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The herpes simplex virus type 1 UL20 protein (UL20p) is an important determinant for cytoplasmic virion
morphogenesis and virus-induced cell fusion. To delineate the functional domains of the UL20 protein, we
generated a panel of single and multiple (cluster) alanine substitutions as well as UL20p carboxyl-terminal
truncations. The UL20 mutant genes could be broadly categorized into four main groups: Group I UL20
mutant genes complemented for both virus production and virus-induced cell fusion; Group II UL20 mutant
genes did not complement for either virus-induced cell fusion or infectious virus production; Group III UL20
mutant genes complemented for virus-induced cell fusion to variable extents but exhibited substantially
decreased ability to complement UL20-null infectious virus production; Group IV mutant genes complemented
for infectious virus production but had variable effects on virus-induced cell fusion; this group included two
mutants that efficiently complemented for gBsyn3, but not for gKsynl1, virus-induced cell fusion. In addition,
certain recombinant viruses with mutations in either the amino or carboxyl termini of UL20p produced
partially syncytial plaques on Vero cells in the absence of any other virally encoded syncytial mutations. These
studies indicated that the amino and carboxyl termini of UL20p contained domains that functioned both in
infectious virus production and virus-induced cell fusion. Moreover, the data suggested that the UL20p’s role
in virus-induced cell fusion can be functionally separated from its role in cytoplasmic virion morphogenesis
and that certain UL20p domains that function in gB-syn3 virus-induced cell fusion are distinct from those

functioning in gKsynl virus-induced cell fusion.

Herpes simplex viruses (HSV) specify at least 11 virally
encoded glycoproteins, as well as several nonglycosylated
membrane-associated proteins, most of which play important
roles in multiple membrane fusion events during virus entry
and intracellular virion morphogenesis and egress (34, 37-39).
Spread of infectious virus occurs either by release of virions to
extracellular spaces or through virus-induced cell-to-cell fu-
sion. Mutations that cause extensive virus-induced cell fusion
arise predominantly in four genes of the HSV genome: the
UL20 gene (6, 28), the UL24 gene (23, 36), the UL27 gene
encoding glycoprotein B (gB) (10, 32), and the ULS53 gene
coding for glycoprotein K (gK) (8, 12, 21, 33, 35). Of these four
membrane-associated proteins, only UL20 and gK are essen-
tial for the intracellular transport of virions to extracellular
spaces in all cell types (6, 16, 18, 22, 24).

Virus morphogenesis and egress of infectious herpes virions
is thought to involve sequential de-envelopment and reenvel-
opment steps in transit to extracellular spaces as follows: (1)
primary envelopment by budding of capsids assembled in the
nuclei through the inner nuclear leaflet leading to the produc-
tion of enveloped virions within perinuclear spaces; (ii) de-
envelopment by fusion of viral envelopes with the outer nu-
clear leaflet leading to the accumulation of unenveloped
capsids in the cytoplasm; (iii) reenvelopment of cytoplasmic
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capsids into trans-Golgi network (TGN)-derived vesicles. This
final event in cytoplasmic virion envelopment is thought to be
mediated by interactions between tegument proteins and cy-
toplasmic portions of viral glycoproteins embedded within the
TGN-derived membranes. Cytoplasmically enveloped viruses
are thought to be transported to extracellular spaces within
Golgi or TGN-derived vesicles (reviewed in references 25, 31,
and 41).

The UL20 gene encodes a 222-amino-acid nonglycosylated
transmembrane protein that is conserved by all alphaherpes-
viruses. The UL20p is a structural component of extracellular
enveloped virions, and it is expressed in infected cells assuming
a predominantly perinuclear and cytoplasmic distribution (44).
A partial deletion of the UL20 gene was reported to form
weakly syncytial viral plaques in certain cell types and severe
defects in cytoplasmic virion envelopment, implying that UL20
functioned in virus-induced cell fusion and virion morphogen-
esis. Furthermore, replication of the UL20-null virus could be
partially complemented in certain cell types indicating a cellu-
lar specificity of UL20 functions (6). This UL20p cellular spec-
ificity was phenomenologically associated with disruption of
the Golgi apparatus during viral infections, inasmuch as cells
that complemented the UL20-null virus retained intact Golgi
networks, whereas the Golgi networks of cells failing to com-
plement the UL20-null virus were disrupted and dispersed
throughout the cytoplasm (4, 5).

