@'PLOS ‘ ONE

CrossMark

dlick for updates

E OPEN ACCESS

Citation: Brooks FJ, Grigsby PW (2015) Low-Order
Non-Spatial Effects Dominate Second-Order Spatial
Effects in the Texture Quantifier Analysis of 18F-
FDG-PET Images. PLoS ONE 10(2): €0116574.
doi:10.1371/journal.pone.0116574

Received: August 20, 2014
Accepted: December 9, 2014
Published: February 25, 2015

Copyright: © 2015 Brooks, Grigsby. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Institutes of Health under Grant 1R01-CA136931-
01A2, http://www.nih.gov. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Low-Order Non-Spatial Effects Dominate
Second-Order Spatial Effects in the Texture
Quantifier Analysis of 18F-FDG-PET Images

Frank J. Brooks' *, Perry W. Grigsby'>3*

1 Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri,
United States of America, 2 Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Saint Louis,
Missouri, United States of America, 3 Department of Obstetrics and Gynecology, Washington University
Medical Center, Saint Louis, Missouri, United States of America, 4 Alvin J. Siteman Cancer Center,
Washington University Medical Center, Saint Louis, Missouri, United States of America

* fibrooks @wustl.edu

Abstract

Background

There is increasing interest in applying image texture quantifiers to assess the intra-tumor
heterogeneity observed in FDG-PET images of various cancers. Use of these quantifiers as
prognostic indicators of disease outcome and/or treatment response has yielded inconsis-
tent results. We study the general applicability of some well-established texture quantifiers
to the image data unique to FDG-PET.

Methods

We first created computer-simulated test images with statistical properties consistent with
clinical image data for cancers of the uterine cervix. We specifically isolated second-order
statistical effects from low-order effects and analyzed the resulting variation in common tex-
ture quantifiers in response to contrived image variations. We then analyzed the quantifiers
computed for FIGOIIb cervical cancers via receiver operating characteristic (ROC) curves
and via contingency table analysis of detrended quantifier values.

Results

We found that image texture quantifiers depend strongly on low-effects such as tumor volume
and SUV distribution. When low-order effects are controlled, the image texture quantifiers
tested were not able to discern only the second-order effects. Furthermore, the results of clini-
cal tumor heterogeneity studies might be tunable via choice of patient population analyzed.

Conclusion

Some image texture quantifiers are strongly affected by factors distinct from the second-
order effects researchers ostensibly seek to assess via those quantifiers.
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Introduction

Position emission tomography (PET) using the 18F-fluorodeoxyglucose (FDG) radiotracer is
an imaging modality well-established for the location and sizing of many tumor types. During
the image reconstruction process, measured positron intensity typically is normalized such
that, to within acceptable noise, zero image intensity (black) corresponds to zero tracer uptake
and maximum image intensity (white) corresponds to maximal uptake. While false-color
schemes are sometimes used to visualize FDG-PET images against those obtained via other
modalities, the predominant scheme for mathematical analysis is linear, gray shading between
the intensity extrema. The resulting gray level images of tumors often exhibit obvious heteroge-
neity, where some regions within the tumor appear much brighter than other intra-tumor re-
gions. Because uptake of the glucose analog FDG correlates with metabolic activity, the
motivation behind quantifying the observed image heterogeneity is that perhaps insight will be
gained into the stark biological heterogeneity known to exist within tumors [1-3]. Here, bio-
logical heterogeneity commonly refers to a mixed phenotypic population of cells within the
tumor. This diversification results from both genetic—e.g., numerous proliferation cycles with
a relatively high per-cycle mutation rate—and non-genetic sources such as interaction with the
local microenvironment [3]. The result of these integrated effects is a tumor with spatially vary-
ing cellular population, density and vascularization. These variations offer one feasible explana-
tion as to why otherwise similar tumor types exhibit various degrees of invasiveness and
treatment response. In short, it seems that increased heterogeneity confounds tailoring therapy
to a specific tumor and thus is linked with poor prognosis [3]. For these reasons, development
of a robust technique for quantifying observed heterogeneity in FDG-PET images might be an
important opportunity for developing indicators of disease outcome.

A search of PubMed reveals a considerable and rapidly increasing interest in the implica-
tions of intra-tumor heterogeneity and how that heterogeneity might be measured via current
imaging technology. Toward this end, there have been many recent proposals to use “texture
quantifiers” applied to FDG-PET images as prognostic heterogeneity quantifiers [4-15]. Image
texture refers to the perceptible pattern or grain of an image [16]; texture is the combined vari-
ation of a gray level distribution and the spatial arrangement of those levels. Any statistical de-
scriptor of the gray level distribution itself—such as the variance, skewness or area under the
cumulative histogram—is a “first-order” measure; it describes only the gray levels available but
not at all where in the image those levels occur. A second-order measure contains information
about the spatial arrangement of the available levels. A texture quantifier is thus a second-
order statistical description of the probability that a given gray level occurs next to another.
The occurrences of gray levels or groups of gray levels are tallied conveniently in matrices.
Quantifiers based upon such gray level co-occurrence matrices (GLCMs) proposed by Haralick
etal. [17] and related matrices [18-21] seem to be those most commonly employed in clinical
studies of image heterogeneity. However, this application of image texture quantifiers specifi-
cally to FDG-PET images of typical tumors is fraught with difficulty.

