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Abstract

Is big data science a whole new way of doing research? And what difference does data quantity 

make to knowledge production strategies and their outputs? I argue that the novelty of big data 

science does not lie in the sheer quantity of data involved, but rather in (1) the prominence and 

status acquired by data as commodity and recognised output, both within and outside of the 

scientific community; and (2) the methods, infrastructures, technologies, skills and knowledge 

developed to handle data. These developments generate the impression that data-intensive 

research is a new mode of doing science, with its own epistemology and norms. To assess this 

claim, one needs to consider the ways in which data are actually disseminated and used to generate 

knowledge. Accordingly, this paper reviews the development of sophisticated ways to 

disseminate, integrate and re-use data acquired on model organisms over the last three decades of 

work in experimental biology. I focus on online databases as prominent infrastructures set up to 

organise and interpret such data; and examine the wealth and diversity of expertise, resources and 

conceptual scaffolding that such databases draw upon. This illuminates some of the conditions 

under which big data need to be curated to support processes of discovery across biological 

subfields, which in turn highlights the difficulties caused by the lack of adequate curation for the 

vast majority of data in the life sciences. In closing, I reflect on the difference that data quantity is 

making to contemporary biology, the methodological and epistemic challenges of identifying and 

analyzing data given these developments, and the opportunities and worries associated to big data 

discourse and methods.

Keywords

big data epistemology; data-intensive science; biology; databases; data infrastructures; data 
curation; model organisms

1. Introduction

Big data have become a central aspect of contemporary science and policy, due to a variety 

of reasons that include both techno-scientific factors and the political and economic roles 

played by this terminology. The idea that big data are ushering in a whole new way of 

thinking, particularly within the sciences, is rampant - as exemplified by the emergence of 

dedicated funding, policies, and publication venues (such as this journal). This is at once 
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fascinating and perplexing to scholars interested in the history, philosophy and social studies 

of science. On the one hand, there seems to be something interesting and novel happening as 

a consequence of big data techniques and communication strategies, which is however hard 

to capture with traditional notions such as ‘induction’ and ‘data-driven’ science (partly 

because, as philosophers of science have long shown, there is no such thing as direct 

inference from data, and data interpretation typically involves the use of modelling 

techniques and various other kinds of conceptual and material scaffolding).1 On the other 

hand, many sciences have a long history of dealing with large quantities of data, whose size 

and scale vastly outstrip available strategies and technologies for data collection, 

dissemination and analysis (Gitelman 2013). This is particularly evident in the life sciences, 

where data gathering practices in subfields such as natural history and taxonomy have been 

at the heart of inquiry since the early modern era, and have generated problems ever since 

(e.g. Johnson 2012, Müller-Wille and Charmantier 2012).

So what is actually new here? How does big data science differ from other forms of inquiry, 

what can and cannot be learnt from big data, and what difference does quantity make? In 

this paper, I discuss some of the central characteristics typically associated to big data, as 

conveniently summarised within the recent book Big Data by Viktor Mayer-Schönberger 

and Kenneth Cukier (2013), and I scrutinize their plausibility in the case of biological 

research. I then argue that the novelty of big data science does not lie in the sheer quantity of 

data involved, though this certainly makes a difference to research methods and results. 

Rather, the novelty of big data science lies in (1) the prominence and status acquired by data 

as scientific commodity and recognised output both within and beyond the sciences; and (2) 

the methods, infrastructures, technologies and skills developed to handle (format, 

disseminate, retrieve, model and interpret) data. These developments generate the 

impression that data-intensive research is a whole new mode of doing science, with its own 

epistemology and norms. I here defend the idea that in order to understand and critically 

evaluate this claim, one needs to analyze the ways in which data are actually disseminated 

and used to generate knowledge, which I refer to as ‘data journeys’; and consider the extent 

to the current handling of big data fosters and validates their use as evidence towards new 

discoveries.2

Accordingly, the bulk of this paper reviews the development of sophisticated ways to 

disseminate, integrate and re-use data acquired on model organisms such as the small plant 

Arabidopsis thaliana the nematode Caenorhabditis elegans and the fruit-fly Drosophila 

melanogaster (including data on their ecology, metabolism, morphology and relations to 

other species) over the last three decades of work in experimental biology. I focus on online 

databases as a key example of infrastructures set up to organise and interpret such data; and 

on the wealth and diversity of expertise, resources and conceptual scaffolding that such 

databases draw upon in order to function well. This analysis of data journeys through model 

organism databases illuminates some of the conditions under which the evidential value of 

1For a review of this literature, which includes seminal contributions such as Hacking (1992) and Rheinberger (2011), see Bogen 
(2010).
2This idea, though articulated in a variety of different ways, broadly underscores also the work of Sharon Traweek (1998), Geoffrey 
C. Bowker (2001), Christine Borgman (2007), Karen Baker and Francois Millerand (2010) and Paul Edwards (2011),