Recently, it was shown that a precise deletion of the UL20
gene caused accumulation of unenveloped capsids into the
cytoplasm, indicating that the HSV-1 UL20p functioned in
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cytoplasmic stages of virion envelopment and that the previ-
ously reported partial deletion of the UL20 gene caused a
predicted fusion of the UL20p to the adjacent UL20.5 gene. In
addition, syncytial mutations in either gB or gK failed to cause
fusion in the absence of the UL20 gene, suggesting that the
UL20 protein was essential for virus-induced cell fusion (17).
Furthermore, it was shown that UL20 is required for cell sur-
face expression of gK, suggesting a functional interdependence
between gK and UL20 for virus egress and cell-to-cell fusion
(14, 15, 17). In this study we have delineated via site-directed
mutagenesis the functional domains of UL20p involved in in-
fectious virus production and virus-induced cell fusion. Impor-
tantly, we show that both amino- and carboxyl-terminal por-
tions of UL20p, which are predicted to lie within the
cytoplasmic side of cellular membranes, function both in cyto-
plasmic virion envelopment and virus-induced cell fusion.
Overall, the data suggest that UL20p’s role in virus-induced
cell fusion can be functionally separated from its role in cyto-
plasmic virion morphogenesis and that certain UL20p domains
that function in gB-syn3 virus-induced cell fusion are distinct
from those functioning in gKsyn1 virus-induced cell fusion.

MATERIALS AND METHODS

Cells and viruses. African green monkey kidney (Vero) cells were obtained
from the American Type Culture Collection (Rockville, Md.). The Vero-based
UL20 complementing cell line, G5, was a gift of P. Desai, (John Hopkins Medical
Center) (13). Cells were maintained as previously described (13, 15, 16). The
parental wild-type strain used in this study, HSV-1(KOS), was originally obtained
from P. A. Schaffer (Harvard Medical School). Flp-In-CV-1 cells were main-
tained as directed by the manufacturer (Invitrogen, Inc.). A20DIV5, A20gBsyn3,
and A20syn20DIVS5 viruses were as described previously (17), and virus stocks
were grown on Fd20-1 cells, described below. In this paper, for simplification
purposes, the A20DIVS virus is referred to as A20 virus and the A20syn20DIV5
virus is referred to as A20gKsynl virus (the syn20 and synl mutation are the
same, Ala-to-Val at gK amino acid 40).

Construction of transformed Flp-In-CV-1 cell lines. Generation of stable
Flp-In-CV-1 expression cell lines was performed essentially as directed by the
manufacturer (Invitrogen). Briefly, confluent Flp-In-CV-1 monolayers in six-well
plates were transfected by using Lipofectamine 2000 with 0.3 pg of either
pcDNAS/FRT/UL20 or pFRT/gDpro/UL20 and 2.7 pg of pOG44 (Invitrogen),
which expresses Flp recombinase. After 2 weeks, hygromycin B (125 pg/ml)-
resistant colonies were tested for the ability to complement the growth of A20,
A20gBsyn3, and A20gKsynl viruses. All colonies derived from each plasmid
complemented UL20-null virus. Isolates Fc20-1 and Fd20-1, derived from
pcDNAS/FRT/UL20 and pFRT/gDpro/UL20 transfected cells, respectively,
were chosen for further use. Fd20-1 cells were used in generating UL20-null virus
stocks.