Foremost, there is no consistent, unique mapping between a given visual feature and a given
quantifier value [17]. In other words, there is no reliable correspondence between any single
quantifier and exactly one, well-defined image feature. Thus, texture quantifiers may not be pre-
sumed to provide the categorization or objectivity sought when comparing tumors that are al-
ready difficult to describe verbally. Furthermore, there is no established scale for any texture
quantifier applied to FDG-PET images. That is, there can be no presumption whatsoever that
twice a quantifier value implies twice the heterogeneity. This immediately calls into question the
increasingly common practice of comparing quantifier magnitudes and performing what
amount to statistical location tests on pooled quantifier data. This practice is further complicated
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by the sheer number of quantifiers contrived and their latent inter-correlations which together
yield far more degrees of freedom than the typical number of clinical dichotomies analyzed can
support. In other words, having a computer algorithmically compute the gamut of GLCM-based
texture quantifiers yields numerous predictors that are related in ways that might not be ade-
quately testable via the relatively few number of clinical events observed in typical studies.

Equally as important, the minimum image sampling required for statistically robust analysis
via texture quantifiers has not been established [22]. Consider that typical images for which
image texture metics have proven to be useful indicators of visually perceptible features
[17,23-27] tend to be much more pixel-dense than those clinicians seek to analyze. To better ap-
preciate this, note that a typical light microscopy image of a histology slide might have a pixel
size on the order of 1 um while a typical PET scanner yields pixels on the order of 1 mm. In prac-
tice, even very large tumors (say, 200 cm’) comprise only a few thousand FDG-PET pixels. This
permits the logical possibility that small and large tumors are biologically identical but will mea-
sure to different heterogeneities solely because of their difference in size. It is also possible that
any actual biological heterogeneities yield measurable image effects smaller than those yielded by
differing size alone. In fact, it has been argued [22, 28] —and subsequently verified for various
clinical data [15, 29]—that some texture quantifiers depend strongly upon tumor volume.

It should also be appreciated that the analysis technique described by Haralick et al. in 1973
and established in numerous subsequent image science publications is not generally imple-
mented in current clinical research. Haralick et al. proposed that their quantifiers be applied to
images that first have undergone “equal-probability quantizing” [17]. In short, this (now) well-
known image processing technique stretches the gray level histogram to the entire available bit
depth; the gray values are mapped based upon rank and number rather than magnitude. This
histogram equalization has the effect of enhancing contrast near histogram maxima while reduc-
ing contrast near histogram minima [16]. Thus, histogram equalization can have the desirable
effects of increasing the visual contrast within one tumor while reducing the variation between
distinct tumors. Despite this, most published clinical texture analyses we found have little or no
mention of gray level quantization [10, 12, 13]. Of those that do, what often is actually described
seems to be only a rescaling of gray levels, not equalization of those levels [5, 6, 8, 9, 14, 15]. Fur-
thermore, the rescaling thus employed has been arbitrary and widely varied. It also has been ar-
gued that choices made in resampling technique actually create spurious correlations between
the maximum standard uptake value (SUV ;,,x) and some texture quantifiers [15].

Given the concerns described above, the suggestion [29] that heterogeneity of patient popu-
lation contributes largely to the heterogeneity measured via texture quantifiers seems a plausible
explanation of the inconsistent results of clinical image heterogeneity studies summarized excel-
lently by Orlhac et al. [15]. Here, a heterogeneous population implies the more traditional, stat-
isticians’ definition of a population comprising disparate sub-populations. We hypothesize that
although image texture quantifiers are capable of measuring second-order variation in images,
that variation is overwhelmed by low-order effects for the specific case of FDG-PET images of
tumors. It is the purpose of the present study to: measure and compare low- and second-order
effects of pertinent image variation, establish their impact upon clinical studies and describe a
method for the robust application of image texture quantifiers to clinical FDG-PET data.

Methods
Clinical Image Data

Fully anonymized FDG-PET image data from a previous study [29] was used in the present
work with waiver of informed consent as approved by the Washington University Human Re-
search Protection Office. In brief, patients with newly diagnosed cervical cancer who underwent
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FDG-PET or FDG-PET/CT were staged clinically according to FIGO staging (AJCC 2002, 6th
edition). The selection criteria for inclusion into this study were FIGO clinical stage IIb tumors
and squamous cell histology. The raw FDG-PET data were scatter- and attenuation-corrected via
software native to the scanner (Biograph 40 True Point Tomograph Scanner; Siemens). Images
were reconstructed using ordered-subset expectation maximization (8 subsets; 4 iterations) and a
gaussian smoothing filter of 4 mm in full width at half maximum was applied after reconstruc-
tion. The primary tumor evident in each FDG-PET image set was visually identified and then
segmented using the rule that any image voxel with standard uptake value (SUV) greater than
40% of the maximum SUV is part of the tumor [30]. A veteran oncologist then made slight man-
ual adjustments to the region to remove any obvious non-tumor voxels (e.g., bladder). These
data were exported as a set of (x, y, z) coordinates, each with a single 15-bit grayscale image in-
tensity corresponding to radioactivity in Bq/mL. For the one specific task of comparing the en-
semble gray level distribution to that of the simulated images described below, we thresholded
the clinical data at 50% of the maximum observed SUV. Patients were re-imaged approximately
three months after completing curative-intent chemoradiotherapy. On those follow-up scans, 66
patients were found to have no detectable tumor while 19 had residual and/or new tumor.

