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Abstract

We introduce BrainPrint, a compact and discriminative representation of brain morphology. 

BrainPrint captures shape information of an ensemble of cortical and subcortical structures by 

solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular 

(boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new 

ways to study the similarity between brains; the focus can either be on a specific brain structure of 

interest or on the overall brain similarity. We highlight four applications for BrainPrint in this 

article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and 

(iv) potential genetic influences on brain morphology. The properties of BrainPrint require the 

derivation of new algorithms to account for the heterogeneous mix of brain structures with varying 

discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans 

from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the 

VETSA twin study. All processing steps for obtaining the compact representation are fully 

automated, making this processing framework particularly attractive for handling large datasets.
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1. Introduction

Is it possible to identify individuals based only on the shape of their brain? Are cortical 

folding patterns unique to a person, similar to a fingerprint? Are brains really highly 

symmetric? Is it likely that shape of individual brain structures is heritable? To answer these 

questions, we need an accurate characterization of brain morphology A common approach in 

brain morphometry is to quantify the volumes of a set of brain structures (DeCarli et al., 

2005), which is, however, only a crude simplification of the full anatomical information. 

Shape descriptors offer a more informative representation of brain morphology, adding 

additional information over volumetric measurements. In this work we introduce BrainPrint, 

a holistic representation of the brain anatomy, containing the shape information of an 

ensemble of cortical and subcortical structures. The variety of structures included in the 

BrainPrint yields an extensive characterization of brain anatomy. Furthermore, working 

with shape representations, rather than directly with image intensities, has the advantage of 

remaining more robust with respect to intensity changes that may be caused by different 

scanner hardware or protocols. We quantify the shape information by calculating the 

spectrum of the Laplace-Beltrami operator both for boundary representations (defined by 

triangular surface meshes) and for volumetric representations (via tetrahedral meshes). 

BrainPrint presents a higher dimensional extension to the description of brain structures by 

volume measurements and therefore naturally integrates shape information into common 

ROI-based analysis. In addition to allowing us to investigate the questions stated above, the 

proposed approach provides new means to pursue many interesting research directions in 

neuroscience where brain morphometry, i.e., the study of brain structure and change, is of 

importance.

In this work, we use BrainPrint specifically to construct a similarity measure between brain 

scans. An alternative approach to define pairwise similarities could be based on image 

registration (Gerber et al., 2010; Hamm et al., 2010). However, this is not an intrinsic 

measure as the regularization term impacts the similarities. Furthermore, many applications 

require large datasets and the cost of aligning a new scan to all scans in the database 

becomes prohibitively expensive for a large number of scans. BrainPrint introduces a new 

framework that is especially beneficial when working with large datasets. The first step 

extracts information from the image, based on the segmentation of anatomical structures. 

The second step transfers this information into a compact and discriminative representation, 

the BrainPrint. Any further processing is conducted on this representation, which requires 

significantly less memory and enables easier modeling, computation, and comparisons than 

working with the original scans.

Current studies in shape analysis mainly focus on single structures, e.g., the hippocampus 

(Golland et al., 2005: Gerardin et al., 2009; Shen et al., 2012) or the ventricles (Gerig et al., 

2001a,b; Styner et al., 2005; Terriberry et al., 2005). In studies of cortex, thickness and 

gyrification measures are used (Batchelor et al., 2002; Luders et al., 2006). In contrast, 

BrainPrint contains the shape information of a large number of cortical and subcortical 

structures. This holistic representation of brain morphology offers advantages for studying 

the shape variability within and across populations because additional information is 

available for the statistical analysis. A second advantage of BrainPrint is rooted in the 

Wachinger et al. Page 2

Neuroimage. Author manuscript; available in PMC 2016 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intrinsic shape description. This facilitates the statistical analysis because we can directly 

compute distances between shape descriptors without the need for establishing direct 

correspondences. Establishing correspondences is challenging and may involve 

computationally expensive shape registrations (Ng et al., 2014). The composition of 

different information across structures and dimensions (surface, volume) contained in 

BrainPrint and the use of intrinsic brain shape descriptors to define a distance function 

distinguishes this work from previous studies in medical shape analysis. A preliminary 

version of this work with a focus on subject identification was presented at a conference 

(Wachinger et al., 2014b). The application of BrainPrint for the prediction of Alzheimer's 

disease won the second prize at the challenge on Computer-Aided Diagnosis of Dementia 

(Wachinger et al., 2014a).

1.1. Related Work

A 3D object can be represented by the space that it occupies (3D volume representation, 

e.g., voxels, tetrahedra meshes) or by representing its boundary (2D surface representation, 

e.g., triangle meshes). Reuter et al. (2006) introduced the “shapeDNA” and demonstrated 

that the spectra of 3D solid objects and their 2D boundary surfaces contain complementary 

information: the spectra of the 2D boundary surface is capable of distinguishing two 

isospectral 3D solids. Therefore, we propose to combine the information from both the 3D 

solid and 2D boundary shape representations.

While previous work focused on the analysis of the shapeDNA for single brain structures 

(Bates et al., 2011; Reuter et al., 2007, 2009), to the best of our knowledge this is the first 

study that evaluates its application to cortical and a wide range of subcortical structures. 

Importantly, we investigate the joint modeling of the ensemble. Additionally, most prior 

work computes the shapeDNA for triangular surface meshes (Bates et al., 2011; Bernardis et 

al., 2012; Niethammer et al., 2007), while we also work with tetrahedral volume 

tessellations. Given that the Laplace spectra are isometry invariant, the 2D boundary 

representation alone may yield a weaker descriptor, due to the large set of potential (near-) 

isometric deformations. For example, a closed 2D surface with a protrusion pointing 

inwards yields the same descriptor as one with the protrusion pointing outwards, while the 

spectra of the enclosed 3D solids differ.

Spectral methods based on eigenfunctions of the Laplace-Beltrami operator (LBO) have 

been used to study cortical folding variability (Germanaud et al., 2012) with applications to 

developmental diseases such as microcephaly (Germanaud et al., 2014). Lai et al. (2009) 

proposed nodal counts as a possibly more discriminative descriptor than the LBO spectrum 

for shapes like caudate, hippocampus, and putamen. Seo and Chung (2011) studied the 

compression power of LBO eigenfunctions and compared it to spherical harmonics. LBO 

eigenfunctions have been used for matching (Lombaert et al., 2013) and for lobar 

segmentation (Lefevre et al., 2014).

An alternative to structure-specific or region-specific analysis is a voxel-wise comparison. 

Voxel-, deformation-, and tensor-based morphometry requires deformable registration of 

images to align corresponding structures. For voxel-based morphometry the spatial 

distribution of tissue is analyzed in each voxel (Good et al., 2002). Deformation- and tensor-
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based morphometry build on properties of deformation fields (Davatzikos et al., 1996; 

Miller et al., 1997). Deformation fields have further been used for measuring similarity 

between scans (Gerber et al., 2010; Hamm et al, 2010; Aljabar et al, 2010; Wolz et al, 2010). 

Based on the similarity structure, a nearest neighbor graph is constructed and spectral 

methods yield a low-dimensional embedding. For large repositories, the pairwise alignment 

of all scans to define the similarity can be computationally prohibitive. Aljabar et al. (2008) 

derived image similarities from anatomical segmentation overlaps. Zhu et al. (2011) find 

nearest neighbors by combining edge extraction with spatial pyramid matching. BrainPrint 

relates to these approaches because it provides a measure of brain similarity.

1.2. Outline

We introduce BrainPrint in Sec. 2 and describe the datasets in Sec. 3. Abstractly, we can 

compute distances between brains with BrainPrint, which is interesting for numerous 

applications in neuroimaging. We highlight four applications in Secs. 4 - 7, where we derive 

the necessary methodology for each application of BrainPrint. The heterogeneity of the 

applications also requires a different validation procedure for each application. The first 

application is the identification of subjects. Given a new scan, we aim to identify the subject 

based on a database of brain scans. For this purpose, we derive a robust classifier, where 

each structure in the BrainPrint votes independently. In a second application, we investigate 

the similarity structure that BrainPrint imposes on the dataset by predicting associated non-

imaging data, e.g., age and sex. The third application studies lateral brain asymmetry, where 

we compare cortical and subcortical structures across hemispheres. We investigate different 

types of asymmetry, e.g., directional and fluctuating, and evaluate the dependence of 

asymmetry on age and sex. Specifically for the striatum, we analyze within-subject changes 

with a multicohort longitudinal model. In the last application, we study the genetic influence 

on brain morphology by analyzing the differences between monozygotic and dizygotic 

twins.

