, and methylation silencing of the CDKN2B (p15INK4B) gene.41,64,65

To date, three CDSs have been identified on 7q; however, the molecular mutations 

underlying the development of MDS and AML with del(7q) are poorly-understood66–68 We 

previously identified two distinct CDSs, a 2.52 Mb CDS within 7q22 spanning the interval 

containing LRCC17 and SRPK2, and a second, less frequent, region in q32–33.68 Each of 

the candidate genes within the CDS at 7q22 has been evaluated for mutations69; however, 

no inactivating mutations have been identified in the remaining allele. Mice with a 

conditional heterozygous deletion of this region in murine HSPCs had no alterations of 

hematopoiesis, suggesting that this region does not contain a haploinsufficient myeloid 

tumor suppressor gene, or that mutations in cooperating genes are required.70 Recently, 

Dohner et al. reported the analysis of a large series of patients with abnormalities of 7q using 

FISH. Whereas most patients had large deletions, they identified an ~2 Mb deleted segment 

in proximal q22, that overlaps with the proximal portion of the CDS defined by Le Beau et 

al., but extends more proximally, and includes the CUTL1, RASA4, EPO, and FBXL13 genes 

in 7q22.1.71 The recent recognition of mutations in EZH2, a gene located at 7q36.1, is 

intriguing; however, myeloid neoplasms with EZH2 mutations typically do not have −7/

del(7q), and the del(7q) does not always result in loss of one EZH2 allele.72,73

Rare Recurring Translocations

In MDS, several recurring translocations have been identified, which result in fusion 

proteins. Translocations involving the MLL gene on 11q23 are noted in 3–5% of MDS and t-

MDS cases. The most common translocations are the t(9;11)(p22;q23) and t(11;16)

(q23;p13.3). The t(11;16) occurs primarily in t-MDS, but rare cases have presented as t-

AML.74 MLL is fused with the CREBBP (CREB binding protein) gene on chromosome 16. 

The MLL protein is a histone methyltransferase that assembles in protein complexes that 

regulate gene transcription, e.g., HOX genes during embryonic development, via chromatin 
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remodeling. CREBBP is a histone acetyltransferase involved in transcriptional control via 

histone acetylation.

The t(5;12)(q33.1;p13) is observed in ~1% of patients with CMML, and results in fusion of 

the protein encoded by the beta chain of the platelet derived growth factor receptor 

(PDGFRB) on 5q, and a novel transcriptional repressor gene, ETV6 (also known as TEL) on 

12p. Alterations in the PDGFRB kinase activity and function of the ETV6 repressor 

contribute to the transformed phenotype. The t(5;12) predicts for a response to imatinib 

mesylate, a selective inhibitor of the PDGFRB kinase activity.75 PDGFRB participates in 

several other rare translocations in myeloid neoplasms (reviewed in76); a unifying feature is 

the presence of eosinophilia.

Complex Karyotypes

Complex karyotypes are variably defined, but generally involve the presence of > 3 

chromosomal abnormalities. Complex karyotypes are observed in ~20% of patients with 

primary MDS, and in as many as 90% of patients with t-MDS.37 Abnormalities involving 

chromosomes 5, 7, or both are identified in most cases with complex karyotypes. There is 

general agreement that a complex karyotype carries a poor prognosis.18,20,31

Alterations in gene function

A growing body of evidence suggests that mutations of multiple genes mediate the 

pathogenesis and progression of MDS. The involved genes fall into two main classes, 

namely, genes encoding hematopoietic transcription factors or proteins that regulate 

cytokine signaling pathways. There is an increase in the frequency of molecular mutations 

from low-risk to high- risk MDS, or AML evolving from MDS, emphasizing the role of 

these mutations in disease progression. A detailed review of these genes is beyond the scope 

of this chapter, and has been provided elsewhere.25,76 Table 5 provides a partial list and 

overview of some of the salient features of genes implicated in the pathogenesis of MDS.