Plasmids. pCR2.1-UL20, which was used as the parental vector for UL20
mutagenesis, was generated by cloning a 773-bp DNA fragment containing the
UL20 gene, obtained by PCR amplification of HSV-1(KOS) viral DNA, into
pCR2.1/TOPO (Invitrogen). A 7,185-bp fragment spanning the region compris-
ing UL19, UL20, UL21, and UL22 was PCR amplified from KOS virus DNA by
using primers p20F2 5’ (TTTCTTGAATTCACGACGGCGGTGTAGCCC
ACG) and p20F2 3’ (CTTCTTGAATTCCCCATCACCCACAACGCCAGC),
restricted by EcoRI, and ligated into puc19BX (17) to generate p20F2. p20F2
was modified by silencing the BamHI site at genomic nucleotide position 39235
(GenBank accession number NC_001806), conserving the UL19 amino acid
sequence, and removing a 767-bp BamHI DNA fragment containing the UL20
gene, resulting in plasmid p20F2BX (see Fig. 2D). UL20 cluster-to-alanine
mutants, single point mutants, and truncation mutants were generated by two
methods. Mutants CL11, CL23, CL34, CL38, CL121, CL209, 66t, and 149t were
generated by using the GeneTailor Site-Directed Mutagenesis kit as directed by
the manufacturer (Invitrogen). Mutants CL5, CL16, CL30, CL41, CL46, CLA9,
CL153, CL173, CL177, 181t, 204t, 211t, 216t, Y49A, S50A, R51A, D123A,
R209A, T212A, and R213A were generated by splice-overlap extension PCR (1).
Mutant UL20 genes were transferred into the BamHI site of the vector
p20F2BX. All p20F2BX mutant constructs were sequenced to verify error free
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mutagenesis. Plasmid p20R contains a wild-type UL20 gene cloned into
p20F2BX. An additional plasmid was constructed from p20F2BX, designated
pA20NE, to include the same UL20 deletion as pA20-EGFP (17) without the
EGFP gene cassette. Plasmid pcDNAS/FRT/UL20 was constructed by inserting
the UL20 gene, which had been PCR amplified from KOS viral DNA, into
pcDNAS/FRT/V5-His-TOPO (Invitrogen). An additional plasmid, pFRT/gDpro/
UL20, was constructed by replacing the cytomegalovirus (CMV) promoter in
pcDNAS/FRT/UL20 with the HSV-1 KOS gD promoter region.

UL20 complementation assay for infectious virion production. The comple-
mentation assay was modified from a similar assay described previously (7).
Confluent Vero monolayers in six-well plates were transfected with 1.5 pg of
pcDNA3.1/V5-His-TOPO/lacZ (Invitrogen), expressing -galactosidase under
control of the CMV promoter, and 1.5 pg of wild-type or mutant UL20 plasmid
with Lipofectamine 2000 as described by the manufacturer (Invitrogen). Six
hours posttransfection, the monolayers were infected with a UL20-null virus at a
multiplicity of infection (MOI) of 1. Infections were placed on a rocker for 1 h
at 4°C and then transferred to 37°C for 2 h. Residual virus was inactivated by
using an acid wash (phosphate-buffered saline containing 0.5 M glycine, pH 3)
for 2 min, and monolayers were subsequently washed three times with Dulbec-
co’s modified Eagle’s medium to restore the pH to a normal level. Infections
were incubated at 37°C for 24 h. After repeated freeze-thaw cycles, the titers of
virus stocks were determined in triplicate on G5 cells, which effectively comple-
ment the UL20-null defect (17). An aliquot of each virus stock was saved to assay
for B-galactosidase expression as described below.

B-Galactosidase expression levels were quantified essentially as described pre-
viously (7). One hundred microliters of Z buffer containing 0.27% B-mercapto-
ethanol and 0.2% Triton X-100 was added to 100 wl of virus stock and vortexed
for 30 s. Cell debris was pelleted by centrifugation at 16,100 X g in a microcen-
trifuge for 30 s. One hundred sixty microliters of the supernatant was transferred
to a 96-well plate and allowed to react with 40 wl of 4 mg of ONPG (o-
nitrophenyl-B-p-galactopyranoside) stock/ml at room temperature. The reac-
tions were allowed to proceed for 90 min before absorbance at 405 nm was
determined.

Calculation of complementation ratios. The complementation ratio for each
mutant was calculated with the following formula: [(virus titer of mutant/virus
titer of negative control)X(experimental B-galactosidase value/B-galactosidase
value of negative control)]. With this formula, values obtained from the B-ga-
lactosidase assay were used to correct for minor differences in transfection
efficiency; the complementation ratio for the negative control (plasmid pA20NE)
was set at 1.