2. BrainPrint

An overview for the computation of the BrainPrint is shown in Fig. 1. First, we segment 

anatomical structures from brain scans with FreeSurfer (Dale and Sereno, 1993; Dale et al., 

1999; Fischl et al., 1999a,b, 2002). Second, we create meshes for all cortical and subcortical 

structures of interest. Finally, we compute compact shape representations for all structures, 

constituting the BrainPrint. This representation is lightweight, consuming less than 9 kByte 

for a scan, which makes all further processing steps efficient in terms of both memory and 

computation. BrainPrint focuses entirely on the geometric properties of the brain and 

consequently it is a characterization that is robust to intensity variations between scans. Such 

variations may be introduced by imaging artifacts, inhomogeneities, and scanning protocols. 

BrainPrint is therefore well suited to operating on large databases with images acquired at 

different centers and scanners.

In this work we use the shapeDNA (Reuter et al., 2006) as a shape descriptor, which 

performed among the best in a comparison of methods for non-rigid 3D shape retrieval 

(Lian et al., 2012). The ShapeDNA is computed from the intrinsic geometry of an object by 
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calculating the Laplace-Beltrami spectrum. Considering the Laplace-Beltrami operator Δ, 

we obtain the spectrum by solving the Laplacian eigenvalue problem (Helmholtz equation)

(1)

The solution consists of eigenvalue λi ∈ ℝ and eigenfunction fi pairs, sorted by eigenvalues, 

0 ≤ λ1 ≤ λ2 ≤ … ↑ ∞. In this work we use “spectrum” and “eigenvalues” synonymously. 

This partial differential equation can be solved analytically only for a few special domains, 

e.g. for the sphere, where the eigenfunctions are the spherical harmonics. Here we 

numerically estimate both the eigenvalues and the corresponding eigenfunctions for 

arbitrary shapes via the finite element method (Reuter, 2006). To solve the resulting 

generalized eigenvalue problem, we use the iterative Lanczos algorithm from the ARPACK 

package (Lehoucq et al., 1998). Fig. 2 illustrates the first seven eigenfunctions of the left 

white matter surface. Note, that throughout this work we omit the first eigenfunction for 

closed surfaces, which is constant with eigenvalue zero. The eigenfunctions show natural 

vibrations of the shape when oscillating at a frequency specified by the square root of the 

eigenvalue. The complex cortical folding pattern complicates the understanding of the 

characteristics of the eigenfunctions. We therefore also show the same eigenfunctions 

mapped on the inflated surface in Fig. 2. Note, that the eigenfunctions are computed on the 

white matter surface and only visualized on the inflated surface. The first m non-zero 

eigenvalues λ = (λ1, …, λm) form the shapeDNA. Uniform scaling of an object's geometry 

by a factor s results in scaling of the eigenvalues by a factor 1/s2, which holds for manifolds 

of any dimension (Reuter et al., 2006). For a D-dimensional manifold with Riemannian 

volume vol (i.e., the area for 2D surfaces), one needs to scale the geometry by s = vol−1/D to 

obtain unit volume. Thus, to be independent of the object's scale, we consider normalized 

eigenvalues

(2)

The importance of an objects' scale varies with the application, so that we evaluate 

normalized and un-normalized eigenvalues in most of our experiments.

The eigenvalues are isometry invariant with respect to the Riemannian manifold, meaning 

that length-preserving deformations do not change the spectrum. While isometric non-

congruent surfaces exist (e.g., bending a sheet of paper), two solid bodies embedded in ℝ3 

are isometric if and only if they are congruent (translated, rotated and mirrored). Some 

shapes, such as the disc (Kac, 1966), are spectrally determined; meaning that the shape is 

known, when the spectrum is known. It has also been shown that isospectral but non-

isometric shapes exist even on the plane (Gordon et al., 1992), however, so far, only 

synthetic pairs have been constructed, that share a variety of different geometric features. 

For example, area/volume, boundary length, number of holes, Euler characteristic, and 

several curvature integrals are spectrally determined (Minakshisundaram and Pleijel, 1967), 

and thus must agree for isospectral shapes. Furthermore, our good brain classification results 

below indicate that such isospectral (or near isospectral) objects are rare in practice. Another 

important property of the spectrum is that the eigenvalues change continuously with 
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topology-preserving deformations of the object's geometry. These properties make the 

shapeDNA well suited for comparing shapes, as initial alignment of the shapes can be 

completely avoided and minor shape changes cause only small changes in the shapeDNA.

We compute the spectra for all cortical and subcortical structures on the 2D boundary 

surfaces (triangle meshes) and additionally on the full 3D solid (tetrahedra meshes) for the 

cortical structures, forming the BrainPrint

(3)

where η is the number of meshes. In this study, we work with 36 subcortical structures and 8 

descriptors for cortical structures (left/right, white/gray matter, 2D/3D), yielding η = 44. 

Triangle meshes of the cortical surfaces are obtained automatically for each hemisphere 

using FreeSurfer. Surface meshes of subcortical structures are constructed via marching 

cubes from the FreeSurfer subcortical segmentation. To construct tetrahedral meshes, we 

remove handles from the surface meshes using ReMESH (Attene and Falcidieno, 2006), 

uniformly resample the output to 60K vertices, and create the volumetric mesh with the 

gmsh package (Geuzaine and Remacle, 2009). We use the linear finite element method 

(Reuter et al., 2006) with Neumann boundary condition (zero normal derivative) to compute 

the spectra of the tetrahedral meshes.

Several brain structures that FreeSurfer identifies are lateralized, e.g., left and right 

hippocampus, so that the shapeDNA for both hemispheres is present in the BrainPrint. We 

compute shape differences between these lateralized structures to express intra-subject 

relationships. Since shapeDNA is invariant to mirroring, we can directly compute

(4)

for any lateralized structure l. The difference quantifies lateral asymmetries in the brain, 

which we discuss in details later in the article.

2.1. Distance

The definition of a distance function to quantify shape differences is fundamental for the 

computation of statistics on shapes. For distance calculations on BrainPrint, it is essential to 

take the characteristics of the eigenvalue sequence into account, which exhibits an 

asymptotically linear growth for 2D manifolds (Weyl, 1911, 1912). The average over a set 

of eigenvalue sequences shown in Fig. 12 in the appendix confirms the linear growth of 

eigenvalues in practice. The linear growth itself is not problematic for the distance 

calculation, however, as Fig. 12 shows, the variance grows quadratically. The computation 

of the Euclidean distance (or any p-norm) therefore causes the higher eigenvalues to 

dominate the distance, although they only represent a part of an object's geometry. Reuter et 

al. (2006) propose, among other options, linear re-weighting of eigenvalues
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(5)

to reduce the impact of higher eigenvalues on the distance. Fig. 12 shows that the mean and 

variance on re-weighted eigenvalues no longer exhibit the original growth pattern and 

therefore yield a more balanced contribution of lower and higher eigenvalues on the distance 

computation.

An alternative to the re-weighting is to employ the Mahalanobis distance to account for the 

covariance pattern in the data and to support an equal contribution of all eigenvalues in the 

sequence. Depending on the dimensionality of shapeDNA, many samples may be required 

to estimate a positive definite covariance matrix. In such cases, we can restrict the 

computation of the covariance matrix to the variances on the diagonal. We employ the linear 

re-weighting and the Mahalanobis distance in our computations. Konukoglu et al. (2013) 

proposed the weighted spectral distance, which is similar to a division by the squared 

eigenvalue number and therefore functions as a low-pass filter. To summarize, in the 

following applications of BrainPrint we can either work with the original eigenvalues λ or 

the volume normalized λ′, where both can be subject to linear re-weighting λˆ. To simplify 

the notation, we will refer to them as λ, where the type of processing applied will be clear 

from the context.