Recently, Bejar et al. demonstrated that the integration of mutation analysis into diagnostic 

classification and prognostic scoring systems in MDS has the potential to stratify a diverse 

disease into discrete subsets with more consistent clinical phenotypes and prognosis.25,77 

For example, mutations in RUNX1, TP53, and NRAS were associated with severe 

thrombocytopenia and blast percentage. In multivariate analysis, mutations in 5 genes, 

occurring in one-third of patients, retained independent prognostic significance: TP53, 

EZH2, ETV6, RUNX1, and ASXL1, and predicted poor overall survival. Mutations of these 

genes stratified low- and intermediate-1, and intermediate 2 IPSS risk groups into two risk 

groups each, identifying patients within these subgroups with a poorer prognosis who may 

require a more intensive therapeutic approach. The genes most commonly mutated in MDS 

are TET2, ASXL1, EZH2, RUNX1, and TP53, which are described briefly below.

An emerging paradigm in MDS is the high frequency of mutations in genes involved in the 

regulation of transcription via chromatin modifications (IDH1/2, TET2, EZH2, ASXL1), and 

the intriguing observation that mutations often occur in more than one gene in the same 

patient, implying functional cooperation (note that IDH1/2 and TET2 mutations are mutually 
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exclusive). The most frequently mutated gene in MDS is TET2 (20%); point mutations are 

observed in all cytogenetic subsets.25,77 TET2 converts 5-methylcytosine to 5-

hydroxymethylcytosine, thereby altering the epigenetic mark created by DNA 

methyltransferases.78 Recent studies suggest no impact of TET2 mutations on overall 

survival in MDS.77,79

ASXL1 mutations are observed in 10–15% of MDS.25,80 ASXL1 is a member of the 

polycomb family of chromatin-binding proteins, and is involved in the epigenetic regulation 

of gene expression (typically repression). Mutated proteins are predicted to function as 

dominant negative proteins inhibiting the function of the wild type proteins as well as other 

members of the polycomb complex. The prognostic significance of ASXL1 mutations in 

MDS is not yet known.

EZH2 (enhancer of zeste homolog 2) mutations occur in 5% of MDS. 25,72,73 EZH2 encodes 

a histone methyltransferase that trimethylates histone 3 lysine 27, an epigenetic mark that 

confers gene silencing. In MDS, the mutations lead to loss of the catalytic activity, and are 

predicted to increase HSC expansion.81 Although EZH2 is located at 7q36.1, loss or 

mutation of EZH2 does not appear to be the sole driver of myeloid neoplasms associated 

with −7/del(7q).

Point mutations in the Runt-related transcription factor 1 (RUNX1) have been reported in 

AML and MDS (12%), particularly in MDS secondary to treatment with cytotoxic therapy, 

and increase with the severity of the disease.82 RUNX1, also known as CBFA2 or AML1, 

encodes the DNA-binding subunit of the heterodimeric core-binding factor (CBF) complex, 

which is essential for definitive hematopoiesis.83 RUNX1 mutations impair DNA binding 

and act as dominant negative proteins, and are associated with activating mutations of the 

RAS pathway, −7/del(7q), and a shorter overall survival.82 Germline mutations of RUNX1 

cause a rare human disease called familial platelet disorder; affected individuals have an 

MDS-like phenotype with thrombocytopenia, and/or dysfunctional platelets, and a 

predisposition to progress to AML.84

The TP53 tumor suppressor gene encodes an essential checkpoint protein that monitors the 

integrity of the genome, and arrests cell cycle progression in response to DNA damage. 

Mutations of TP53 (exons 4–8) or loss of an allele, typically as a result of a cytogenetic 

abnormality of 17p, are observed in MDS (5–10%) and t-MDS (25–30%), particularly in 

patients who have received alkylating agent therapy.40 TP53 mutations may occur as either 

an early or late event in the course of the disease, and are associated with rapid progression, 

and a poor outcome. In t-MDS, TP53 mutations are associated with −5/del(5q) and a 

complex karyotype.

JAK2V617F is a constitutively active cytoplasmic tyrosine kinase that is able to activate JAK-

STAT signalling and mediate transformation to cytokine independent growth in MPN, and 

has been identified in rare cases of MDS (2–5%) and CMML (3%).85 An exception is 

RARS-T, in which 60% of patients have the JAK2V617F mutation.86 RARS-T patients with 

JAK2V617F mutations present with higher WBCs and platelet counts.
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The role of epigenetic changes in the pathogenesis and treatment of MDS is becoming 

increasingly important. Transcriptional silencing via DNA methylation of the CDKN2B 

(p15INK4B) gene increases with progression from RA to RAEB-T, and is observed in a high 

percentage of patients with t-MDS, and is associated with −7/del(7q), and a poor 

prognosis.64 Recent genome-wide studies have demonstrated that increases in promoter 

hypermethylation are predictive of survival in MDS, even when age, sex, and IPSS risk 

groups are considered. Moreover, increases in promoter methylation are seen during 

progression to AML.27 These observations form the rationale for use of demethylating 

agents in MDS. Similarly, inhibition of histone-modifying enzymes represents another 

rational target for MDS therapy.