Leonelli Page 2

Big Data Soc. Author manuscript; available in PMC 2015 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



data posted online can be assessed and interpreted by researchers wishing to use those data 

to foster discovery. At the same time, model organism biology has been one of the best 

funded scientific areas over the last three decades, and the curation of data produced therein 

benefitted from much more attention and dedicated investments than data generated in the 

rest of the life sciences and biomedicine. Considering the challenges encountered in 

disseminating this type of data thus also highlights the potential problems involved in 

assembling data that have not received comparable levels of care (i.e. the vast majority of 

biological data).

In my conclusions, I use these findings to inform a critique of the supposed revolutionary 

power of big data science. In its stead, I propose a less sensational, but arguably more 

realistic, reflection on the difference that data quantity is making to contemporary biological 

research, which stresses both continuities with and dissimilarities from previous attempts to 

handle large datasets. I also suggest that the natural sciences may well be the area that is 

least affected by big data, whose emergence is much more likely to affect the political and 

economic realms - though not necessarily for the better.

2. The Novelty of Big Data

I will start by considering three ideas that, according to Mayer-Schönberger and Cukier 

(2013) among others, constitute core innovations brought in by the advent of big data in all 

realms of human activity, including science. The first idea is what I shall label 

comprehensiveness. This is the claim that the accumulation of large datasets enables 

scientists to ground their analysis on several different aspects of the same phenomenon, 

documented by different people at different times. According to Mayer-Schönberger and 

Cukier, data can become so big as to encompass all the available data on a phenomenon of 

interest. As a consequence, big data can provide a comprehensive perspective on the 

characteristics of that phenomenon, without needing to focus on specific details.

The second idea is that of messiness. Big data, it is argued, push researchers to embrace the 

complex and multifaceted nature of the real world, rather than pursuing exactitude and 

accuracy in measurement obtained under controlled conditions. Indeed, it is impossible to 

assemble big data in ways that are guaranteed to be accurate and homogeneous. Rather, we 

should resign to the fact that “big data is messy, varies in quality, and is distributed across 

countless servers around the world” (ibid., 13) and welcome the advantages of this lack of 

exactitude: “With big data, we’ll often be satisfied with a sense of general direction rather 

than knowing a phenomenon down to the inch, the penny, the atom” (ibid.).3

The idea of messiness relates closely to the third key innovation brought about by big data, 

which Mayer-Schönberger and Cukier call the ‘triumph of correlations’. Correlations, 

defined as the statistical relationship between two data values, are notoriously useful as 

heuristic devices within the sciences. Spotting that fact that when one of the data values 

changes, the other is likely to change too, is the starting point for many a discovery. 

3Incidentally, the idea of comprehensiveness may be interpreted as clashing with the idea of messiness when formulated in this way. 
If we can have all the data on a specific phenomenon, then surely we can focus on understanding it to a high level of precision, if we 
so wish? I shall return to this point below.
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However, scientists have typically mistrusted correlations as a source of reliable knowledge 

in and of themselves, chiefly because they may be spurious - either because they result from 

serendipity rather than specific mechanisms, or because they are due to external factors. Big 

data can override those worries. Mayer-Schönberger and Cukier give the example of 

Amazon.com, whose astonishing expansion over the last few years is at least partly due to 

their clever use of statistical correlations among the myriad of data provided by their 

consumer base in order to spot users’ preferences and successfully suggest new items for 

consumption (ibid., 52). In cases such as this, correlations do indeed provide powerful 

knowledge that was not available before. Hence, big data encourage a growing respect for 

correlation, which comes to be appreciated as more a informative and plausible form of 

knowledge than the more definite, but also more elusive, causal explanation. In Mayer-

Schoenberger and Cukier’s words: “the correlations may not tell us precisely why something 

is happening, but they alert us that it is happening. And in many situations this is good 

enough” (ibid., 14).

These three ideas have two important corollaries, which shall constitute the main target of 

my analysis in this paper. The first corollary is that big data makes reliance on small 

sampling, and even debates over sampling, unnecessary. This again seems to make sense 

prima facie: if we have all the data about a given phenomenon, what is the point of 

pondering which types of data might best document it? Rather, one can now skip that step 

and focus instead on assembling and analysing as much data as possible about the 

phenomenon of interest, so as to generate reliable knowledge about it: “big data gives us an 

especially clear view of the granular; subcategories and submarkets that samples can’t 

assess” (ibid., 13). The second corollary is that big data is viewed, through its mere 

existence, as countering the risk of bias in data collection and interpretation. This is because 

having access to large datasets makes it more likely that bias and error will be automatically 

eliminated from the system, for instance via what sociologists and philosophers call 

‘triangulation’: the tendency of reliable data to cluster together, so that the more data one 

has, the easier it becomes to cross-check them with each other and eliminate the data that 

look like outliers (Wylie 2002; Denzin 2006).