Simulated Image Data

We stress that we in no way attempted to simulate the PET process or model tumor growth. In-
stead, we sought only to render images consistent with clinical observation but with some pur-
posefully controlled statistical properties. In order to isolate and study low- and second-order
effects upon texture quantifiers, we created virtual tumor objects of drastically varying heteroge-
neity using the lumpy object model [31] as implemented in Python 2.7 computer code. In brief,
a given number of three-dimensional, radially symmetric Gaussian functions with tunable radii
and heights were first randomly centered within some field of view (FOV) and then superposed.
We began with a 32 x 32 x 32 voxel blank background (i.e., gray level zero). We centered a spher-
ical FOV with radius (F) chosen at random from the range [4,8] voxels. Looking forward to an
upcoming thresholding step, this is FOV constraint was necessary to create a small, closed object
near the center of the image. In order to first create an homogeneous object, we set the number
of Gaussian lumps to 1 plus a variate from a Poisson distribution with mean 2. The height of
each lump was set to 1.0 and the radius was chosen at random from the range [F/2, F] voxels.
The lump functions were superposed at each image voxel. White noise of 2.5% of the voxel value
was then added to each voxel. The entire virtual object was normalized and rescaled to the 8-bit
gray scale. Any voxel below a threshold of half the maximum (255) was set to zero. Assuming a
PET scanner voxel size of 64 mm?®, the object was retained only if the volume (V) was within the
observed range of typical (for cervical cancer) clinical data, [5, 205] cm®. We henceforth refer to
this object as the “homogeneous object.” The homogeneous object is then stratified along the
z-axis into sequential two-dimensional slices and output as 8-bit PNG images.

From the coordinates of the homogeneous object, a distinctly more heterogeneous object
was created by adding more Gaussian lumps as follows. The number of lumps was set to
V mod 5 cc. This yields a constant lump density across objects of widely varying size. Unique
lump centers were chosen from the homogenous object. The lump heights were again set to 1.0
but the radii were chosen at random from the range [1, F/4] voxels. These smaller lumps were
superposed for every homogeneous object voxel. To each voxel value, white noise of 5% of the
voxel value and systematic white noise of 2% of the entire bit range were added. The resulting
voxel values were rescaled to the same range as that of the homogeneous object, [127, 255]. In
an effort to isolate second-order effects (arrangement) from first-order effects (distribution),
we first performed histogram matching [32] of the heterogeneous object to that of the
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homogeneous object. Next, we used the histogram-matched heterogeneous object as a template
for how the homogeneous gray levels should be arranged. This is done as follows. We first
chose two homogeneous object coordinates at random. The total absolute difference in gray
levels between the homogeneous object and the heterogeneous template object are computed
using both coordinates. The gray levels at the two homogeneous coordinates are then swapped
and the difference from the template object is recomputed. If the post-swap, inter-object differ-
ence is less than the pre-swap, inter-object difference, the swap is kept. This swapping process
was repeated numerous times. Every 1000 swaps, the cross-correlation between the template
and the swapped object was computed. When that cross-correlation became greater than 99%,
swapping was halted. Because our image generation scheme is a stochastic process, it is possi-
ble, especially at very small volumes, that the heterogenous (swapped) object exhibits a very
similar spatial arrangement to the homogeneous (unswapped) one. We therefore compute the
cross-correlation between the homogeneous and heterogeneous objects. The pair is kept only if
that correlation is less than 0.75. The heterogenous object is then stratified and saved. The re-
sult is a doublet of cross-sectional image sets of objects with distinctly different spatial arrange-
ments but having identical: size, shape and gray level distributions. A typical example is given
in Fig. 1 where the increased heterogeneity is obvious. We ran this image set generation process
until we had 400 conjugate pairs. For the purposes of testing the sensitivity of texture quantifi-
ers to spatial arrangement, it is also important to note that all of our generated objects are
closed in the sense that they are smooth at the interface with the background and there are no
holes within the object bulk. The ensemble distribution of object volume approximately follows
a Gamma distribution with shape parameter 2.4 and scale parameter 29.3; the ensemble gray
level distribution approximated that of our clinical data to within about 8% fractional error.

Computation of Texture Quantifiers

For each image set (both clinical and simulated), the GLCM was computed as follows. An image
set is read into memory as a set of (x, y, z, g) coordinates where (x, y, z) is the Cartesian coordi-
nate of an object voxel and g > 0 is the gray level at that voxel. All object coordinates analyzed
have been made available as anonymized supplementary data to this article. The gray levels are
then non-linearly rescaled such that the gray level probability distribution is equalized to use the
entire available bit depth [16, 17]. The gray level at a given coordinate and that at the (x + 7, yo +
j, 2o + k) nearest neighbor of that coordinate form a gray level co-occurrence pair. The co-occur-
rences of all neighboring pairs are recorded in a distinct GLCM for each vector direction <i, j,
k> [17]. Because we consider only object-to-object pairs where both members are nonzero,
many of the possible directions yield redundant matrices. We therefore compute the GLCM for
only <i, j, k> at the corners of the size one voxel first octant. The distinct GLCMs were individu-
ally normalized to create a set of symmetric matrices containing the probabilities that any one of
the possible gray levels occurs at vector <i, j, k> from any other. It should be understood that
many authors have renamed and redefined the quantifiers originally defined by Haralick et al.
We follow the nomenclature found in the current medical literature and the definitions given in
Ref. [16] as summarized in Table 1. It should be clear from these definitions that the homogenei-
ty is inversely correlated with the dissimilarity. What may not be immediately clear to some,
however, is that the energy and entropy are inverse correlates as well [16]. We chose these four
quantifiers because they are widely implemented as FDG-PET image heterogeneity quantifiers
yet have yielded inconsistent results. In our summations, we do not exhaustively tally every pos-
sible co-occurrence permitted by the given bit depth but instead count only co-occurrences be-
tween distinct gray levels actually present within the image. We computed a given texture
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Fig 1. Cross-sections of simulated objects. Both three-dimensional objects have identical gray level distributions yet stark differences in spatial
arrangement are clear. The vertical edge of the images corresponds to a length of 64 mm.

doi:10.1371/journal.pone.0116574.9001

quantifier on all eight directional GLCMs then averaged those values to obtain a single quantifier
value for that set. This was repeated for each quantifier and then for each image set.