Emerging Technologies

Recent advances in microarray technology have enabled high-resolution genome-wide 

genotyping using single nucleotide polymorphisms (SNPs) for the identification of disease 

susceptibility loci, as well as the identification of acquired genetic imbalances, and loss of 

heterozygosity that occurs without concurrent changes in the gene copy number, which can 

be attributed to somatic mitotic recombination (referred to as copy-neutral LOH or acquired 

uniparental disomy). Gondek et al. used high-density 250K arrays to examine 174 patients 

(94, MDS; 33, AML following MDS; 47, MDS/MPD).87 Acquired, copy-neutral LOH was 

identified in 20% of MDS, 23% of MDS->AML, and 35% of MDS/MPD (particularly 

CMML). Collectively, abnormalities were detected in a higher proportion of cases as 

compared to conventional cytogenetic analysis (78% vs. 59% for MDS). New lesions 

detected by microarray analysis included copy-neutral LOH of 6p21.2-pter, 11q13.5-qter, 

4q23-qter, 7q11.23-qter, and 7q22.1. When the presence of newly-identified SNP array 

lesions were factored into the IPSS classification, the survival curves diverged for patients 

originally classified as IPSS Intermediate- 1, suggesting that SNP arrays provide additional 

information allowing for better prognostic resolution (median survival 28 vs. 9 mos., 

p=0.03). Thus, the results of these studies suggest that SNP array analysis may have future 

diagnostic application, and may complement conventional cytogenetic analysis in risk 

stratification and the selection of therapy.

SUMMARY

Cytogenetic analysis in MDS remains a critical genetic test for establishing the diagnosis 

and prognosis, and for therapeutic decision-making. The IPSS and the WHO classification 

systems incorporate only the most common chromosomal abnormalities. An international 

effort is underway to develop a comprehensive cytogenetic scoring system for MDS that 

incorporates rare cytogenetic subsets, which will inform an ongoing revision of the IPSS.23 

With the advent of more sensitive techniques already available in the research setting, 

including next generation genome and transcriptome sequencing and SNP arrays, the rate of 

discovery will accelerate, and the compendium of genetic alterations in MDS will 

undoubtedly expand. Defining the genetic complexity of MDS holds tremendous promise 

for elucidating the pathogenesis of these diseases, refining the prognostic scoring systems, 

and identifying novel therapeutic targets.88
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Fig 1. 
Morphological features of a typical case of MDS. (A–C) The peripheral smear shows severe 

pancytopenia (A), with a macrocytic anemia (B), neutropenia with dysplastic neutrophils 

and thrombocytopenia with pale platelets (C). (D) The marrow is typically hypercellular, 

indicating ineffective hematopoiesis. (E–H) The marrow cytology reveals dysplasia in the 

erythroid (E), megakaryocytic (F), and granulocytic lineage (G), as well as increased blasts, 

which can sometimes be detected by CD34 immunostaining (H).
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Fig. 2. 
Recurring chromosomal abnormalities in MDS. Relative frequencies are depicted in the pie 

chart.
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Fig. 3. 
Deletions of 5q and 7q in myeloid neoplasms. In this del(5q), breakpoints occur in q14 and 

q33 resulting in interstitial loss of the intervening chromosomal material. In this del(7q), 

breakpoints occur in q11.2 and q36. In both cases, the critical commonly deleted segments 

are lost. Normal chromosome 5 and 7 homologs are shown for comparison.
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Fig. 4. 
Ideogram of the long arm of chromosome 5 showing candidate genes within the commonly 

deleted segments (CDSs) as reported by various investigators. The proximal CDS in 5q31.2 

was identified in MDS, AML and t-MN, whereas the distal CDS in 5q33.1 was identified in 