Over the next few sections, I show how an empirical study of how big data biology operates 

puts both of these corollaries into question, which in turn compromises the plausibility of the 

three claims that Mayer-Schönberger and Cukier make about the power of big data - at least 

when they are applied to the realm of scientific inquiry. Let me immediately state that I do 

not intend this analysis to deny the widespread attraction that these three ideas are 

generating in many spheres of contemporary society (most obviously, big government) and 

which is undoubtedly mirrored in the ways in which biological research is being re-

organised since at least the early 2000s (which is when technologies for the high-throughput 

production of genomic data, such as sequencing machines, started to become widely used). 

Rather, I wish to shed some clarity on the gulf that separates the hyperbolic claims made 

about the novelty of big data science from the challenges, problems and achievements 

characterising data handling practices in the everyday working life of biologists - and 

particularly the ways in which new computational and communication technologies such as 

online databases are being developed so as to transform these ideas into reality.
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3. Big Data Journeys in Biology

For scientists to be able to analyse big data, those data have to be collected and assembled in 

ways that make it suitable to consider them as a single body of information (O’Malley and 

Soyer 2012). This is a particularly difficult task in the case of biological data, given the 

highly fragmented and pluralist history of the field. For a start, there are myriads of 

epistemic communities within the life sciences, each of which uses a different combination 

of methods, locations, materials, background knowledge and interest to produce data. 

Furthermore, there are vast differences in the types of data that can be produced and the 

phenomena that can be targeted. And last but not least, the organisms and ecosystems on 

which data are being produced are both highly variable and highly unstable, given their 

constant exposure to both developmental and evolutionary change. Given this situation, a 

crucial question within big data science concerns how one can bring such different data 

types, coming from a variety of sources, under the same umbrella.

To address this question, my research over the last eight years has focused on documenting 

and analysing the ways in which biological data - and particularly ‘omics’ data, the 

quintessential form of ‘big data’ in the life sciences - travel across research contexts, and the 

significant conceptual and material scaffolding used by researchers to achieve this. For the 

purposes of this paper, I shall now focus on one case of big data handling in biology, which 

is arguably among the most sophisticated and successful attempts made to integrate vast 

quantities of data of different types within this field for the purposes of advancing future 

knowledge production. This is the development of model organism databases between 2000 

and 2010.4 These databases were built with the immediate goal of storing and disseminating 

genomic data in a formalized manner, and the longer-term vision of (1) incorporating and 

integrating any data available on the biology of the organism in question within a single 

resource, including data on physiology, metabolism and even morphology; (2) allowing and 

promoting cooperation with other community databases so that the available datasets would 

eventually be comparable across species; and (3) gathering information about laboratories 

working on each organism and the associated experimental protocols, materials and 

instruments, thus providing a platform for community building. Particularly useful and rich 

examples include FlyBase, dedicated to Drosophila melanogaster; WormBase, focused on 

Caenorhabditis elegans; and The Arabidopsis Information Resource, gathering data on 

Arabidopsis thaliana. At the turn of the 21st century, these were arguably among most 

sophisticated community databases within biology. They have played a particularly 

significant role in the development of online data infrastructures in this area and continue to 

serve as reference points for the construction of other databases to this day (Leonelli and 

Ankeny 2012). They therefore represent a good instance of infrastructure explicitly set up to 

support and promote big data research in experimental biology.

4Investigations of how other types of databases function in the biological and biomedical sciences, which also point to the extensive 
labor required to get these infrastructures to work as scientific tools, have been carried out by Hilgartner (1995), Hine (2006), Bauer 
(2008), Strasser (2008), Stevens (2013) and Mackenzie and McNally (2013).
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In order to analyse how these databases enable data journeys, I will distinguish between 

three stages of data travel, and briefly describe the extent to which database curators are 

involved in their realisation.

Stage 1: De-contextualisation

One of the main tasks of database curators is to de-contextualise the data that are included in 

their resources, so that they can travel outside of their original production context and 

become available for integration with other datasets (thus forming a big data collection). The 

process of de-contextualisation involves making sure that data are formatted in ways that 

make them compatible with datasets coming from other sources, so that they are easy to 

analyse by researchers who see them for the first time. Given the above-mentioned 

fragmentation and diversity of data production processes to be found within biology, there 

tends to be no agreement on formatting standards for even the most common of data types 

(such as metabolomics data, for instance; Leonelli et al 2013). As a result, database curators 

often need to assess how to deal with specific datasets on a one-to-one basis. Despite 

constant advances, it is still impossible to automate the de-contextualisation of most types of 

biological data.