Statistical Analysis

For comparing gray-level histograms of entire image sets, we employed the two-sample Kol-
mogorov-Smirov test as computed in NumPy v1.8 (http://www.numpy.org). All other statisti-
cal analyses were conducted in R 3.1.0 (R Foundation for Statistical Computing, Vienna,
Austria). Rank correlation between quantifier sets was assessed via Kendall’s t. Correlation be-
tween dichotomized quantifier differences and binary treatment outcomes was assessed via
Cramer’s ¢. The prognostic potential of various texture quantifiers was assessed via receiver-
operating curve (ROC) analysis as conducted via the pROC package [33].

Table 1. Texture Quantifier Definitions.

Name Alias Formula

Angular Second Moment Energy > omaP2(m.n)

Entropy — > maP(m,n)ln p(m,n)
Inverse Difference Moment Homogeneity S 7,(:12‘]

Contrast Dissimilarity > mnIm —n| p(m,n)

Here, p(m, n) is the probability that distinct gray levels m and n appear in adjacency within the three-
dimensional object analyzed.

doi:10.1371/journal.pone.0116574.t001
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Results
Simulated Image Data

We analyzed the simulated tumor images via the texture quantifiers given in Table 1. Fig. 2
shows the strong correlation between energy and entropy and the predicted strong dependence
upon tumor volume. What is perhaps more important, however, is the lack of difference in
quantifier scaling with volume between the homogenous objects (gray dots) and the heteroge-
neous objects (black triangles). For each GLCM-based quantifier analyzed, we computed the
absolute percent difference between each conjugate pair using the homogeneous value as the
normalizing value. The interquartile range (IQR) of the differences for the texture quantifiers
given in Table 1 were: 2.3%, 0.26%, 8.0% and 8.2% respectively. Thus, in the case of the energy
and the entropy, there is effectively no difference in value between the object pairs. Because
each object pair differs only in spatial arrangement, the conclusion is that these two quantifiers
are unable to distinguish purely second-order effects in image data consistent with that of clini-
cal FDG-PET data. Additionally, those quantifiers are seen to be nearly perfect surrogates for
tumor volume as Kendall’s 7 = -0.97 and 0.98 for the energy and entropy, respectively.

In the case of the image dissimilarity—or, it’s inverse correlate, the homogeneity—the quan-
tifier value for the heterogeneous object was within 13% of that of the homogeneous object for
the first 75% supermajority of object pairings. The conclusion is that small objects differing
only in the second order may not exhibit large differences in GLCM-based texture quantifier
value. Furthermore, the differences themselves can be seen in Figs. 3 and 4 to scale with vol-
ume. This result is illustrated in the figure insets where the probability that the larger quantifier
value correctly identifies object type is plotted versus volume. Because of the different volume
scaling exhibited by the distinct object types, it is possible, for example, for a homogeneous ob-
ject to exhibit more dissimilarity than its less smooth, more heterogeneous conjugate. It is cru-
cial to see that the trend curves cross and thus the very meaning of “greater value” changes
with object volume. Furthermore, despite the strong inverse correlation, the sensitivity of the
dissimilarity is less than that of homogeneity. This may be seen from the figure insets where
the solid lines indicate the point at which the quantifier value correctly discriminates greater
second-order heterogeneity with the 80% probability often employed by clinicians. Because
this volume is less for the homogeneity, we expect it will outperform its inverse correlate in dis-
tinguishing object pairs, however, it is still larger than many typical clinical volumes. We dis-
cuss in a later section why these potentially counter-intuitive results are reasonable and how
they likely, profoundly, impact clinical heterogeneity studies.

The generally poor power of the texture quantifiers to discern the isolated second-order ef-
fects coupled with the observation of volume scaling distinct to object type, motivated us to im-
plement a more well-established quantifier of local variation. We first define the mean-field
gray level <G(x, y, z)> as the weighted average of all nonzero gray levels in the 26-connected
nearest neighborhood centered at object coordinate (x, y, z). Each gray level in the average is
weighted by the reciprocal of the distance between (x, y, z) and the neighbor. The absolute dif-
ference in gray level from the mean field is summed over every voxel in the three-dimensional
object. That is, we define the mean-field energy for the object to be

EEZ|g(xvyvz)_<G(x’yaz)>| (1)

X,z

Although we are unaware of any published use of E as a measure of uptake heterogeneity in
FDG-PET images, it is hardly a new quantifier as it is ubiquitous to the field of statistical phys-
ics and similar, at least in spirit, to Laws’ measures [34] and to quantifiers based upon
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Fig 2. Entropy and energy plotted versus object volume. There is effectively no difference between these
quantifiers for the homogeneous (gray, circles) and heterogeneous (black, triangles) objects.

doi:10.1371/journal.pone.0116574.9002

neighborhood gray tone difference matrices [20]. It should be clear from Equation 1 that E in-
creases with increasing tumor volume. We discuss the potential uses and caveats of E as an
image heterogeneity quantifier in later section but here note that the difference in volume scal-
ing between the object types is stark (Fig. 5) and the interquartile range of absolute percent dif-
ferences in E is 34%—far greater than that for the other quantifiers. In the figure inset, it is seen
that at very large volumes, E is always greater for the object with higher second-order heteroge-
neity. At a volume of 72 cc, E is greater with 0.80 probability. This volume is less than for the
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Fig 3. Dissimilarity plotted versus object volume. The dissimilarity scales non-linearly with volume. The
trend curve for the homogeneous objects (gray, circles) crosses that of the heterogeneous objects (black,
triangles).

doi:10.1371/journal.pone.0116574.9003
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Fig 4. Homogeneity plotted versus object volume. The volume where homogeneity correctly
discriminates homogeneous objects (gray, circles) from heterogeneous ones (black, triangles) is slightly less
than for dissimilarity.

doi:10.1371/journal.pone.0116574.9004

dissimilarity or homogeneity. Additionally, some computational concerns discussed in a later
section might make E the better quantifier for clinical heterogeneity studies.