3. Data

In this work we use data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu), the Open-Access Series of Imaging Studies (OASIS, oasis-

brains.org), and the Vietnam Era Twin Study of Aging (VETSA) (Kremen et al., 2006). 

Results on ADNI are presented in Secs. 4 - 6. Due to its wider age range, we work with 

OASIS for the age prediction in Sec. 5. The twin data from the VETSA study is used in Sec. 

7 to evaluate potential genetic influences on brain morphometry. The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private-partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of California - San Francisco. ADNI is the 

result of efforts of many coinvestigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The follow up duration of each group is specified in the protocol for ADNI. For up-

to-date information, see www.adni-info.org.
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The OASIS dataset consists of a series of cross-sectional MR scans from 436 subjects aged 

18 to 96 years. One hundred of the included subjects older than 60 years have been clinically 

diagnosed with very mild to moderate Alzheimer's disease. The subjects are all right-handed 

and include both men and women.

VETSA is a longitudinal study of cognitive changes and brain aging with baseline in midlife 

(Kremen et al., 2006), where we work with twin data obtained from participants in the first 

wave. Participants in the VETSA were drawn from the larger Vietnam Era Twin (VET) 

Registry, a nationally distributed sample of male-male twin pairs who served in the United 

States military at some point between 1965 and 1975. VETSA participants are all military 

veterans; however, nearly 80% did not experience combat situations during their military 

careers. In comparison to U.S. census data, participants in the VETSA demonstrate similar 

health and lifestyle characteristics compared to American men in the same age range 

(Panizzon et al., 2012). To be eligible for the primary VETSA project both members of a 

twin pair had to agree to participate and be between the ages of 51 and 59 at the time of 

recruitment. Our dataset includes 67 pairs of monozygotic (MZ) twins and 51 pairs of 

dizygotic (DZ) twins. The average age is 56.0 years (SD=2.8).

MR T1-weighted scans from all datasets are processed with the cross-sectional pipeline in 

FreeSurfer. For ADNI, we additionally run the longitudinal processing stream (Reuter et al., 

2010, 2012), which is used in the cohort model in Sec. 6.2.3. We construct meshes and 

compute the BrainPrint from the cortical and subcortical segmentations from FreeSurfer.

4. Subject identification

In the first application, we investigate if it is possible to identify an individual based on their 

brain. While the unique complexity of the brain may suggest that an unambiguous 

identification should be possible, there is currently little empirical research that supports this 

hypothesis. One difficulty for identifying the subject of a given brain is that longitudinal 

changes caused by aging or disease may significantly alter the brain morphometry. 

Additionally, scanning artifacts, inhomogeneities, and different imaging protocols can cause 

changes in intensity values in magnetic resonance scans, further complicating the 

identification. Therefore, a useful subject-specific brain signature must be both stable across 

time and insensitive to imaging artifacts. Moreover, it needs to provide a holistic 

representation of the brain to ensure subject identification even if certain parts change. 

Finally, small changes in the brain should map to small changes in the representation to 

enable a robust identification.

The characteristics of BrainPrint make it well-suited for biometric identification, where we 

pose the identification task as classification task. We derive a robust classifier by letting 

each brain structure vote independently for the subject's identity. Not only does our classifier 

identify previously encountered subjects with high accuracy, but it can also determine 

whether a query brain belongs to an unknown subject, not yet represented in the existing 

database.
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4.1. Classifier

We derive a classifier for subject identification that assigns a new scan to one of the subjects 

in the database. Since the segmentation or tessellation may fail for certain brain structures, 

we seek a robust classifier that handles missing information. We achieve the robustness by 

combining the results from several weak classifiers operating on single brain structures. We 

assume n subjects 1, …, n and N scans in a database (N ≥ n, for repeated scans of subjects), 

where each scan has its associated BrainPrint Λ1, …, ΛN. Let Sk ⊂ {1, …, N} denote scans 

for subject k. The probability that a new scan with BrainPrint Λ is an image of subject k is

(6)

where we assume a uniform class probability p( k) ∝ 1 and the conditional independence of 

structures given the subject. The likelihood is multivariate normal distributed 

 with the subject mean  for structure s. Fig. 3 

offers a schematic illustration of the computation of p(λs| k). Since we only have a few 

samples per class, we estimate a global diagonal covariance matrix Σs across all scans for 

each structure. The weighting by variances helps to prevent the domination by higher 

eigenvalues that exhibit higher variation, as discussed in Sec. 2.1, thus we do not apply the 

linear re-weighting of Eq. (5). In order to improve numerical stability, we work with log 

probabilities

(7)

(8)

Due to positive monotonicity of the log function, all follow-up computations are performed 

without change on the log probabilities. The subject identity with the highest probability is 

assigned to the scan

(9)

The posterior probability of this classifier is the product of the spectrum likelihoods across 

all structures, cf. Eq. (6), which may be problematic for structures with low discriminative 

power. Many subcortical structures do not carry much distinctive shape information and 

may therefore negatively influence the overall probability. Consequently, we propose a 

second classifier that is specifically adapted to working with structures that are not very 

discriminative. Increased robustness is achieved by voting for each structure independently
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(10)

with the final vote set to the mode of the vote distribution, .

4.2. Results

For this experiment, we work with over 3000 scans from almost 700 subjects from the 

ADNI dataset, where each subject has between three and six longitudinal scans. We use the 

cross-sectional processing pipeline from FreeSurfer in this experiment because the 

longitudinal processing pipeline relies on knowing the subject identity and would therefore 

not lead to a realistic setup. In addition to the 44 shape descriptors in BrainPrint, we include 

the lateral differences, cf. Eq. (4), between left and right cortical structures to quantify 

asymmetry, resulting in 4 additional descriptors (white/gray matter, 2D/3D). We perform 

leave-one-out experiments by removing one scan from the dataset and by aiming to recover 

the correct identity. Fig. 4 reports the classification results for the product classifier in Eq.(9) 

and the structure-specific voting in Eq.(10) for normalized and un-normalized eigenvalues. 

We report classification results as a function of the number of eigenvalues used to represent 

the shape. Additionally, we vary the set of brain structures in BrainPrint: cortical structures 

with triangular meshes (4), cortical structures with tetrahedral meshes (4), cortical structures 

for both mesh types (8), a selection of structures with the highest individual performances 

(15)1, all structures (44), and all structures with the lateral differences of cortical structures 

(48). The number of structures is shown in parentheses. The results demonstrate a clear 

difference between the two classifiers. The product classifier achieves the best performance 

when working with a selection of individually best performing structures. Including more 

structures reduces the classification results in most cases. We observe a different behavior 

when working with the structure-specific voting. While both classifiers show the worst 

performance for sets with cortical structures alone, the addition of more structures leads to a 

clear improvement for the structure-specific voting. The combination of cortical and 

subcortical structures with lateral differences yields the best performance.

To further study this behavior, we examine the voting of each structure in more detail, 

shown in Fig. 5. Each column corresponds to one scan and each row to one structure. The 

color indicates the subject number. Scans were sorted by subject's index in the database; a 

perfect feature should show a color gradient from blue to red. The first 8 rows correspond to 

cortical structures, which exhibit the best performance. The remaining 36 rows show 

subcortical structures that perform worse than cortical structures and vary in their 

discriminative power. This explains the poor performance of the product classifier for the 

whole feature set, as weak features can overwhelm the response of the good features. In 

contrast, weak features do not degrade the performance of the voting classifier as long as 

weak features show no bias for a specific subject. Subcortical structures that show a 

reasonable performance in Fig. 5 correspond to the previously described selection of 

structures with the highest individual performance in footnote 1. The best retrieval 

1The selected structures are: cortical structures, corpus callosum, cerebellum, left/right lateral ventricle, 3rd ventricle, temporal horn 
of right lateral ventricle, right putamen.
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performance of 99.9% is achieved for 50 eigenvalues on all features with the additional 

difference features on normalized eigenvalues. The best performance for un-normalized 

eigenvalues of 99.7% is achieved for 30 eigenvalues2. Fig. 13 in the appendix shows 

exemplar scans for which BrainPrint does not correctly identify the subject identity. These 

scans show imaging artifacts, resulting in skull strip and segmentation errors. Manual 

correction in FreeSurfer or reacquisition to avoid motion artifacts can therefore be expected 

to improve the above results.