Formatting data to ensure that they can all be analysed as a unique body of evidence is thus 

exceedingly labour-intensive, and requires the development of databases with long-term 

funding and enough personnel to make sure that data submission and formatting is carried 

out adequately. Setting up such resources is an expensive business. Indeed, debate keeps 

raging among funding agencies about who is responsible for maintaining these 

infrastructures. Many model organism databases have struggled to attract enough funding to 

support their de-contextualisation activities. Hence, they have resorted to include only data 

that had been already published in a scientific journal - thus vastly restricting the amount of 

data hosted by the database - or that were donated by data producers in a format compatible 

to the ones supported by the database (Bastow and Leonelli 2010). Despite the increasing 

pressure to disseminate data in the public domain, as recently recommended by the Royal 

Society (2012) and several funding bodies in the UK (Levin et al, in preparation), the latter 

category comprises a very small amount of researchers. Again, this is largely due to the 

labour-intensive nature of de-contextualisation processes. Researchers who wish to submit 

their data to a database need to make sure that the format that they use, and the meta-data 

that they provide, fit existing standards - which in turn means acquiring updated knowledge 

on what the standards are and how they can be implemented, if at all; and taking time out of 

experiments and grant-writing. There are presently very few incentives for researchers to 

sacrifice research time in this way, as data donation is not acknowledged as a contribution to 

scientific research (Ankeny and Leonelli 2015).

Stage 2: Re-Contextualisation

Once data have been de-contextualised and added to a database, the next stage of their 

journey is to be re-contextualised - in other words, to be adopted by a new research context, 

in which they can be integrated with other data and possibly contribute to spotting new 

correlations. Within biology, re-contextualisation can only happen if database users have 

access not only to the data themselves, but also to information about their provenance - 
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typically including the specific strain of organisms on which they were collected, the 

instruments and procedures used for data collection, and the composition of the research 

team who originated them in the first place. This sort of information, typically referred to as 

‘meta-data’ (Leonelli 2010, Edwards et al 2011), is indispensible to researchers wishing to 

evaluate the reliability and quality of data. Even more importantly, it makes it possible to 

interpret the scientific significance of data, thus enabling researchers to extract meaning 

from their scrutiny of databases.

Given the challenges already linked to the de-contextualisation of data, it will come as no 

surprise that re-contextualising them is proving even harder in biological practice. The 

selection and annotation of meta-data is more labour-intensive than the formatting of data 

themselves, and involves the establishment of several types of standards, each of which is 

managed by its own network of funding and institutions. For a start, it presupposes reliable 

reference to material specimens of the model organisms in question. In other words, it is 

important to standardise the materials on which data are produced as much as possible, so 

that researchers working on those data in different locations can order those materials and 

reasonably assume that they are indeed the same materials as those from which data were 

originally extracted. Within model organism biology, the standardisation, coordination and 

dissemination of specimens is in the hands of appositely built stock centres, which collect as 

many strains of organisms as possible, pair them up with datasets stored in databases, and 

make them available for order to researchers interested in the data. In the best cases, this 

happens through the mediation of databases themselves; for instance, The Arabidopsis 

Research Database has long incorporated the option to order materials associated with data 

stored therein at the same time as one is viewing the data (Rosenthal and Ashburner 2002). 

However, such a well-organised coordination between databases and stock centres is rare, 

particularly in cases where the specimens to be collected and ordered are not easily 

transportable items such as seeds and worms, but organisms that are difficult and expensive 

to keep and disseminate, such as viruses and mice. Most organisms used for experimental 

research do not even have a centralised stock centre collecting exemplars for further 

dissemination. As a result, the data generated from these organisms are hard to incorporate 

into databases, as providing them with adequate metadata proves impossible (Leonelli 

2012a).

Another serious challenge to the development of metadata consists of capturing 

experimental protocols and procedures, which in biology are notoriously idiosyncratic and 

difficult to capture through any kind of textual description (let alone standard categories). 

The difficulties are exemplified by the recent emergence of a Journal of Visualised 

Experiments, whose editors claim that actually showing a video of how a specific 

experiment is performed is the only way to credibly communicate information about 

research methods and protocols. Indeed, despite the attempted implementation of standard 

descriptions such as the Minimal Information about Biological and Biomedical 

Investigation, standards in this area are very under-developed and rarely used by biologists 

(Leonelli 2012a). This makes the job of curators even more difficult, as they are then left 

with the task of selecting which meta-data to insert in their database, and which format to 

use in order to provide such information. Additionally, curators are often asked to provide a 

preliminary assessment of the quality of data, which can act as a guideline for researchers 
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interested in large datasets. Curators achieve this through so-called ‘evidence codes’ and 

‘confidence rankings’, which however tend to be based on controversial assumptions (for 

instance, the idea that data obtained through physical interaction with organisms are more 

trustworthy than simulation results) which may not fit all scenarios in which data may be 

adopted.