Clinical Image Data

Trends similar to those for the simulated data are summarized in Table 2 for the clinical data
that have undergone equal probability quantization. There, it is again seen that the texture quan-
tifiers correlate strongly with volume. It is also of note that none of these quantifiers proved
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Fig 5. Mean field energy plotted versus object volume. The volume where the mean-field energy correctly
discriminates homogeneous objects (gray, circles) from heterogeneous ones (black, triangles) is less than
for homogeneity.

doi:10.1371/journal.pone.0116574.9005
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predictive of treatment response via traditional ROC analysis. Additionally, although each of
the quantifiers is, in essence, a surrogate for tumor volume, it may not be assumed that the
quantifiers are interchangeable [15]. For example, the results of Kendall’s test of rank correlation
with the dissimilarity implies that quantifier ranks patients in a very different heterogeneity
order than does, the entropy (7 = -0.59), the homogeneity (7 = -0.69), or the mean-field energy
(1=-0.40). We repeated the above analysis for for image data that had first been transformed to
8-bits (i.e., 256 gray levels) before quantization or further analysis. From the comparable rank
correlations with volume seen in Table 2, it is clear that, as expected, the impact of zero-order
(size) effects persist through even drastic reductions bit-depth. Additionally, the predictive ca-
pacity does not change appreciably for any quantifier computed upon the quantized image data.

In a second effort to isolate second-order spatial effects from low-order sampling and distri-
bution effects, we sought to compare tumors exhibiting similar low-order properties. First, nei-
ther tumor should be so small as to be ambiguously defined. For our cervical cancer data, we
set the minimum meaningful volume to 5 cc. Next, because of the observed strong dependence
texture quantifiers have upon volume, we demand that comparable tumors be of similar vol-
ume. Last, we demand that the gray-level distributions be similar for both tumors. We assessed
this via the two-sample Kolomogorov-Smirov test which yields a probability p that two samples
are drawn from distributions having identical cumulative distribution functions. We thus de-
fined a “low-order similarity” index

*”EW“%) ) @

where V; and V, are the volumes (in cc) of the tumors to be compared. We computed this

index for every possible pairing of our 85 clinical patients before equal-probability quantization
was applied and selected only those pairs where y > 0.8 for further analysis. This left 20 pairs
for which it is plausible that second-order effects might be discernible. Of those 20 pairs, 4
comprised patients with differing treatment response. It is remarkable that, for our data, the su-
permajority of similar pairs were not particularly large; the third quartile volume is only 32 cc.

For each similarity pair, we computed all quantifiers on quantized image data as before. One
key observation is that the energy—for which the IQR of absolute percent difference was only 2%
for the simulated images—was 25% for the paired clinical data. This implies that controls of low-
order effects imposed via the similarity index were insufficient to counteract the extreme sensitivi-
ty of the energy to whatever low-order differences persist. We contrast this to the dissimilarity and
homogeneity where the IQR of the absolute percent differences (11%, 16%, respectively) for our
clinical data paired via Equation 2 is comparable to those of the simulated images. While this im-
plies that it is plausible that second-order differences within clinical pairs might be measurable,
the fact that each difference is greater also implies that the low-order similarity () may need to be
set even higher than 0.8 in order to truly isolate second-order effects in clinical studies.

We assume that if a second-order heterogeneity quantifier is of prognostic value, then the
quantifier value should be (approximately) equal for pairs with identical treatment response
and decidedly unequal for pairs with differing response. We investigated this in two ways.
First, we defined equivalence of quantifier value as any pairwise absolute difference less than
that of the Freedman-Diaconis bin size for all unique pairwise absolute differences. We formed
the 2x2 contingency table with outcome difference and quantifier difference. These results are
summarized in Table 3 where it is seen from Cramer’s ¢ that no quantifier correlates with
treatment response. Second, because each quantifier depends upon volume—even within our
relatively narrow bands of tumor similarity—we also analyzed the detrended pairwise absolute
differences. For each quantifier, we computed f(V), the least-squares non-linear fit of all values
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Table 2. Texture Quantifiers Applied to Clinical Data.

15-bit image data T
AUC

8-bit image data T
AUC

Energy Entropy Dissimilarity Homogeneity Mean-field Energy
-0.86 0.86 -0.54 0.69 0.78
0.50 0.51 0.56 0.54 0.48
-0.85 0.85 -0.54 0.54 0.79
0.50 0.50 0.56 0.55 0.47

Here, 1 is Kendall's measure of rank correlation with tumor volume and AUC is the area under the receiver-operating curve for binary treatment response.

doi:10.1371/journal.pone.0116574.t002

in our clinical data set. These f{V) (not shown) are similar in functional form and fit to the
trend curves shown in Figs. 3-5 for the simulated data. We subtracted f{(V) from each quantifier
value at each V. The detrended absolute differences between paired patients were then tested as
a predictor of outcome via ROC analysis. Again, we found that no quantifier predicted treat-
ment response (Table 3). We repeated the above analysis for a new set of clinical similarity
pairs determined from the original image data that had first been transformed to 8-bits before
quantization or tests via Equation 2. This gave us 31 similarity pairs with 9 comprising patients
of different treatment response. The increase in similarities is expected given that reduction of
bit depth smooths the input gray-level histograms. As seen in Table 3, the ROC analysis again
indicates no reliable predictive capacity for any of the quantifiers tested, however, the AUCs
are different from those of the previous case for the entropy and homogeneity. The implication
is that the statistic often used to determine the predictive capacity of clinical heterogeneity sta-
tistics depends upon the pre-quantization bit-depth of the input images.