UL20 complementation assay for virus-induced cell-to-cell fusion. Confluent
Vero monolayers in six-well plates were transfected with 3 pg of wild-type or
mutant UL20 plasmid with Lipofectamine 2000 as described by the manufacturer
(Invitrogen). Eighteen hours posttransfection, the monolayers were infected at
an MOI of 0.1 with either A20gKsynl or A20gBsyn3 viruses. Infections were
placed on a rocker at room temperature for 1 h and then transferred to 37°C for
30 min. Cells were overlaid with Dulbecco’s modified Eagle’s medium containing
1% methylcellulose. Twenty-four hours postinfection (h.p.i.), cell fusion was
determined by visualization of syncytia formation by fluorescence microscopy.
Cell fusion was blindly scored by two independent observers, and scores were
linked to individual mutants after the cell fusion scoring was completed. Cell
fusion was scored as completely absent (—), present at very low levels (+),
present at moderate levels (++), or present at levels near (+++) or equivalent
to (++++) those observed when the wild-type UL20 gene was used. The score
of (—) indicates no syncytial formation as evidenced by the absence of cells
having more than one nucleus. The score of (+) indicates the presence of
syncytia containing on the average five nuclei or fewer. The score of (++)
reflects syncytia containing 6 to 10 nuclei per cell. The score of (+++) is
assigned to 11 to 20 nuclei per cell. The score of (+++ +) is for syncytia having
>20 nuclei per cell.

Electron microscopy. Cell monolayers were infected with the indicated virus at
an MOI of 5. All cells were prepared for transmission electron microscopy
(TEM) examination 24 h p.i. Infected cells were fixed in a mixture of 2%
paraformaldehyde and 1.5% glutaraldehyde in 0.1 M NaCaC buffer, pH 7.3.
Following osmication (1% OsO,) and dehydration in an ethanol series, the
samples were embedded in Epon-Araldyte resin and polymerized at 70°C. Thin
sections were made on an MTXL Ultratone (RMC Products), stained with 5%
uranyl acetate and CNA lead, and observed with a Zeiss 10 transmission electron
microscope as described previously (15).

Generation of recombinant viruses specifying mutant UL20p. Viruses that
contained the UL20 mutations were generated by rescuing the UL20-null viruses
(A20, A20gBsyn3, and A20gKsyn1) with plasmids containing the desired UL20
mutant genes bracketed by adjacent viral sequences to facilitate homologous
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TABLE 1. Amino acid sequences of mutations

Amino acid sequence

Mutation or .
. Domain
truncation Wild type Mutant?
Mutations
CL5 1 DD AA
CL11 1 DRD AAA
CL16 1 DE AA
CL23 1 EEGE AAGA
CL30 1 EE AA
CL34 1 SLSS ALAA
CL38 1 YGT AGA
CL41 1 SD AA
CL46 I SS AA
CL49 1 YSR AAA
Y49A 1 ASR
S50A 1 YAR
R51A 1 YSA
CL121 111 KRDR AADA
CL153 v ETFSPD AAFAPA
E153A v ATFSPD
T154A v EAFSPD
S156A v ETFAPD
DI158A v ETFSPA
CL173 v TD AA
CL177 v RTR AAA
CL209 \% RFWTR AFWAA
R209A Vv AFWTR
T212A \% RFWAR
R213A Vv RFWTA
Truncations
66t VILFL VILG*
149t LFAAA LFAG*
181t RALGI RALG*
204t SANFF SANG*
211t RFWTR RFWG*
216t AILNA AILG*

“*, stop codon.

recombination with the viral genome (see Fig. 3). Briefly, confluent Vero cell
monolayers were transfected with each plasmid, and transfected cells were in-
fected with the A20 virus 6 h after transfection. Virus stocks were prepared at
48 h.p.i., and recombinant viruses were plaque isolated on Vero cells and se-
quentially plaque purified at least five times. Replacement of the UL20-null
resident CMV-enhanced green fluorescent protein (EGFP) gene cassette and
the concomitant insertion of the mutated UL20 gene were confirmed by DNA
sequencing. Visualization of viral plaques was achieved by either phase contrast
microscopy or immunohistochemistry essentially as described previously (17).