We compare our approach to two geometric representations of structures, the volume and 

the local gyrification index (LGI). While volume will be affected by brain atrophy, 

quantifying the gyrification may be more robust to longitudinal changes, assuming that the 

folding patterns of the brain remain stable. Schaer et al. (2008) used the LGI to identify 

gyral abnormalities. We transform this local measure into a global shape descriptor by 

computing the mean LGI over the surface. Fig. 14 in the appendix shows the mean and 

standard deviation of these measures calculated from several longitudinal scans per subject. 

The large variance and overlap across subjects indicates that such representations are not 

well suited for identifying subjects. For comparison, the classification accuracy for the mean 

LGI on both hemispheres is 1.0% for the product and 3.9% for the voting classifier. The 

classification accuracy for the volume, calculated from all cortical and subcortical structures, 

is 0.03% for the product and 0.6% for the voting classifier, confirming results from Fig. 14. 

In a further comparison, we compute the mean LGI for cortical regions of interests (ROIs) 

instead of the entire cortex. We use the Desikan-Killiany parcellation in FreeSurfer (Desikan 

et al., 2006) to obtain 34 ROIs per hemisphere. This extended LGI-based descriptor leads to 

a classification rate of 86.4% for the product and 81.4% for the voting classifier.

As an additional experiment, we evaluate the possibility of determining whether a subject is 

not contained in the database. We study the number of votes the winning subject receives in 

Fig. 5, when the subject of the scan is included in the database and when the subject is 

excluded. If the subject in the current scan is in the database, the scan receives about 15 

votes for the winning subject class. If the subject is not contained in the database, the 

number of votes for the winner does not surpass 4. Setting 4 votes as our decision boundary 

results in only a 0.49% error (false negative) of concluding incorrectly that a subject is not in 

the database. The false positive rate is zero.

4.3. Discussion

The high classification accuracy of BrainPrint suggests that brain structures are unique to 

individuals and that BrainPrint can potentially serve as biometric identifier. Since our study 

only includes data on subjects followed over a period of up to 36 months, we cannot 

currently assess how the accuracy of BrainPrint changes across the entire lifespan of a 

subject. Unfortunately, such data sets are not yet available. However, since subjects with 

Alzheimer's disease in our dataset demonstrate pronounced neurodegeneration in a relatively 

short time, we are optimistic that BrainPrint will remain robust for comparison across 

longer time periods. Our results demonstrate that cortical structures perform better for 

2In addition to classification accuracy, we also computed sensitivity and specificity, but these statistics do not yield additional 
information for differentiation of feature sets because both measures are very close to one.
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subject discrimination than subcortical structures, where the best performance is achieved 

for a combination of both types of structures. Further, the results show a better classification 

accuracy for normalized eigenvalues, which indicates the importance of shape for improved 

subject discrimination while the impact of volume is detrimental. We investigated the range 

from 10 to 50 eigenvalues in this experiment, where the range is set heuristically. 

Germanaud et al. (2012) studied the relation between eigenvalues (spatial frequencies) and 

the magnitude of the cortical features, which could provide an alternative for selecting the 

number of eigenvalues for cortical structures.

The high identification accuracy may raise concerns about privacy issues when publicly 

distributing de-faced or skull-stripped brain scans together with diagnosis and other sensitive 

information. However, we do not believe that BrainPrint interferes with annonymization 

because at least a second scan with knowledge of the identity needs to be available to 

connect to the private information. Identifying similar images in an efficient way can 

provide the launchpad for a more detailed follow-up analysis, e.g., prediction of localized 

growth and shrinkage patterns. Since most of our retrieval errors are related to incorrect 

segmentations, our approach could also be employed for automatic quality control. 

Furthermore, BrainPrint can help identify annonymization errors (mismatch of subject 

identities), which are difficult to detect and can impede longitudinal studies.

5. Prediction of Non-Imaging Data

In the previous section, we have seen that in a dataset with several scans per subject, the 

most similar scans are the ones from the same subject. In this section, we further investigate 

the similarity structure that BrainPrint imposes on the dataset by keeping only the baseline 

scan for each subject. We evaluate the characteristics that are shared among the most similar 

subjects. To this end, we utilize non-imaging data that is collected alongside the MRI. Such 

data includes demographics, medical history, neuropsychological scores, blood analysis, 

diagnosis, and genetics. Studying the relationship of these variables with BrainPrint 

provides further insights into their correlation with brain morphology. Here, we focus on the 

relationship of BrainPrint with age and sex, which are the major factors for brain variability. 

For this evaluation, we vote among the k nearest neighbors to a given scan. These nearest 

neighbors correspond to subjects that have similar brain morphology, as measured by 

BrainPrint. The voting results in a predicted value, e.g., for age, which we compare to the 

actual age of the subject to quantify the correlation between BrainPrint and age. We study 

the relationship separately for each brain structure and the combined, brain-wide 

relationship.

5.1. Information propagation with BrainPrint

Given a collection of scans in the database with BrainPrints Λ1, …, ΛN and the associated 

non-imaging data A1, …, AN, we predict the non-imaging data for a new scan with 

BrainPrint Λ. We compute the distances from the test scan to all scans in the database and 

identify the k nearest neighbors for each structure. We employ the linear re-weighting of 

eigenvalues in combination with the Euclidean distance. We use  to denote 

the indices of the nearest neighbors for structure s. Each brain structure can identify different 
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subjects as nearest neighbors. Depending on the type of non-image data, categorical or 

numerical, two different prediction methods are used. For numerical data, we compute the 

weighted mean of non-imaging data

(11)

where the weight  with variance τ2 emphasizes the 

contribution of closer subjects. In our experiments, we have not observed much difference 

between the weighted and the unweighted version (ω ∝ 1). We therefore continue with the 

unweighted version. For categorical data, we perform majority voting and select the label 

that occurs most frequently

(12)

A weighted version of the majority voting is also possible by making the contribution of 

each scan to the outcome distribution monotonically decrease with distance between 

corresponding BrainPrints.

In addition to the separate voting on each structure, we perform a combined prediction with 

all structures. Based on our experience for subject identification in Sec. 4, we avoid 

computing one global similarity but rather combine the votes for each structure to limit the 

impact of less discriminative brain structures. We combine the indices of nearest neighbors 

that are retrieved for each structure 1, …, η and select only those scans that appear at least 

twice. This means that at least two brain structures have to independently vote for a scan to 

let it participate in the final voting, which is then analogous to the structure-specific voting 

in Eqs. (11) and (12). This voting procedure is different than the one used for subject 

identification, where we assign each scan a class label and subsequently search for the most 

frequent class. The reason for using another voting procedure is that the previous one is 

difficult to adapt to continuous variables. Further, non-discriminative structures could have a 

detrimental effect on the prediction of categorical data with few labels, e.g., gender.

5.2. Results

We evaluate the performance for the prediction of age and sex with BrainPrint, where we 

are particularly interested in identifying the brain structures with the highest prediction 

accuracy.

5.2.1. Age prediction—We perform age prediction on the ADNI and on the OASIS 

dataset, which has a wider age range. Next to an improved evaluation, this also makes our 

results more comparable to other studies on age prediction that usually work on datasets 

with a wide age range. OASIS contains scans from N = 436 subjects aged 18 to 96 with a 

mean age of 51.4 years (SD=25.3). Baseline scans from the entire ADNI sample (N = 819) 

range from 54.4 to 90.9 years with a mean age of 75.2 years (SD=6.8); healthy controls (N = 

229) have a mean age of 75.9 years (SD=5.0) and range from 59.9 to 89.6 years. For the 
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prediction of age, we work with 50 eigenvalues and k = 20 nearest neighbors3. Table 1 

reports the mean absolute prediction error for several structures with high prediction 

accuracy. The table also shows the result for the combined prediction on all brain structures. 

All results are reported with and without normalization. The volume loss in gray matter and 

white matter with aging correlates with an increase in ventricular spaces. We therefore use 

the volume of the lateral ventricles as a reference for age prediction, which is one of the 

brain structures that shows the largest effects of aging (Jernigan et al., 2001; Walhovd et al., 

2005; Raz and Rodrigue, 2006). We show a scatter plot of the true and estimated age for the 

combined prediction on the OASIS dataset in Fig. 6. The plot also contains the least squares 

regression line with Pearson's r = 0.90.