Stage 3: Re-Use

The final stage of data journeys that I wish to examine is that of re-use. One of the central 

themes in big data research is the opportunity to re-use the same datasets to uncover a large 

number of different correlations. After having been de-contextualised and re-contextualised, 

data are therefore supposed to fulfil their epistemic role by leading to a variety of new 

discoveries. From my observations above, it will already be clear that very few of the data 

produced within experimental biology make it to this stage of their journeys, due to the lack 

of standardisation in their format and production techniques, as well as the absence of stable 

reference materials to which data can be meaningfully associated for re-contextualisation. 

Data that cannot be de-contextualised and re-contextualised are not generally included into 

model organism databases, and thus do not become part of a body of big data from which 

biologically significant inferences can be made. Remarkably, the data that are most 

successfully assembled into big collections are genomic data, such as genome sequences and 

microarrays, which are produced through highly standardised technologies and are therefore 

easier to format for travel. This is bad news for biological research focused on understanding 

higher-level processes such as organismal development, behaviour and susceptibility to 

environmental factors: data that document these aspects are typically the least standardised 

in both their format and the materials and instruments through which they are produced, 

which makes their integration into large collection into a serious challenge.

This signals a problem with the idea that big data involves unproblematic access to all data 

about a given phenomenon - or even to at least some data about several aspects of a 

phenomenon, such as multiple data sources concerning different levels of organisation of an 

organism. When considering the stage of data re-use, however, an even more significant 

challenge emerges: that of data classification. Whenever data and metadata are added to a 

database, curators need to tag them with keywords that will make them retrievable to 

biologists interested in related phenomena. This is an extremely hard task, given that 

curators want to leave the interpretation of the potential evidential value of data as open as 

possible to database users. Ideally, curators should label data according to the interests and 

terminology used by their prospective users, so that a biologist is able to search for any data 

connected to her phenomenon of interest (e.g. ‘metabolism’) and find what she the evidence 

that she is looking for. What makes such labelling process into a complex and contentious 

endeavour is the recognition that this classification partly determines the ways in which data 

may be used in the future - which, paradoxically, is exactly what databases are not supposed 

to do. In other publications, I have described at length the functioning of the most popular 

system currently used to classify data in model organism databases, the so-called ‘bio-

ontologies’ (Leonelli 2012b). Bio-ontologies are standard vocabularies intended to be 

intelligible and usable across all the model organism communities, sub-disciplines and 

cultural locations to which data should travel in order to be re-used. Given the above-
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mentioned fragmentation of biology into myriads of epistemic communities with their own 

terminologies, interests and beliefs, this is a tall order. Consequently, and despite the 

widespread recognition that model organism databases are among the best sources of big 

data within biology, many biologists are suspicious of them, principally as a result of their 

mistrust of the categories under which data are classified and distributed. This puts into 

question not only the idea that databases can successfully collect big data on all aspects of 

given organisms, but also the idea that they succeed in making such data retrievable to 

researchers in ways that foster their re-use towards making new discoveries.

4. What Does It Take to Assemble Big Data? Implications for Big Data 

Claims

The above analysis, however brief, clearly points to the huge amount of manual labour 

involved in developing databases for the purpose of assembling big data and making it 

possible to integrate and analyse them; and to the many unresolved challenges and failures 

plaguing that process.

I have shown how curators have a strong influence on all three stages of data journeys via 

model organism databases. They are tasked with selecting, formatting and classifying data 

so as to mediate among the multiple standards and needs of the disparate epistemic 

communities involved in biological research. They also play a key role in devising and 

adding meta-data, including information about experimental protocols and relevant 

materials, without which it would be impossible for database users to gauge the reliability 

and significance of the data therein. All these activities require high amounts of funding for 

manual curation, which is mostly unavailable even in areas as successful as model organism 

biology. They also require the support and co-operation of the broader biological 

community, which is however also rare due to the pressures and credit systems to which 

experimental biologists are subject. Activities such as data donation and participation in data 

curation are not currently rewarded within the academic system. Therefore, many scientists 

who run large laboratories and are responsible for their scientific success perceive these 

activities as an inexcusable waste of time, despite being aware of their scientific importance 

in fostering big data science.