RESULTS

Mutagenesis of HSV-1 UL20. To delineate the functional
domains of UL20p required for infectious virus production,
virus egress, and virus-induced cell fusion, we constructed a
panel of 31 mutations within the UL20 gene by site-directed
mutagenesis. These mutations included (i) cluster-to-alanine
mutants in which a cluster of proximal amino acids were
changed to alanine residues, (ii) single-amino-acid replace-
ment mutants within alanine cluster regions, and (iii) carboxyl-
terminal truncations of UL20p. The mutated amino acids for
each type of mutation are shown in Table 1. The carboxyl-
terminal truncations are identified by the number of the last
remaining amino acid (i.e., 66t retains UL20p amino acids 1 to
66). To facilitate placement of each mutation on the predicted
luminar or cytoplasmic portions of UL20p, the hydrophobic
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and membrane-spanning domains of UL20p were calculated
by using the TMPred and SOSUI computer algorithms (19, 20)
and used to derive a predicted membrane spanning model of
UL20p (Fig. 1). This UL20p model features four membrane-
spanning regions placing both amino and carboxyl termini of
UL20p within the cytoplasm (Domains I and V). In addition, a
third small domain is located intracellularly (domain IIT), while
the two other domains are located extracellularly (domains II
and IV). The predicted membrane topology of UL20p was
used as the guide for selecting alanine scanning mutations
within predicted intracellular and extracellular domains of
UL20p. Regions containing clusters of charged amino acids as
well as potential phosphorylation sites were specifically tar-
geted. The location of each cluster mutation is marked on the
UL20p model, starting with the first mutated amino acid of the
cluster (Fig. 1; Table 1).

Complementation assay for infectious virus production. It
was previously shown that deletion of the HSV-1 UL20 and the
PRV UL20 genes resulted in a reduction of up to two logs in
infectious virus production relative to their parental wild type
strains (6, 17, 18). To delineate functional domains of the
UL20 protein involved in infectious virus production, each of
the 31 mutated UL20 genes was tested for its ability to com-
plement the HSV-1(KOS) UL20-null virus. The mutated genes
were cloned into plasmids under their own promoter control
bracketed by upstream and downstream DNA sequences to
facilitate complementation experiments as well as isolation of
recombinant viruses (Fig. 2D and E) (see Materials and Meth-
ods). Complementation experiments involved transfection of
Vero cells with plasmids encoding wild-type or mutant UL20
genes, followed by infection with the UL20-null virus (17). A
complementation ratio was calculated for each mutant UL20
plasmid, p20R (wild-type UL20, positive control), and
pA20NE (UL20-null mutation, negative control). The comple-
mentation ratio of pA20NE was set to 1 for each experiment.
The complementation ratios for the UL20 cluster mutants and
truncation mutants are shown in Fig. 3A. Mutants CL5, CL11,
CL16, CL23, CL30, CL34, CL38, CL41 CL46, CL121, CL173,
CL177, and CL209 complemented the UL20-null virus to a
variable extent in comparison to the positive plasmid control
p20R and the negative plasmid control pA20NE (Fig. 3A).
Mutants CL49, CL153, 66t, 149t, 181t, 204t, 211t, and 216t
failed to efficiently complement the UL20-null defect in infec-
tious virion production producing complementation ratios sim-
ilar to those of plasmid pA20NE (negative control), indicating
that the mutated UL20 protein was not able to function prop-
erly in virus egress (Fig. 3A). To delineate the specific amino
acids responsible for the UL20-associated defects identified by
the cluster mutations, we examined the complementation ra-
tios of several point mutants within cluster regions. The CL49
(YSR-to-AAA; Table 1) mutant UL20 gene failed to efficiently
complement the A20 virus. The Y49A mutant gene, which
involves the Y residue within the CL49 target sequence, pro-
duced a complementation ratio similar to that of CL49, while
the adjacent SS0A and R51A mutant genes complemented
infectious virus production to nearly wild-type levels (Fig. 3B).
These results indicate that the mutation of the Y residue is
responsible for the complementation defect exhibited by the
UL20 gene carrying the CL49 mutation. In contrast, the UL20
genes carrying the E153A, T154A, S156A, and D158A muta-
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FIG. 1. Predicted membrane topology of UL20p and location of the 15 cluster-to-alanine mutations. Membrane topology was predicted by
using the TMPred and SOSUTI algorithms (19, 20). UL20p domains where cluster-to-alanine mutations are located are indicated by a shaded oval.
The naming of cluster mutations is based on the first amino acid mutated in each cluster. TM, transmembrane region; CL, cluster mutant.