MDS with isolated del(5q).
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Table 4

Proposed 4-Tier Cytogenetic Risk Stratification System

Risk group Karyotype
Median
Survival

(mos)

Time until 25% of
patients developed

AML (mos)

Good Normal, del(5q), double abnormality
including del(5q), der(1;7)(q10;p10)/t(1;7),
del(11q), del(12p), +19, del(20q), −Y

50.6 71.9

Intermediate-1 any other double abnormality (not including
del(5q) or −7/del(7q), +8, i(17)(q10), +21, any
7 other single abnormality

25.7 14.7

Intermediate-2 Double abnormality including −7/del(7q),
t(3q26.2), complex with 3 abnormalities

16 9.8

High Complex (>3 abnormalities) 5.7 3.4
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Table 5

Frequency and Significance of Mutated Genes in MDS.

Mutated Gene Frequency* Biological Features and Clinical Significance

ASXL1 10–15% Polycomb group protein involved in transcriptional regulation
Prevalence of frameshift mutations suggest a dominant-negative function
Clinical significance unknown

ATRX Rare Involved in epigenetic modifications of DNA
Loss of expression leads to decreased expression of alpha-globin
Associated with acquired alpha-thalassemia, often with severe anemia

CEBPA 2–5% TF involved in hematopoiesis, loss of function impairs granulopoiesis
Bi-allelic (N-terminal and C-terminal mutations)
No apparent effect on time to progression to AML or overall survival

CSF1R 2–5% Constitutive activation of the macrophage colony-stimulating factor receptor tyrosine
kinase
Karyotype predominantly normal
Associated with advanced MDS and progression to AML

EZH2 5% Encodes a histone 3 lysine 27 methyltransferase regulating transcription
Mutations result in loss of function
Associated with a poor prognosis

FLT3 ITD 5–10% Rector tyrosine kinase involved in cytokine signaling, critical in hematopoiesis
Associated with progression to AML and a poor prognosis

IDH1/2 Rare Metabolic enzymes catalyzing oxidative decarboxylation of isocitrate to alpha-
ketoglutarate. Missense mutations alter catalytic function converting alpha-KG to 2
hydroxyglutarate, while consuming NAPDH
Associated with advanced MDS and progression to AML

JAK2 5% of RA
60% of RARS-T

Encodes a tyrosine kinase component of various cytokine signaling pathways
Mutations result in constitutive activation of the tyrosine kinase
Mutated in 60% of RARS with thrombocytosis, an unclassified MDS/MPD
Clinical significance unknown, does not appear to alter prognosis

MPL 5% of RARS-T Encodes the thrombopoietin receptor
Mutations result in constitutive activation of the tyrosine kinase, and are associated
with dysmegakaryocytopoiesis
Higher expression in advanced MDS is associated with a poor prognosis

NPM1 Rare Nuclear-cytoplasmic shuttling protein, with pleiotropic functions
Terminal frameshift mutations disrupt the nuclear localization signal leading to
redistribution to the cytoplasm
Unknown clinical significance in MDS

NRAS/KRAS 5% Encodes a GTPase component of multiple cytokine signaling pathways
Activating mutations result in constitutive signal transduction
Increased risk of progression to AML

PTPN11 Rare Encodes the non-receptor SHP2 tyrosine phosphatase, a positive regulator of RAS
proteins. Mutations result in protein activation
Mutated in 30% of JMML
Mutations in NRAS/KRAS, NF1, and PTPN11 are mutually exclusive

RUNX1 10–15% Encodes the DNA-binding subunit of the heterodimeric core binding factor transcription
factor required for hematopoiesis
Point mutations in the RUNT (DNA-binding) domain result in loss of function, and a
dominant negative effect
Associated with mutations of the RAS pathway and −7/del(7q)
Increased risk of progression to AML

TET2 20% Epigenetic regulator
Clinical significance unknown

TP53 5–10%
(25% in t-MDS)

Encodes a checkpoint protein which monitors integrity of the genome, arrests the cell
cycle in response to DNA damage
Associated with chromosomal instability, del(5q), loss of 17p, and complex karyotypes
Associated with rapid progression and poor outcome
Significantly differentiates worse prognosis within each IPSS subgroup

*
Rare mutations occur at a frequency of less than 2%.
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