Discussion

Analysis of image texture as a technique for quantifying and discerning pre-defined regions-of-
interest (ROIs) has been proven effective in diverse applications such as remote sensing [17], his-
topathology [23], facial recognition [24], autonomous vehicle guidance [25], handwriting analy-
sis [26] and tree species identification [27]. Common to all of these examples, however, is that
the ROIs compared tend to be larger and/or of higher resolution than those found in FDG-PET
images of tumors. As we have illustrated for both theoretical and clinical cases, texture quantifi-
ers are dominated first by ROl size. This is a kind of “zero-order” effect: before any higher-order
differences can measured, the ROI must be large enough such that the features to be measured
have space enough to manifest. In other words, one cannot expect to find a size L feature in a re-
gion of size less than L. Thus, all quantifiers of spatial arrangement must depend somewhat on
region size [16, 17, 20]. We therefore predict that the dependence upon tumor volume is even
greater for quantifiers of increasing sophistication because the number of occurrences of larger

Table 3. Texture Quantifiers Applied to Similar Clinical Pairs.

15-bit image data ¢
AUC

8-bit image data ¢
AUC

Energy Entropy Dissimilarity Homogeneity Mean-field Energy
0.063 -0.055 0.085 0.085 -0.064

0.53 0.39 0.66 0.55 0.64

0.087 -0.18 0.12 0.32 -0.39

0.50 0.46 0.66 0.70 0.62

Note that here Cramer’s ¢ is derived from raw quantifier values whereas the AUC was derived from volume-detrended quantifier values.

doi:10.1371/journal.pone.0116574.t003
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features (e.g., distant pairs, runs or zones) must be fewer at smaller volumes. It is therefore pru-
dent to presume that sophisticated texture quantifiers may not have accrued enough feature
samples at small volumes as to make any meaningful comparison between disparate tumor sizes.
An apt analogy would be attempting to prove a suspect coin to be unfair by flipping it only
twice. In both scenarios, the behavior sought simply cannot be measured until many samples are
observed. The presence of zero-order (size) effects implies that small tumors could be of the
exact same biology as large ones yet this biology would be untestable via FDG-PET texture anal-
ysis because it always yields different quantifier values for disparate volumes.

We made some attempt to compute the volume at which comparisons may be meaningful.
However, we must stress two critical issues with this. First, every such assessment must address
a specific task. That is, each quantifier in question must be tested for each type of image data.
Even then, the minimum volume estimate may not be appropriate. We constructed image data
with object size, shape and gray level distribution which are consistent with our clinical data.
However, that consistency alone implies neither that we’ve discovered some widely applicable
rule nor that we’ve computed the precise minimum volume for cervical cancer data. At best,
we can only say that it seems likely that the minimum volume is large, maybe so large as to ex-
clude the majority of our clinical data. Absent of some rigorous analytic proof otherwise, it
should never be presumed that any minimum volume is applicable for all quantifiers or all data
types. Secondly, the numeric value of volume is not important but instead the number of voxels
is. This is because PET scanner settings differ from study to study. For our simulated images,
we observed that 72 cc yielded 80% probability that the mean-field energy could correctly dis-
tinguish second-order heterogeneity. This corresponded to a minimum sampling of 1125 vox-
els; a substantially larger estimate than one published previously [22]. It is also important to
note that these concerns about post-hoc image sampling are distinct from those regarding pre-
reconstruction positron counting or from the theoretical computation of PET spatial resolution
in general. Our concerns derive from the analysis of the image data clinicians typically have in-
hand and thus remain germane even after the effects of specific scanner settings or image re-
construction techniques are considered.