tions complemented the UL20-null virus at a greater level than
did the gene with the CL153 mutation, indicating that these
amino acids were not individually responsible for the lack of
complementation by the UL20 gene carrying the CL153 mu-
tation (Fig. 3C). The CL209 UL20 mutant gene as well as
mutant genes carrying individual amino acid changes within
the CL209 target sequence efficiently complemented A20 in-
fectious virus production (Fig. 3D).

Complementation for virus-induced cell-to-cell fusion. Re-
cently, we showed that syncytial mutations in either gB or gK
failed to cause virus-induced cell fusion in the absence of the
UL20 gene (17). Therefore, the panel of 31 UL20 mutants was
tested for the ability to complement UL20-null viruses con-
taining syncytial mutations in either gB (syn3) or gK (syn1) for
virus-induced cell fusion. Confluent Vero monolayers were
transfected with plasmids encoding either wild-type or mutant
UL20p and subsequently infected with either A20gKsynl or
A20gBsyn3 viruses. These viruses contain a CMV-EGFP gene
cassette in place of the UL20 gene, which facilitates visualiza-
tion of syncytia formation by fluorescence microscopy (17).
Cell fusion was scored by two observers as detailed in Mate-
rials and Methods. Complementation results are summarized

in Table 2, and select mutant phenotypes are displayed in Fig.
4.

UL20 genes carrying the CLS, CL11, CL16, CL23, CL30,
CL34, CL173, CL177, and CL209 mutations produced syncytia
at levels similar to those produced by the positive-control plas-
mid p20R containing the wild-type UL20 gene. Syncytia for-
mation was completely absent in complementation assays with
UL20 genes specifying the CL153 mutation and all UL20p
carboxyl-terminal truncations (66t, 149t, 181t, 204t, and 211t)
except the 216t truncation, which complemented virus-induced
cell fusion (Fig. 4E, G, and I; Table 2). Other UL20 mutations
had various phenotypes with regard to the extent of syncytia
formation (Table 2). As with the infectious virion production
assay, the phenotype produced by the CL49 mutation was
similar to that of Y49A, but not S50A or R51A (Fig. 4D, F, H,
and J; Table 2). Most mutant UL20 genes were either able or
unable to complement both A20gBsyn3 and A20gKsynl vi-
ruses, although the level of complementation varied among the
different UL20 mutant genes. However, the CL41 and CL46
mutant UL20 genes efficiently complemented gBsyn3, but not
gKsynl, virus-induced cell fusion, indicating that these muta-
tions had a differential effect of gBsyn3 versus gKsynl-induced
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cell fusion (Table 2). The CL38 mutation, which is immediately
proximal to the CL41 mutation, had an obvious defect in
complementation for both gBsyn3 and gKsynl-induced cell
fusion (Fig. 4C; Table 2).