We thus confronted with a situation in which (1) there is still a large gap between the 

opportunities offered by cutting-edge technologies for data dissemination and the realities of 

biological data production and re-use; (2) adequate funding to support and develop online 

databases is lacking, which greatly limits curators’ ability to make data travel; and (3) data 

donation and incorporation into databases is very limited, which means that only a very 

small part of the data produced within biology actually get to be assembled into big data 

collections. Hence, big data collections in biology could be viewed as very small indeed, 

compared to the quantity and variety of data actually produced within this area of research. 

Even more problematically, such data collections tend to extremely partial in the data that 

they include and make visible. Despite curators’ best efforts, model organism databases 

mostly display the outputs of rich, English speaking labs within visible and highly reputed 

research traditions, which deal with ‘tractable’ data formats. The incorporation of data 

produced by poor or unfashionable labs, whether in developed or developing countries, is 
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very low - also because scientists working in those conditions have an even lesser chance 

than scientists working in prestigious locations to be able to contribute to the development 

of databases in the first place (the digital divide is alive and well in big data science, though 

taking on a new form).

A possible moral to be drawn from this situation is that what counts as data in the first place 

should be defined by the nature of their journeys. According to this view, data are whatever 

can be fitted into highly visible databases; and results that are hard to disseminate in this 

way do not count as data at all, since they are not widely accessible. I regard this view as 

empirically unwarranted, as it is clear from my research that there are many more results 

produced within the life sciences which biologists are happy to call and use as data; and that 

what biologists consider to be data does depend on its availability for scrutiny (it has to be 

possible to circulate them to at least some peers who can assess their usefulness as 

evidence), but not necessarily on the extent to which they are publicly available - in other 

words, data disseminated through paper or by email can have as much weight as data 

disseminated through online databases. Despite these obvious problems, however, the 

increasing prominence of databases as supposedly comprehensive sources of information 

may well lead some scientists to use them as benchmarks for what counts as data in a 

specific area of investigation. This tendency is reinforced by wider political and economic 

forces, such as governments, corporations and funding bodies, for whom the prospect of 

assembling centralised repositories for all available evidence on any given topics constitutes 

a powerful draw (Leonelli 2013).

How do these findings compare to the claims made by Mayer-Schönberger and Cukier? For 

a start, I think that they cause problems to both of the corollaries to their views that I listed 

above. Consider first the question of sampling. Rather than disappearing as a scientific 

concern, looking at the ways in which data travel in biology highlights the ever-growing 

significance of sampling methods. Big data that are made available through databases for 

future analysis turn out to represent highly selected phenomena, materials and contributions, 

to the exclusion of the majority of biological work. What is worse, this selection is not the 

result of scientific choices, which can therefore be taken into account when analysing the 

data. Rather, it is the serendipitous result of social, political, economic and technical factors, 

which determine which data get to travel in ways that are non-transparent and hard to 

reconstruct by biologists at the receiving end. A full account of factors involved here far 

transcends the scope of this paper.5 Still, even my brief analysis of data journeys illustrates 

how they depend on issues as diverse as national data donation policies (including privacy 

laws, in the case of biomedical data); the good-will and resources of specific data producers, 

as well as the ethos and visibility of the scientific traditions and environments in which they 

work (for instance, biologists working for private industries may not be allowed to publicly 

disclose their data); and the availability of well-curated databases, which in turn depends on 

the visibility and value placed upon them (and the data types therein) by government or 

relevant public/private funders. Assuming that big data does away with the need to consider 

sampling is highly problematic in such a situation. Unless the scientific system finds a way 

5While a full investigation has yet to appear in print, STS scholars have explored several of the non-scientific aspects affecting data 
circulation (e.g. Martin 2001, Bowker 2006, Harvey and McMeekin 2007, Hilgartner 2013).

Leonelli Page 10

Big Data Soc. Author manuscript; available in PMC 2015 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



to improve the inclusivity of biological databases, they will continue to incorporate partial 

datasets that nevertheless play a significant role in shaping future research, thus encouraging 

an inherently conservative and irrational system.

This partiality also speaks to the issue of bias in research, which Mayer-Schönberger and 

Cukier also insist can potentially be superseded in the case of big data science. The ways in 

which big data are assembled for further analysis clearly introduce numerous biases related 

to methods for data collection, storage, dissemination and visualisation. This feature is 

recognised by Mayer-Schönberger and Cukier, who indeed point to the fact that the scale of 

such data collection takes focus away from the singularity of data points: the ways in which 

datasets are arranged, selected, visualised and analyzed becomes crucial to which trends and 

patterns emerge. However, they assume that the diversity and variability of data thus 

collected will be enough to enable counter the bias incorporated in each of these sources. In 

other words, big data are self-correcting by virtue of their very unevenness, which makes it 

probable that incorrect or inaccurate data are rooted out of the system because of their 

incongruence with other data sources. I think that my arguments about the inherent 

imbalances in the types and sources of data assembled within big biology casts some doubt 

as to whether such data collections, no matter how large, are diverse enough to counter bias 

in their sources. If all data sources share more or less the same biases (for instance, they all 

rely on microarrays produced with the same machines), there is also the chance that bias will 

be amplified, rather than reduced, through such big data.