The prediction error on all of the reported shapes is lower than using the ventricle volume. 

This indicates that the shape information captured with BrainPrint contains additional 

information about subject similarity that is important for predicting age. The lowest 

prediction errors are achieved for the combined prediction based on all brain structures. On 

ADNI, we observe a consistent decrease in prediction accuracy when comparing the 

prediction on healthy controls with that for the entire dataset. The prediction results for the 

normalized eigenvalues (nEV) and the un-normalized eigenvalues (EV) are similar. Results 

of the Wilcoxon signed-rank test on the OASIS dataset indicate that all structures listed in 

the table yield a significant improvement over the volume prediction on the entire dataset 

(all p-values reported in this article are 2-sided). For ADNI the p-values are lower, but still 

most of the listed structures yield a significant improvement. The combined prediction with 

normalized eigenvalues was most significant (p < 10−49 on OASIS).

5.2.2. Sex prediction—In the second experiment, we evaluate the prediction of sex based 

on BrainPrint. We sample from the ADNI dataset to obtain a subset that has the same 

number of male and female subjects in each of the three disease groups, yielding N = 684 

subjects in this analysis (342 male and female, CN=220, MCI=282, AD=182, average age 

75.1 years (SD=6.64)). Fig. 7 reports the prediction results for the nine best performing 

structures and the combined prediction. All results are for un-normalized eigenvalues, which 

perform better than the normalized version due to differences in head size between men and 

women. The best performance is achieved for the combined prediction, followed by cortical 

structures. The best performing subcortical structure is the brainstem. The improvement of 

the cortical structures over the brainstem is significant. This difference between cortical and 

subcortical structures only holds for the un-normalized eigenvalues, for the normalized 

eigenvalues they perform similarly. We use the head size as a volume-based reference 

measure for the prediction of sex. Buckner et al. (2004) suggested that normalization with 

the intracranial volume (ICV), which is about 12% larger for men than women, corrects for 

gender-based head size differences. Additionally, Walhovd et al. (2005) reported a 

significant difference in mean ICV between men and women. ICV is therefore a well-suited 

reference for the prediction and yields a 0.69 prediction accuracy in our experiments. The 

combined prediction with BrainPrint performs significantly better than the prediction with 

ICV (p < 0.005). To disentangle the impact of the size and the shape on the sex prediction, 

3We set k = 20 so that k roughly corresponds to the square-root of the number of samples.
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we also computed the combined prediction for volume only (0.74), for normalized 

eigenvalues (0.68), and for un-normalized eigenvalues (0.78). The shape alone performs 

worse than the volume. The combination of shape and size in the un-normalized eigenvalues 

yields the best performance.

5.3. Discussion

These experiments provide an interesting insight into the versatility of BrainPrint. While 

subcortical structures achieve best results for the age prediction, cortical structures perform 

significantly better for the sex prediction. Furthermore, the normalization of the eigenvalues 

helps to adapt the notion of similarity to the specific application. Experiments indicate 

increased prediction accuracy for age and sex prediction in BrainPrint compared to 

volumetric measurements, most likely due to the more detailed characterization of brain 

morphology in BrainPrint.

For the prediction of age, the error based on each of the reported shapes is lower than when 

using the ventricle volume. The lowest prediction errors are achieved for the combined 

prediction with all brain structures. Moreover, we observe a consistent decrease in 

prediction accuracy on the entire ADNI dataset when compared to prediction on only 

healthy controls. This decrease may indicate a change in the pattern of aging for patients 

with Alzheimer's disease or mild cognitive impairment. The pronounced atrophy in 

dementia patients may cause the brain morphology of younger subjects with disease to be 

similar to older subjects without disease, thus reducing the accuracy in age prediction. Our 

predicted age can be seen as an estimate of biological age, where the discrepancy between 

predicted and chronological age can serve as a biomarker for neurodegenerative disease (see 

also Gaser et al. (2013) for a similar approach).

For the prediction of sex, un-normalized eigenvalues yield higher accuracy than normalized 

eigenvalues. This highlights the importance of the size of brain structures when seeking 

subjects with matching sex. Our results also show that the volume of structures alone yields 

better results than the shape alone. The highest accuracy for un-normalized eigenvalues 

suggests that the shape information captured with BrainPrint contains additional 

information about subject similarity that is important for predicting sex, with a significant 

improvement from subcortical to cortical structures.

In comparison to other studies on age and sex prediction, Ashburner (2007) used 

diffeomorphic registration and support vector classification. The reported accuracy for sex 

prediction was about 87%. The root-mean-square error for age prediction was about 7 years 

and the best correlation was 0.86. Duchesnay et al. (2007) proposed cortical sulci descriptors 

for the sex prediction and the best classification pipeline achieved 85% classification 

accuracy. Our accuracy for sex prediction of 78% is lower, but this may in part be due to 

different datasets and study designs. In our experiments, we paid special attention to sample 

sex-matched subsets from ADNI to avoid bias. Concerning age prediction, the dataset used 

by Ashburner (2007) contains subjects aged 17 to 79 with a mean age of 31.8 years. The age 

range is similar to the OASIS dataset but the mean age differs. The correlation we measured 

on OASIS is higher than the one reported in Ashburner (2007) but also the prediction error 

is higher. Since the results are dependent on the dataset and the study design, we can only 
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draw limited conclusion from such a comparison, but overall our results are in a similar 

range than alternative methods. Note, that we do not train a classifier but average among the 

nearest neighbors identified by BrainPrint. For increasingly larger datasets, we obtain a 

denser sampling of the brain manifold with the expectation that neighbors will be more 

similar which could further improve prediction accuracy.

6. Lateral Shape Symmetry

In this section, we study the lateral shape symmetry of the brain. The study of symmetry in 

neuroscience investigates similarity of the two hemispheres in the brain, where the 

symmetry of the human body along the vertical body axis is pronounced in the brain 

(Hugdahl, 2005). Symmetry can be studied from a functional or anatomical perspective. The 

functional layout of the brain is organized asymmetrically, with hemispheric specializations 

for key aspects of language and motor function (Geschwind and Galaburda, 1985; Toga and 

Thompson, 2003). We focus on anatomical brain symmetry, where previous studies reported 

asymmetries based on voxel-based morphometry (Pepe et al., 2014) as well as the analysis 

of sulci and other brain features. Three distinctive patterns of population-level brain 

asymmetries are possible (Gómez-Robles et al., 2013): (i) directional asymmetry occurs 

when the two sides of the brain are systematically different; (ii) anti-symmetry is the 

consistent difference between sides, but the direction of this difference varies; and (iii) 

fluctuating asymmetry is the non-directional departure from bilateral symmetry.

Gómez-Robles et al. (2013) studied morphological brain symmetry by manually identifying 

landmarks on the cortex. They observed anatomical asymmetries in both human and 

chimpanzee brains, but human brains were especially asymmetric. The lack of symmetry in 

human brains may be a sign of plasticity, which is critical for human cognitive evolution. 

Greve et al. (2013) studied the association of asymmetry in function with anatomy. The 

results of the surface-based analysis of the cortex indicated that gross morphometric 

asymmetry is only subtly related to functional language laterality. Chance and Crow (2007) 

found sex differences in anatomical and functional asymmetry, which are plausibly related 

to sex differences in verbal ability in human populations without established counterparts in 

chimpanzees. These sex differences indicate a possible role of sexual selection in human 

lateralization and are consistent with data suggesting greater anatomical asymmetry in 

mature males, but relatively better verbal processing in females (Halpern, 2000). Next to 

sex, genetics is thought to play an important role in directional asymmetry and anti-

symmetry (Gómez-Robles et al., 2013). In contrast, fluctuating asymmetry was suggested to 

be rather related to environmental factors that affect the brain development. Other studies 

found little evidence for a genetic influence on brain asymmetry (Bishop. 2013; Eyler et al, 

2014).