The size and shape of the voxels themselves likely impacts clinical heterogeneity studies.
Consider, for example, two tumors of equal volume V. If the first is assayed via a scanner set to
voxel size v while the second is assayed via voxel size yv where y > 1, then the second must
comprise fewer total voxels (i.e., samples). Thus, the rate that the second scanner approaches
adequate sampling—whatever that adequacy may be—is necessarily different from that of the
first scanner. Thus, the en masse analysis of image data from scanners with vastly different
voxel size likely includes this underlying variance. Additionally, it is also reasonable to presume
that differences in voxel shape could introduce still more variance. Consider that some institu-
tions set their PET scanners such that the trans-axial resolution differs from the planar resolu-
tion. That is, the voxels might be longer along the z-axis than in either the x- or y-axes. In such
a case, the relative distance between voxels is not equivalent in all directions. However, this is
precisely what is tacitly assumed in every clinical image texture analysis we have thus far en-
countered. Recall that due to PET physics, intensities within neighboring voxels necessarily are
correlated and the strength of that correlation decreases non-linearly with distance. If texture
quantifiers which, by definition, measure only relative voxel juxtaposition are extended into
three dimensions, but the new dimension is not equivalent to the others, that extension must
introduce additional variance. In other words, if the voxels aren’t cubical, the biological mean-
ing of heterogeneity in one axial plane is not the same as in another. While here we make no at-
tempt whatsoever to compute the ultimate impact of voxel size and shape on clinical
heterogeneity studies, it seems prudent to consider that these effects could be an additional
source of discrepancy between previously published studies.
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A more certain aspect about quantifier dependence upon volume is the observation that the
trend curves for the differing object types cross. While we cannot claim from the simulated im-
ages that this phenomenon must happen in all clinical data, the very possibility raises serious
concern. If, for example, one seeks to declare tumor A more spatially heterogeneous than
tumor B, one must first declare the direction of the effect. In other words, the implication of
measuring a larger quantifier value must be established first. In the arbitrarily chosen case of
the homogeneity, a larger value implies more homogeneity if the volume is greater than 27 cc
(for our simulated data). For smaller volumes, on average, a larger value implies less homoge-
neity. Again, we emphasize that we do not claim to have computed this crossover for any other
data set clinical or otherwise. However, we do now know it possible for the texture quantifiers
employed to exhibit such trend-crossing behavior. Coupled with the fact that this crossover
point cannot be known for clinical data a priori, it is difficult to see how analysis of tumor vol-
umes anywhere near a potential crossover point could be done reliably. The likely source of the
distinct scaling with volume are the gray-level distributions themselves. As seen in Table 1, the
dissimilarity and homogeneity each depend upon the absolute gray-level difference, |m—n|.
This means that co-occurrences between disparate gray levels are weighted more heavily than
co-occurrences between similar levels. This alone could explain why the dissimilarity and ho-
mogeneity exhibit such different scaling for the different object types while entropy or energy
do not. It also explains why the homogeneity, which scales as 1/ |m—n|, appears more sensitive
than the dissimilarity. If, as is reasonable to assume from above and from Ref. [22], gray level
frequency decreases with level brightness (on average), then extremely different co-occurrences
are relatively rare. Furthermore, because the differently arranged object types necessarily differ
in rate of any co-occurrence, it seems reasonable that a quantifier dependent on [m—n| could
regress at different rates for distinct objects sharing the same gray level distribution. This is
why we analyzed our clinical data via absolute differences and made no attempt to attach verbal
meaning (e.g., “more heterogeneous”) to the binary response variable.

To better appreciate the implications of first-order effects, consider that because gray levels
m, n correspond to measurable values such as the SUV or the radioactivity, it is the |m—n| term
which gives a texture quantifier physical meaning. Thus, |m—n|-dependent quantifiers comput-
ed from differently shaped histograms or histograms on different scales can have different
physical meaning. This permits the possibility that a particular clinically interesting juxtaposi-
tion differing by |m—n| in one patient may be considerably less probable in another patient.
This bias is not necessarily removed by simply re-normalizing the measured SUV range to an
arbitrary gray-level bit depth (e.g., 2° levels). Depending on the ranges observed, typical SUV
distribution peaks and tails can persist even into severe bit depth reductions. For this reason,
using equal-probability quantizing might reduce the ambiguity and effects of comparing drasti-
cally different gray-level distributions. This is done via a mapping of the gray levels according
to count and rank, not magnitude. Thus, metrics computed upon the quantized levels are less
sensitive to gray level outliers. It should be noted that such histogram equalization indeed was
prescribed by Haralick et al. in their seminal work describing texture quantifiers [17].

One concern relevant to FDG-PET data is the sparsity of equalized gray-level histograms.

A typical PET scanner is capable of outputting 15-bit images comprising 2'* gray levels but the
number of differing SUV levels observed for any one patient is typically many, many fewer than
2'5, Therefore, when the typical (for our data) N~107 to 10° unique gray levels are quantized to
the entire available bit depth, the resulting histogram is sparse; typically, the levels are distant
and each of frequency equal to only one or two. Although this sparseness alone does not pre-
clude use of texture quantifiers, it might be desirable for clinical applications to employ a more
intuitive gray-level scale. One might then apply a wider, independently determined histogram
bin size—such as the Freedman-Diaconis bin size, for example—to the quantized levels. The
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result (for our data) is an approximately flat histogram over the entire 15-bit depth but with rel-
atively few unique levels (bins). This might be desirable in cases where clinically relevant
changes in SUV are large and thus do not require many distinct gray-levels. For example, if one
finds that a spectrum of about 64 distinct SUV levels are relevant to a particular clinical task or
study [5], then perhaps quantization to 6-bits might be sufficient. It should be clear, however,
from Table 3 that the choice of bit depth strongly affects the final output of clinical heterogene-
ity studies. This may be seen via the increase in AUC for the homogeneity from the 15-bit to the
8-bit image data input. We note, however, that this AUC = 0.70 is not impressively great given
that, for our patient population, one has a 65% chance of correctly guessing treatment response
by chance alone. Here, a higher area under the ROC curves (AUC) does not necessarily indicate
that one bit depth should be preferred over another. The simpler explanation of varying AUC
values is that low-order effects persist through bit depth reduction and thus any discerning ca-
pability of the texture quantifiers is actually that of the low-order distribution properties being
unequally affected by that reduction. While low-order properties may indeed be clinically useful,
they absolutely do not represent the chiefly spatial qualities ostensibly sought when employing a
second-order texture quantifier. This implies that the biological meaning assigned to intra-
tumor heterogeneity can itself depend upon the choice of bit depth. We therefore suggest that
equal-probability quantization be applied and that the appropriate bit depth always be deter-
mined independently via sound physical reasoning and never chosen arbitrarily.

A bonus of applying a wider bin width to the quantized gray levels is that computation time
is reduced via fewer elements appearing in the GLCM. We note that severe reduction of bit
depth necessarily reduces the number of significant digits for texture quantifiers we mention.
For our work, we used the sparse histograms comprising on the order of 10* to 10° levels as
originally output by the quantizing algorithm. We feel that the main point of equal-probability
quantization in the present context is the elimination of the arbitrariness of gray-level scale.
We note, however, that even though histogram equalization described above diminishes first-
order effects, the zero-order effects described above persist.