These considerations do not make Mayer-Schönberger and Cukier’s claims about the power 

of big data completely implausible, but they certainly dent the idea that big data is 

revolutionising biological research. The availability of large datasets does of course make a 

difference, as advertised for instance in the Fourth Paradigm volume issued by Microsoft to 

advertise the power of data-intensive strategies (Hey et al 2009). And yet, as I stressed 

above, having a lot of data is not the same as having all of them; and cultivating such 

illusion of completeness is a very risky and potentially misleading strategy within biology -

as most researchers whom I have interviewed over the last few years pointed out to me. The 

idea that the advent of big data lessens the value of accurate measurements also does not 

seem to fit these findings. Most sciences work at a level of sophistication in which one small 

error can have very serious consequences (the blatant example being engineering). The 

constant worry about the accuracy and reliability of data is reflected in the care put by 

database curators in enabling database users to assess such properties; and in the importance 

given by users themselves to evaluating the quality of data found on the internet. Indeed, 

databases are often valued because they provide means to triangulate findings coming from 

different sources, so as to improve the accuracy of measurement and determine which data 

are most reliable. Although they may often fail to do so, as I just discussed, the very fact that 

this is a valued feature of databases makes the claim that ‘messiness’ triumphs over 

accuracy look rather shaky. Finally, considering data journeys prompts second thoughts 

about the supposed primacy of correlations over causal explanations. Big data certainly do 

enable scientist to spot patterns and trends in new ways, which in turn constitutes an 

enormous boost to research. At the same time, biologists are rarely happy with such 

correlations, and rather use them as heuristics that shape the direction of research, without 

necessarily constituting a discovery in itself. Being able to predict how an organism or 
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ecosystem may behave is of huge importance, particularly within fields such as biomedicine 

or environmental science; and yet, within experimental biology the ability to explain why a 

certain behaviour obtains is still very highly valued - arguably over and above the ability to 

relate two traits to each other.6

5. Conclusion: An Alternative Approach to Big Data Science

In closing my discussion, I want to consider its specificity with respect to other parts of big 

data science, but also the general lessons that may be drawn from such a case study. 

Biology, and particularly the study of model organisms, represents a field where data have 

been produced long before the advent of computing and many data types are still generated 

in ways that are not digital, but rather rely on physical and localised interactions between 

one or more investigators and a given organic sample. Accordingly, biological data on 

model organisms are heterogeneous both in their content and in their format; are curated and 

re-purposed to address the needs of highly disparate and fragmented epistemic communities; 

and present curators with specific challenges to do with the wish to faithfully capture and 

represent complex, diverse and evolving organismal structures and behaviours. Readers with 

a experience in other forms of big data may well be dealing with cases where both data and 

their prospective users are much more homogeneous, which means that their travel is less 

contested and tends to be curated and institutionalised in completely different ways. I view 

the fact that my study bears no obvious similarities to other areas of big data use as a 

strength of my approach, which indeed constitutes an invitation to disaggregate the notion of 

big data science as a homogenous whole, and instead pay attention to its specific 

manifestations across different contexts. At the same time, I maintain that a close 

examination of specialized areas can still yield general lessons, at the very least by drawing 

attention to aspects that need to be critically scrutinized in all instances of big data handling. 

These include, for instance, the extent to which data are - and need to be - curated before 

being assembled into common repositories; the decisions and investments involved in 

selecting data for travel, and their implications for which data get to be circulated in the first 

place; and the representativeness of data assembled under the heading of ‘big data’ with 

respect to other (and/or pre-existing) data collection activities within the same field.

At the most general level, my analysis can be used to argue that characterisations of big data 

science as comprehensive and intrinsically unbiased can be misleading rather than helpful in 

shaping scientific as well as public perceptions of the features, opportunities and dangers 

associated with data-intensive research. If one admits the plausibility of this position, then 

how can one better understand current developments? I here want to defend the idea that big 

data science has specific epistemological and methodological characteristics, and yet that it 

does not constitute a new epistemology for biology. Its strength lies in the combination of 

concerns that have long featured in biological research with opportunities opened up by 

novel communication technologies, as well as the political and economic climate in which 

scientific research is currently embedded. Big data brings new salience to aspects of 

scientific practice which have always been vital to successful empirical research, and yet 

6The value of causal explanations in the life sciences is a key concern for many philosophers, particularly those interested in 
mechanistic explanations as a form of biological understanding (e.g. Bechtel 2006; Craver and Darden 2013).
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have often been overlooked by policy-makers, funders, publishers, philosophers of science 

and even scientists themselves, who in the past have tended to evaluate what counts as ‘good 

science’ in terms of its products (e.g. new claims about phenomena or technologies for 

intervention in the world) rather than in terms of the processes through which such results 

are eventually achieved. These aspects include the processes involved in valuing data as a 

key scientific resource; situating data in a context within which they can be interpreted 

reliably; and structuring scientific institutions and credit mechanisms so that data 

dissemination is supported and regulated in ways that are conducive to the advancement of 

both science and society.