These mixed results may be a consequence of the complexity and variability of brain 

structures, which makes it difficult to identify asymmetries and distinguish them from 

random fluctuations. Also, a cursory examination of the gross brain features fails to identify 

profound left-right differences (Toga and Thompson, 2003). A careful examination with 

computational methods to compute statistics on larger populations is therefore required to 

expose asymmetries. As many structures are represented in BrainPrint for both hemispheres, 
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it is well suited to study structural changes by computing shape distances. This analysis 

permits us to address the following questions: Which patterns of asymmetry (directional, 

fluctuating) are present? How similar are structures across hemispheres? Does aging have a 

significant effect on the brain symmetry? Are asymmetries equally strong for men and 

women?

6.1. Lateral shape distances in BrainPrint

To study symmetry, we compute lateral (left/right) shape differences of brain structures. 

More precisely, we compute distances for the following 12 structures on triangular meshes: 

white matter, gray matter, cerebellum white and gray matter, striatum4, lateral ventricles, 

hippocampus, amygdala, thalamus, caudate, putamen, and accumbens. Additionally, we 

compute distances on tetrahedral meshes for white and gray matter. Due to the isometry 

invariance of shapeDNA, we directly compare the eigenvalue sequences as mirrored objects 

yield the same shapeDNA. We use the linear re-weighted eigenvalues in Eq.(5) for the 

lateral distance computation for lateral structures l

(13)

6.2. Results

All experiments for lateral shape asymmetry presented in the following sections are 

performed on the ADNI dataset.

6.2.1. Overall symmetry of hemispheres—First, we investigate the overall symmetry 

of brain hemispheres. To put the lateral shape distances in Eq. (13) into perspective, we do 

not only compute the distance across hemispheres for the same subject but for all subjects in 

the dataset. Next, we compute the rank of the intra-subject distance compared to the inter-

subject distances. The rank expresses the number of subjects that have a more similar 

contralateral hemisphere than the subject itself. A low rank indicates a high lateral shape 

similarity compared to the variations in the population. Since the rank is easier to interpret in 

relation to the size of the dataset, we divide the rank by the number of subjects to obtain a 

relative measure of brain asymmetry. We use m = 50 eigenvalues with linear re-weighting in 

this experiment. Fig. 8 reports the median of this measure for lateralized structures, where 

low values indicate high shape symmetry. We measure significant differences in rank 

between normalized and un-normalized eigenvalues. Fig. 8 illustrates brain structures sorted 

by decreasing significance, where we use the Wilcoxon signed-rank test to compute p-

values. We also compute the rank for volume only to disentangle the impact of shape and 

size on the brain symmetry. The un-normalized eigenvalues have significantly lower rank 

than the volume for the majority of structures. This shows that the shape with size 

information is more discriminative in identifying the brain structure in the other hemisphere 

than size and shape alone. The only exception is the putamen, where we note a decrease in 

rank with normalization. We work with healthy controls in this experiment as we aim to 

4Striatum is the combination of caudate, putamen, and accumbens.
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avoid disease related effects. Thompson et al. (2007) reported that atrophy associated with 

Alzheimer's disease may be lateralized with stronger atrophy on the left hemisphere.

We observe that cortical structures exhibit the lowest ranks. This is not surprising because 

complex shapes are likely to show more variability across the population and lateral 

asymmetries still lead to a higher intra-subject symmetry compared to inter-subject 

similarity. Asymmetries in simpler, “potato like” subcortical structures yield a faster 

decrease in rank due to smaller inter-subject variability. Nevertheless, the high median 

relative rank of more than 10% for all subcortical structures is surprising. This implies that 

given a brain structure, e.g., the left caudate, the shape distance to the right caudate of 10% 

of all subjects in the dataset is lower than the right caudate of the same subject.

6.2.2. Pattern of brain asymmetry—In a further experiment, we investigate the pattern 

of brain asymmetry. To this end, we examine the lateral differences per eigenvalue instead 

of the distance. A distribution of the difference around zero indicates fluctuating asymmetry 

(iii). The directional asymmetry (i) is characterized by a distribution significantly biased 

from zero. A bimodal distribution of differences identifies antisymmetry (ii). We use 

Hartigan's dip test to evaluate if the distribution of differences is bimodal (Hartigan and 

Hartigan, 1985). The p-values for all eigenvalues across all structures are above 0.05, 

suggesting this data provides no evidence for significant bimodality. Since there is no 

evidence for anti-symmetry (ii), we focus the analysis on distinguishing directional (i) and 

fluctuating (iii) asymmetry.

Fig. 9 shows a box-and-whisker plot of the first 20 normalized eigenvalues of the white 

matter triangular mesh. We note that the distribution of differences shows strong deviations 

from zero for a number of eigenvalues. Specifically the difference of the second eigenvalue 

shows a strong directional asymmetry, where the distribution of the differences is 

significantly different from a distribution with median zero (p < 10−37, Wilcoxon signed-

rank test). In Sec. 2, the eigenfunction corresponding to the second eigenvalue on the white 

matter surface is shown in Fig. 2. The eigenfunction shows variations from left to right. In 

an analysis across structures, we find that the differences for 18.5% of eigenvalues show 

significant directional asymmetry, at a significance level that takes Bonferroni correction 

into account.

6.2.3. Lateral shape symmetry across age and sex—The advantage of computing 

shape distances, in contrast to working with the high-dimensional shapeDNA, is the 

reduction to a single scalar value for each lateralized structure. This facilitates statistical 

analysis because we can use a single linear model per lateralized structure with the distance 

serving as a dependent variable and age and sex treated as independent variables. Table 2 

reports the standardized regression coefficients and p-values for age and sex. As in the 

previous asymmetry experiments, we work with healthy controls. We report results for 

different lateralized structures and for eigenvalues with and without normalization. Across 

almost all structures we note an increase in asymmetry with age. For a number of structures 

highlighted in the table this increase is significant. Aging shows the largest impact on the 

striatum, whose importance in aging has been previously documented (Raz et al., 2003). The 

only exception to the overall increase is the decrease in asymmetry for the ventricles with 
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un-normalized eigenvalues. This decrease can be explained by the strong increase in 

ventricle volume with aging, which causes the decrease of the eigenvalues with aging. Since 

the eigenvalues of both hemispheres decrease, this results in a smaller distance with aging.

For the impact of sex, we note a consistently more symmetric brain morphology for women 

based on normalized eigenvalues. These results are consistent with previous findings in 

(Halpern, 2000; Chance and Crow, 2007). The difference across sexes is significant for 

cortical structures, striatum, hippocampus, thalamus and caudate. The largest difference with 

β = −0.25 and lowest p-value (p < 10−4) is measured for the hippocampus. The results for 

the un-normalized eigenvalues are not as consistent. This may mainly be related to the 

difference in head size between men and women and the corresponding scaling effect it has 

on the distances. We also evaluated the effect of adding handedness as additional 

independent variable to the model. We did not find a significant impact of handedness on 

brain asymmetry for normalized or un-normalized eigenvalues. This observation is 

consistent with the results of Good et al. (2002), who have also reported no relationship of 

handedness and asymmetry.

6.2.4. Longitudinal shape symmetry across age and sex—So far, we have looked 

at cross-sectional data, which can confound within- and between-subject variations (Schaie 

and Caskie, 2005). To better separate these two types of variation, we integrate longitudinal 

data from follow-up scans to the analysis. Single-cohort longitudinal designs are considered 

one of the best designs for investigating within-subject variations. However, drawbacks of 

such a design are the length of time and the limitation to a single cohort. Participants in 

ADNI are recruited from a large age range, causing several age cohorts to be present and 

therefore constitute an unstructured multicohort longitudinal design (Thompson et al., 2011). 

We use the longitudinal processing stream in FreeSurfer (Reuter et al., 2012) for this 

experiment to avoid processing bias (Reuter and Fischl, 2011). To study cross-sectional and 

longitudinal effects, we work with a linear mixed-effects model. We use Bi to denote the age 

at baseline for subject i, Xij to be the time from baseline at follow-up scan j, and Si to be the 

sex of subject i. For the lateral shape distance Yij as a dependent variable, we employ a linear 

model

(14)

where β0, β1, β2, β3 are fixed effects regression coefficients and b0i,b1i are random effects 

regression coefficients. The random effects enable modeling subject-specific intercept and 

slope with respect to the time from the baseline. We investigate the striatum asymmetry with 

this longitudinal model, because it showed the strongest age related effects. We select 

healthy controls with at least three longitudinal scans, where the highest number of scans is 

six. The subject age was centered at 69 years. Fig. 10 displays the estimated within-subject 

and across-subject change of the lateral shape distance for five age cohorts (70, 74, 78, 82, 

and 86 years of age at baseline). The lateral shape asymmetry increases with age cohort (βl = 

0.04, p < 0.001) and men show stronger asymmetry than women (β3 = −0.28, p < 0.05), 

consistent with the previous results in Table 2. However, within-subject increase in lateral 

asymmetry has double the rate than the age of the cohort (β2 = 0.08, p < 0.005). 
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Consequently, striatum asymmetry increases faster as a function of within-subject change in 

age than as a function of cohort age. We also evaluated the interaction between age and the 

time from the baseline, but did not find a significant dependence. The increase in asymmetry 

with age may be a sign of brain plasticity; the adaptation of brain structure throughout life. 