Histogram equalization augments visual contrast near histogram minima and diminishes it
near histogram maxima [16]. Thus, equalization necessarily alters the heterogeneity of the
image. However, because our task is to quantify the heterogeneity visually observed by clini-
cians, we take this as further evidence that a priori contrast enhancement is appropriate. In
order to better assess the effect contrast enhancement has on clinical studies, some estimation
of the “size” of the heterogeneity sought must be made. That is, one must define what consti-
tutes a small image feature versus a large one. However, that is precisely what we seek to learn
by applying spatial quantifiers to FDG-PET images. Pragmatically, the appropriate spatial scale
may be moot. With current PET technology, we may only be able to assess nearest-neighbor
co-occurrences because statistically rigorous analysis of farther ones (i.e., larger features) gener-
ally is not supported by the small sample sizes (tumor volumes).

The strong dependence of second-order quantifiers upon low-order effects yields two clini-
cally important corollaries. First, given that quantifier magnitudes for purely second-order (ar-
rangement) differences are so small in comparison to those resulting from low-order (size,
distribution) differences, it is logically possible that two tumors could be of distinctly different
spatial biology yet this biology would be untestable via FDG-PET texture analysis. The second
corollary is a general hypothesis as to why clinical studies of prognostic FDG uptake heteroge-
neity have yielded such inconsistent results: the quantifiers likely are measuring heterogeneity
of the patient population. In the present context, population heterogeneity might occur via the
pooled analysis of patients with largely different tumor volumes, stages, histologies or treat-
ments. We know that many texture quantifiers are monotonically dependent on volume. For
many types of cancer studies, large tumors tend to be much rarer than smaller ones. Taken
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together, we must then expect the texture quantifier values to be asymmetrically distributed as
well for many populations studied. Further evidence of this is the fact that ROC analysis of the
pooled clinical data yielded different prognostic results than that of the paired clinical data.
The implication is that ROC results can be tuned by changing the proportions of volumes or
SUV distributions within the patient population. We therefore suggest that future studies of
spatial FDG-uptake heterogeneity be of patient populations which are themselves as homoge-
neous as possible. When that is not logistically possible, or when low-order effects upon a cho-
sen quantifier are unclear, perhaps patients of similar low-order properties could be identified
via Equation 2 then analyzed against each other as we did in the present work.

Image analysis via texture quantifiers can be computationally intensive for two main rea-
sons. If a measured range has N gray levels, then the GLCM has N” elements. Additionally, the
GLCMs are innately directional. Thus, each time a new direction is considered, another N* ele-
ments must be computed. For FDG-PET data, there is no standard for choosing the directions
or for how to combine quantifiers calculated for different directions. Furthermore, any direc-
tional system imposed upon the image set is always arbitrarily orientated relative to the tumor
within each patient. In other words, there is absolutely no good reason to assume that a quanti-
fier computed along the vector direction <1, 0, 0> in one image set has the same meaning in
another image set. Some of this ambiguity and computational burden might be avoided by em-
ploying the mean-field energy, E, as a texture quantifier (Equation 1). That quantifier assesses
spatial variations in the sense that it accrues differences between neighboring voxels but it re-
mains non-directional in that equidistant neighbors are treated simultaneously and identically.
Furthermore, the computational order scales linearly with object size, not quadratically with
gray level range. Thus, for typical clinical volumes, E can be computed very quickly on a com-
mon desktop computer. For larger volumes, we found that E was able to perfectly discriminate
the heterogenous objects from the homogenous ones. For our clinical pairings, however, ROC
analysis showed no such impressive capability. While this result could imply that second-order
quantification of uptake heterogeneity has nothing to do with treatment response, the simpler
explanation is that the volumes analyzed (<~50 cc) were not large enough for E to be effective.

Conclusion

We have shown that zero-order (size) and first-order (distribution) effects likely dominate sec-
ond-order (arrangement) measures of FDG-PET uptake heterogeneity in clinical studies. The im-
plication is that low-order effects can create apparent second-order heterogeneity differences
where none actually exist and also can mask genuine differences. Furthermore, we’ve identified a
plausible mechanism by which it is possible that the very meaning of a second-order difference
can change as a function of tumor volume. These facts motivate our argument that image texture
analysis of typical FDG-PET images is strongly influenced by heterogeneity of the patient popula-
tion itself. We therefore suggested a method for identifying patients with similar low-order prop-
erties. Our results showed that similar-pair analysis of clinical data yields different—and arguably
more believable—results than does the current practice of pooling images from patients with dis-
parate tumor volumes, stages, histologies and SUV ranges. Thus, similar-pair analysis may be a
more promising technique for studying the prognostic potential of observed FDG uptake hetero-
geneity. Whatever the case, it is clear from our results that analysis of typical FDG-PET images via
texture quantifiers is a complicated task rife with research opportunities and pitfalls.

Supporting Information

S1 Object Coordinates Simulated. Compressed text file of (x, y, z, g) coordinates of the ob-
jects created as described in the Methods section. The Cartesian coordinates (x, y, z) are given
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in pixels where x and y are the column and row, respectively, relative to the top-right corner of the
image which is defined to be (0,0). The z value is then the image index within the sequence of images
for a single object. It is assumed that each The gray values g are given on an 8-bit, 256 shade scale.
(ZIP)

S1 Object Coordinates Clinical. Compressed text file of (x, y, z, g) coordinates of the clinical
data analyzed as described in the Methods section. The Cartesian coordinates (x, y, z) are
given in pixels relative to the top-right corner of the image and the gray values g are given on a
15-bit, 32768 shade scale.

(Z1P)
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