More specifically, I want to argue that the novelty of big data science can be located in two 

key shifts characterising scientific practices over the last two decades. First is the new 

prominence attributed to data as commodities with high scientific, economic, political and 

social value (Leonelli 2013). This has resulted in the acknowledgment of data as key 

scientific components, outputs in their own right that need to be widely disseminated (for 

instance, through so-called ‘data journals’ or repositories such as Figshare or more 

specialised databases) - which in turn is engendering significant shifts in the ways in which 

research is organised and assessed both within and beyond scientific institutions. Second is 

the emergence of a new set of methods, infrastructures and skills to handle (format, 

disseminate, retrieve, model and interpret) data. Stephen Hilgartner has talked about the 

introduction of computing and internet technologies in biology as a change of 

communication regime (Hilgartner 1995). Indeed, my analysis has emphasised how the 

introduction of tools such as databases, and the related opportunity to make data instantly 

available over the internet, is challenging the ways in which data are produced and 

disseminated, as well as the types of expertise relevant to analysing such data (which now 

needs to include computing and curatorial skills, in addition to more traditional statistical 

and modelling abilities).

When seen it through this lens, data quantity can indeed be said to make a difference to 

biology, but in ways that are not as revolutionary as many big data advocates would 

advocate. There is strong continuity with practices of large data collection and assemblage 

conducted since the early modern period; and the core methods and epistemic problems of 

biological research, including exploratory experimentation, sampling and the search for 

causal mechanisms, remain crucial parts of inquiry in this area of science - particularly given 

the challenges encountered in developing and applying curatorial standards for data other 

than the high-throughput results of “omics” approaches. Nevertheless, the novel recognition 

of the relevance of data as a research output, and the use of technologies that greatly 

facilitate their dissemination and re-use, provide an opportunity for all areas in biology to 

reinvent the exchange of scientific results and create new forms of inference and 

collaboration.

I end this paper by suggesting a provocative explanation for what I argued is a non-

revolutionary role of big data in biology. It seems to me that my scepticism arises because of 

my choice of domain, which is much narrower than Mayer-Schönberger and Cukier’s 

commentary on the impacts of big data on society as a whole. Indeed, biological research 

may be the domain of human activity that is least affected by the emergence of big data and 

Leonelli Page 13

Big Data Soc. Author manuscript; available in PMC 2015 February 25.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



related technologies today. This is precisely because, like many other natural sciences such 

as astronomy, climatology and geology, biology has a long history of engaging with large 

datasets; and because deepening our current understanding of the world continues to be one 

of the key goals of inquiry in all areas of scientific investigation. While often striving to take 

advantage of any available tool for the investigation of the world and produce findings of 

use to society, biologists are not typically content with establishing correlations. The quest 

for causal explanations, often involving detailed descriptions of the mechanisms and laws at 

play in any given situation, is not likely to lose its appeal any time soon. Whether or not it is 

plausible in its implementation, the big data epistemology outlined by Mayer-Schönberger 

and Cukier is thus unlikely to prove attractive to biologists, for whom correlations are 

typically but a starting point to a scientific investigation; and the same argument may well 

apply to other areas of the natural sciences.7 The real revolution seems more likely to centre 

on other areas of social life, particularly economics and politics, where the widespread use 

of patterns extracted from large datasets as evidence for decision-making is a relatively 

recent phenomenon. It is no coincidence that most of the examples given by Mayer-

Schönberger and Cukier come from the industrial world, and particularly globalised sales 

strategies as in the case of Amazon.com. Big data provides new opportunities for managing 

goods and resources, which may be exploited to reflect and engage individual preferences 

and desires. By the same token, big data also provide as yet unexplored opportunities for 

manipulating and controlling individuals and communities on a large scale - a process that 

Rita Raley (2013) characterised as “dataveillence”. As demonstrated by the history of 

quantification techniques as surveillance and monitoring tools (Porter 1995), data have long 

functioned as a way to quantify one’s actions and monitor others. ‘Bigness’ in data 

production, availability and use thus needs to be contextualised and questioned as a political 

economic phenomenon as much as a technical one (Davies, Frow and Leonelli 2013).
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