Plaque phenotypes of A20gBsyn3 and A20gKsyn1 recombi-
nants containing selected UL20 mutations. To further inves-
tigate the ability of UL20 mutant genes to complement for
virus-induced cell fusion caused by the gBsyn3 or gKsynl vi-
rally encoded mutations, specific recombinant viruses express-
ing UL20p mutant genes were isolated by rescue of the UL20
gene deletion of the A20gBsyn3 and A20gKsynl1 viruses. Re-
combinant viruses were identified by a lack of EGFP expres-
sion on Vero cells. Viral plaques produced by each recombi-
nant virus were characterized as small plaques if they
contained on the average no more than 75 cells or as large
plaques if they contained more than 250 cells per plaque. As
expected, we were unable to isolate recombinants expressing
the CL153, 66t, 149t, 181t, 204t, or 211t mutations on Vero
cells, whereas rescue with the wild-type UL20 gene resulted in
viruses that formed large syncytial plaques similar to the vi-
ruses carrying the gBsyn3 or gKsynl mutations alone (Fig. SA
and G). Recombinant viruses carrying the gKsynl mutation
and either the CL41 or CL46 UL20 mutation produced small
syncytial plaques on Vero cells (Fig. 5C and D), whereas the
recombinant viruses carrying the gBsyn3 mutation and either
the CL41 or the CL46 mutation produced large syncytial

plaques on Vero cells (Fig. 5I and J). Recombinant viruses
containing the CL38 mutation (Fig. 5B and H) or the CL49
mutation (Fig. SE and K) in the gBsyn3 or gKsynl genetic
background produced significantly smaller syncytial plaques
than the gBsyn3 or gKsynl viruses specifying the wild-type
UL20 gene. The gBsyn3 or gKsynl recombinant viruses spec-
ifying the 216t mutation produced syncytial plaques similar in
size to the gBsyn3 or gKsynl viruses (Fig. SF and L).

Plaque phenotypes of selected UL20 mutations in the con-
text of wild-type gB and gK genes. Attempts were made to
isolate recombinant viruses specifying each of the 31 engi-
neered UL20 mutations in the A20 genetic background speci-
fying wild-type gB and gK genes. As expected, the CL153
mutation and all of the UL20p truncations except 216t failed to
yield recombinant viruses on Vero cells. Most other UL20
mutations produced nonsyncytial virus plaques on Vero cells
that were similar in size to recombinant viruses produced by
rescuing the A20 virus with the wild-type UL20 allele in agree-
ment with initial complementation results. Interestingly, re-
combinant viruses containing the CL49, Y49A, and 216t mu-
tations and which allowed complementation for virus-induced
cell fusion but exhibited deficiencies in infectious virus produc-
tion were isolated (Fig. 3A and B and 4D, F, and [; Table 2).
Recombinant viruses containing the CL49, Y49A, 216t, CL209,
and R209A mutations produced partially syncytial plaques on
Vero cells (Fig. 6B1, C1, F1, G1, and H1) suggesting that
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FIG. 3. Complementation ratios of mutant UL20p genes. Vero cells were transfected with plasmids encoding wild-type or mutant UL20 genes
under the UL20 promoter and then infected with the HSV-1(KOS) UL20-null (A20) virus. (A) Bar graph showing complementation ratios for
UL20 cluster-to-alanine mutants and carboxyl-terminal truncations. (B) Complementation ratios of the CL49, Y49A, SS0A, and R51A mutants.
(C) Complementation ratios of the CL153, E153A, T154A, S156A, and D158A mutants. (D) Complementation ratios of the CL209, R209A,
T212A, and R213A mutants. The error bars represent the maximum and minimum complementation ratios obtained from three independent
experiments, and the bar height represents the average complementation ratio.

specific UL20 domains were involved in virus-induced cell fu-
sion. In contrast, these viruses produced nonsyncytial plaques
when plated on the G5 cells (Fig. 6B2, C2, F2, G2, and H2),
indicating that the wild-type UL20 gene expressed by G5 cells
was dominant over UL20 syncytial mutations. In the amino
terminus of UL20p, recombinants expressing the S50A and
R51A mutations, which are immediately proximal to the Y49A
and contained within the CL49 mutation, did not cause syncy-
tial plaque formation, suggesting that mutation of the Y resi-
due is responsible for the resultant syncytial phenotype (com-
pare Fig. 6B1 and Cl1 with D1 and El). In the carboxyl
terminus of UL20p, recombinant viruses expressing the CL209