This may be correlated with changes in brain function, which are known to be influenced by 

a person's life experience.

6.3. Discussion

The results on the overall symmetry of hemispheres show that the normalization of 

eigenvalues decreases the rank. The volume is therefore an important factor in lateral shape 

symmetry. Focusing only on shape causes hemispheres of other subjects to appear more 

similar than the contralateral hemisphere in the same subject. For most structures, the 

volume is more discriminative than the shape alone, but the combination of shape and 

volume leads in most cases to highly significantly lower ranks. Our analysis of the pattern of 

asymmetry suggests fluctuating and directional asymmetry. In a follow-up study, it would 

be interesting to further evaluate the eigenfunctions that correspond to the eigenvalues to 

investigate further the type of shape changes that are directional. Our results for the 

influence of age and sex on lateral shape asymmetry showed significant dependency for a 

number brain structures. The general trend is that asymmetry increases with age and is 

higher in men than in women. To further differentiate within-subject and across-subject 

changes, we analyzed the change with age and sex in a longitudinal multi-cohort study. The 

results for the striatum show an even more pronounced increase of asymmetry with age 

within subjects.

7. Genetic Influences on Brain Morphology

In this section, we investigate the potential genetic influence on brain morphology 

represented by BrainPrint by comparing differences between twins in monozygotic (MZ) 

vs. dizygotic (DZ) cohorts. Analysis of genetic and environmental influences on brain 

structure and its changes over time is important for the basic understanding of brain aging 

(Kremen et al., 2010). Genetically informative designs, such as twin studies, are well suited 

for differentiating the underlying genetic and family environmental sources of resemblance 

(Eaves et al., 1978; Neale and Cardon, 1992). Twin studies usually include both MZ twins 

who share 100% of their genes, and DZ twins who, on average, share 50% of their genes. 

The reported proportion of phenotypic variance due to genes is generally consistent across 

large scale twin studies (Schmitt et al., 2007; Peper et al., 2007; Blokland et al., 2012). 

However, the majority of studies focuses almost entirely on volume, cortical thickness, or 

surface area rather than shape. Previous shape studies on twin data focused on lateral 

ventricles (Gerig et al., 2001a,b; Styner et al., 2005; Terriberry et al., 2005) or quantified 

gyral and sulcal patterns (Schmitt et al., 2007; Im et al., 2011). In contrast, our shape 

representation includes a large variety of cortical and subcortical brain structures and uses 

both 2D surface and 3D volume representations. In this study, we compare brain shapes 

across the MZ and DZ twin groups as an initial test for potential genetic influence. Direct 

estimation of heritability is outside the scope of this paper, as BrainPrint describes each 

structure by a vector instead of a single scalar, which makes standard metrics for quantifying 
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heritability not straightforward to compute (Neale and Cardon, 1992). A multivariate 

extension of such metrics will be subject of further research.

7.1. BrainPrint for twin analysis

To test the hypothesis that brain shapes are more similar in MZ twins than in DZ twin pairs, 

we first compute shape distances across a twin pair for each structure captured by 

BrainPrint. Given a twin pair (a, b) with BrainPrint (Λa, Λb), we compute the twin shape 

distance for a brain structure s ∈ {1, …, η}

(15)

For instance, we compute a shape distance between the right caudate of one twin to the right 

caudate of the other twin in a pair. According to the hypothesis, we expect this distance to be 

lower for MZ twins than for DZ twin pairs. Based on the results from the subject 

identification, we use m = 30 eigenvalues for this study and employ the linear re-weighting 

to balance their impact. In addition to analyzing average shape distances across groups we 

also compute a rank by relating the distance between twins to the distance to all other 

subjects in the dataset (236 in total).

7.2. Results

Fig. 11 illustrates the distances and ranks for the 15 most significant brain structures both 

with and without size normalization of the eigenvalues. We report the mean and standard 

error, together with Bonferroni corrected p-values of the group differences between MZ and 

DZ twins using non-parametric testing (Wilcoxon rank-sum test). The cortical structures, 

and particularly the white matter, show the most significant shape differences between MZ 

and DZ twins. Furthermore, the shape distances on the volumetric (tetrahedral) meshes are 

usually more significant than on the surface (triangular) meshes, which could be due to the 

isometry invariance of our spectral shape descriptor, which yields an increased deformation 

flexibility on surfaces. While the order of cortical structures remains relatively stable across 

normalization and between distance or rank computation, the subcortical structures 

demonstrate larger variations, but overall similar structures are selected as the most 

significant ones.

In a final experiment, we compare within-pair differences for brain asymmetry in MZ and 

DZ twins. As a measure of asymmetry we compute within subject lateral shape distances 

based on BrainPrint. We then compute the absolute difference of this asymmetry measure 

across twins and compare these differences across the two groups. Here, we did not find any 

significant differences in brain asymmetry between MZ and DZ twins. This is consistent 

with recent findings (Bishop, 2013; Eyler et al., 2014), where little support for strong 

genetic influences on asymmetry was found.

7.3. Discussion

The comparison of distances between subjects may depend on additional factors, such as 

age, sex, and environment. The advantage of studying twin data is that most of these 
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confounding factors are controlled because MZ and DZ twins have the same age, 

experienced a similar environment, and, in this study, have the same sex. The bar plots in 

Fig. 11 consistently show significantly lower shape distances and ranks for MZ twins 

compared to DZ twins independent of eigenvalue normalization. While we limit the listing 

to the 15 most significant structures, the vast majority of structures in BrainPrint are 

significant at a level of 0.05. These results suggest that BrainPrint may be capable of 

capturing genetic influences on brain morphology. Generally, the lack of evidence for 

asymmetry differences across groups may indicate that lateral shape distances are mainly 

influenced by fluctuating asymmetry, which was suggested by Gómez-Robles et al. (2013) 

to be related to environmental factors during brain development rather than genetic factors.

Genetic influences play a substantial role in explaining individual differences in brain 

structure. Studying such influences is an important element for understanding both normal 

brain development and pathological brain development in genetically-based disorders. Most 

imaging genetic studies to date, including twin studies, have examined genetic and 

environmental influences on brain structures, but not on shape. Shape changes may be 

associated with development, aging, cognition, and other factors. Thus, a complete 

understanding of the genetic of brain changes should include examination of changes in 

shape. Our preliminary analysis of MZ and DZ twins suggests that the characterization of 

brain morphology with BrainPrint is well worth pursuing for a more complete genetic 

analysis. Further work is required to formally evaluate the extent of genetic and 

environmental influences and to quantify heritability for shape or asymmetry, and to 

evaluate whether heritabilities for different structures are significantly different from one 

another. Such work will be an important step toward demonstrating the potential of shape 

analysis for gene association.

8. Conclusions

We have introduced BrainPrint, an extensive characterization of brain morphology. It is 

computed by solving the eigenvalue problem of the Laplace-Beltrami operator on meshes 

from cortical and subcortical brain structures. The classification rate of 99.9% for 

identification of subjects shows that BrainPrint captures discriminative information about a 

subject's morphology. We continued studying the similarity structure that BrainPrint 

imposes on the dataset by evaluating its correlation with non-imaging data that is associated 

with the scan. Our results show that shape information yields a more accurate prediction of 

sex and age than volume measures. Further, the shape of cortical structures is better suited 

for sex prediction, while subcortical structures perform better for age prediction. This 

highlights the richness of the descriptor and the possibility to adapt the notion of similarity 

to the application by focusing on different brain structures. In our analysis for brain 

asymmetry, we found large within-subject differences across hemispheres, when comparing 

to the population-based distances. For a majority of brain structures, the structure in one 

hemisphere is more similar to the structure in the other hemisphere for 10% of the dataset 

than for the same subject. Moreover, we found an increase in asymmetry with age and a 

further increase from women to men. The strongest increase in asymmetry was found in the 

striatum, which we analyzed in more detail with a multicohort longitudinal model to 
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differentiate between within-subject and across-subject changes. The results for the twin 

study indicate genetic influences on brain morphology.

BrainPrint contains shape information from triangular and tetrahedral meshes, where 

previous applications of shapeDNA mainly focused on surface meshes. In several of our 

applications, we note a better performance for the Laplace spectra for volumetric meshes 

than for surface meshes. The volumetric spectra yield a higher classification rate for subject 

identification, a higher accuracy for sex prediction, and more significant differences in shape 

distance between MZ and DZ twins. These results show that the theoretically higher 

discriminative power of volumetric shapeDNA than surface shapeDNA also yields 

improvements in practice. Laplace spectra for volumetric meshes could be more 

discriminative because the spectra on objects' surfaces can be identical (or very similar) 

although the objects are different. Since Laplace spectra are isometry invariant (invariant to 

length preserving transformations), inward and outward pointing protrusions can lead to 

highly similar spectra as distances on the 2D manifold remain stable.

The processing framework of BrainPrint is advantageous when working with large datasets 

widely available today. The segmentation of brain structures and the computation of the 

compact BrainPrint descriptor is performed independently for each scan. The cost for 

computing BrainPrint only grows linearly with the number of subjects. All further 

processing steps of the statistical analysis, which may involve the computation of pairwise 

distances and therefore higher order computational complexity, are performed on the 

compact representation. It is exactly this quadratic growth in costs that makes the 

computation of pairwise similarities with image registration prohibitively expensive for 

large datasets. BrainPrint and appropriate variations are therefore highly relevant for 

handling large datasets, not necessarily limited to neuro-science.
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10. Appendix

In the appendix, we provide additional figures to describe the core functionality of the 

proposed method and to extend the experimental evaluation. Fig. 12 illustrates the linear 

growth of eigenvalues and the quadratic growth of the variance. The figure also shows that 

the mean and variance on re-weighted eigenvalues no longer exhibit the original growth 

pattern. Fig. 13 shows two exemplar scans for which BrainPrint does not correctly identify 

the subject identity. These scans exhibit imaging artifacts, resulting in skull strip and 

segmentation errors. Manual correction in FreeSurfer or reacquisition to avoid motion 

artifacts can be expected to improve the above results. Fig. 14 reports the mean and standard 

deviation of the volume and local gyrification index calculated from several longitudinal 

scans per subject. The large variance and overlap across subjects indicates that such 

representations are not well suited for identifying subjects.
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Highlights

• BrainPrint, a compact and discriminative characterization of brain morphology

• Biometric identification based on brain structures

• Correlation of brain morphology with age and gender

• Brain asymmetry analysis on cross-sectional and longitudinal data

• Twin study of potential genetic influences on brain morphology
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Figure 1. 
Overview of the computation of BrainPrint. First, MRI scans are processed with FreeSurfer 

to obtain segmentations of cortical and subcortical structures. Second, a mesh is created for 

each brain structure. Third, the shapeDNA is computed for all of the η meshes, constituting 

the BrainPrint.
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Figure 2. 
First two rows: Left white matter surface and first seven non-constant eigenfunctions of the 

Laplace-Beltrami operator (sorted left to right, top to bottom) calculated on the surface. 

Increasing positive values of the eigenfunctions are shown in the color gradient from red to 

yellow and decreasing negative values are shown from dark blue to light blue. Last two 

rows: Visualization of the eigenfunctions on the inflated white matter surface with level sets. 

These are the same eigenfunctions as in top rows computed on the original white matter 

surface; they are visualized on the inflated surface to better understand their pattern of 

variation. The main directions of variation of the first three eigenfunctions are anterior-

posterior, superior-inferior, and lateral-medial, respectively. The following eigenfunctions 

show higher frequency variations.
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Figure 3. 
Schematic illustration of the classification of a new scan (red dot). Scans for the same 

subject (dots of the same color) are represented by the mean (cross). The probability p(λs| k) 

that the new scan belongs to class k monotonically decreases with the distance to the mean 

 (black double arrow).
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Figure 4. 
Classification results for different feature sets as a function of the number of eigenvalues m. 

We compare the performance of the product classifier (left column) and voting classifier 

(right column), as well as normalized eigenvalues (first row) and un-normalized eigenvalues 

(second row).
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Figure 5. 
Left: Subject (color) voted for by each structure (row) for each scan (column). Cortical 

structures in first 8 rows, subcortical features below. Optimal feature response would show a 

color gradient from blue to red, since scans are sorted by subject index. Right: Number of 

votes for the winning subject identity when the correct subject is included (blue) in the 

database and when it is excluded (green). Decision boundary at 4 votes (red) yields a 0.49% 

false negative rate.
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Figure 6. 
Scatter plot of true versus estimated ages for the combined prediction with normalized 

eigenvalues on the OASIS dataset. Least squares regression line with correlation coefficient 

(Pearson's r = 0.90).
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Figure 7. 
Prediction accuracy of sex for the combined prediction on all brain structures and the nine 

best performing single structures. Cortical structures perform best, with each one offering a 

significant improvement in prediction accuracy over the best subcortical structure 

(brainstem). Bars correspond to the mean prediction accuracy and error bars display 

standard error. The color of the bars is used for visualization purposes only. *, **, and *** 

indicate statistical significance levels at 0.05, 0.01, and 0.001, respectively.
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Figure 8. 
Analysis of lateral asymmetry of the brain based on shape (un-normalized and normalized 

eigenvalues) and volume. The bars show the median of ranks relative to the sample size for 

lateral brain structures. A low relative rank indicates high lateral symmetry. We compute p-

values with the Wilcoxon signed-rank test between the results of un-normalized and 

normalized eigenvalues (light green), as well as un-normalized eigenvalues and volume 

(yellow). The structures are sorted in decreasing order of p-value between un-normalized 

and normalized eigenvalues. The normalization of eigenvalues yields a significant increase 

in rank for all structures except putamen. The un-normalized eigenvalues have a 

significantly lower rank than the volume for the majority of structures.
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Figure 9. 
Box-and-whisker plot of differences between normalized eigenvalues on left and right white 

matter triangular mesh. Red lines indicate the median, the boxes extend to the 25th and 75th 

percentiles, and the whiskers reach to the most extreme values not considered outliers (red 

crosses). Outliers are points that are farther than 1.5 times the interquartile range away from 

either end of the box. Distribution of differences around zero indicate fluctuating 

asymmetry, whereas strong deviations from zero indicate directional asymmetry. 

Distributions of differences with non-zero median are marked with a star when significant in 

Wilcoxon signed -rank test (Bonferroni corrected).
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Figure 10. 
Longitudinal data for lateral distances of striatum. Lines and line segments show model 

fitted from linear mixed-effects model. Line segments show within-subject slope for five age 

cohorts (70, 74, 78, 82, and 86 years of age at baseline). The longer lines indicate cross-

sectional slopes at baseline.
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Figure 11. 
Distances and ranks between monozygotic (MZ) and dizygotic (DZ) twins for BrainPrint 

structures, sorted in decreasing order of significance. Bars show the mean of distances and 

ranks, error bars correspond to two standard error. Numbers show the Bonferroni corrected 

p-value of the Wilcoxon rank-sum test that distances/ranks are samples from distributions 

with equal medians. We present results with and without normalization of eigenvalues. The 

total number of scans is 236.
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Figure 12. 
Mean (left) and variance (right) of eigenvalues with and without linear re-weighting.
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Figure 13. 
Coronal and axial slices from two misclassified scans. White matter segmentation is shown 

in yellow. Imaging artifacts cause errors in skull stripping and segmentation.
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Figure 14. 
Mean and standard deviation of the volume (left) and of the mean local gyrification index 

(right) of the cortex for 40 subjects. Statistics are computed over several longitudinal scans 

per subject.
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