and R209A mutations produced partially syncytial plaques on
Vero cells, while those expressing the T212A and R213A did
not (compare Fig. 5G1 and H1 with I1 and J1), suggesting that
the R residue at position 209 is responsible for the CL209
syncytial phenotype. On average, syncytia produced by recom-
binant viruses expressing the carboxyl-terminal syncytial muta-
tions 216t, CL209, and R209A were larger than those produced
by the amino-terminal syncytial mutations CL49 and Y49A.
Ultrastructural characterization of recombinant viruses
carrying mutations within the amino and carboxyl termini of
UL20p. To evaluate the intracellular virion distribution of the
recombinant viruses specifying the 216t, CL49, and Y49 UL20
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TABLE 2. Complementation results for cell fusion

Extent of cell fusion by UL20-null

Mutation or complementation”

truncation Domain
gK (synl) gB (syn3)
Mutations
CL5 I ++++ ++++
CL11 I ++++ ++++
CL16 I ++++ ++++
CL23 I ++++ ++++
CL30 I +++ ++++
CL34 I +++ +++
CL38 I + +
CLAL I ++ ++++
CL46 I ++ ++++
CL49 I ++ ++
Y49A I ++ ++
S50A I ++++ ++++
RS1IA I ++++ +4+++
CL121 111 ++ ++
CL153 v - -
E153A v +++ ++++
T154A v ++++ ++++
S156A v ++++ ++++
DI158A v ++++ ++++
CL173 v +++ ++++
CL177 v ++++ ++++
CL209 \% +++ ++++
R209A \% ++++ ++++
T212A \% ++++ ++++
R213A \% +++ +4+++
Truncations
66t - -
149t - -
181t - -
204t - -
211t - -
216t + +++

“ —, completely absent; +, very low levels of cell-fusion; + +, moderate levels;
+++, near wild-type levels; ++++, wild-type levels.

mutations, Vero cells infected with UL20p wild-type and mu-
tant viruses at an MOI of 5 were examined via electron mi-
croscopy at 24 h p.i. As previously shown (17), the A20 (UL20-
null) virus caused accumulation of unenveloped capsids into
the cytoplasm in infected Vero cells (Fig. 7A). In contrast, the
A20-rescued virions were transported to extracellular spaces
and exhibited no apparent cytoplasmic defects (Fig. 7B). Im-
portantly, infection with the 216t mutant virus resulted in an
accumulation of capsids in the cytoplasm (Fig. 7C, D, E, and
F), similar to the UL20-null phenotype. Similarly, infection
with the CL49 mutant resulted in the accumulation of capsids
as well as a small percentage of enveloped particles within the
cytoplasm (Fig. 8A and B). The Y49A mutant virus produced
the same ultrastructural phenotype as the CL49 mutant (Fig.
8C). The S50A and R51A mutants exhibited no apparent de-
fects in intracellular morphogenesis, appearing to have an in-
tracellular distribution similar to that of the wild-type KOS
virus (Fig. 8D and E).

DISCUSSION

In this study, we constructed and characterized a panel of 31
different mutations within UL20p to delineate domains of
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UL20p functioning in virion morphogenesis and virus-induced
cell fusion. Analysis of the various mutant phenotypes reveals
that UL20p contains at least three domains involved in virion
morphogenesis and virus-induced cell fusion: the amino and
carboxyl termini of UL20 (domains I and V), which are pre-
dicted to lie on the cytoplasmic side of membranes, and UL20p
domain IV, which is predicted to lie extracellularly. Overall,
the data suggest that the role of UL20p in virus-induced cell
fusion can be functionally separated from its role in cytoplas-
mic virion morphogenesis and that certain UL20p domains
that function in gB-syn3-mediated virus-induced cell fusion are
distinct from those functioning in gKsynl-mediated virus-in-
duced cell fusion.

The predicted membrane topology of UL20p. Computer-
assisted prediction of the membrane-spanning domains of
UL20p indicated that UL20p spanned membranes four times
placing both the amino (domain I) and carboxyl terminal (do-
main V) portions within the cytoplasm of cellular membranes
and internal to the virion envelope. This predicted structure
includes two extracellular domains: a very small domain of 5
amino acids (domain II) and a second domain of 25 amino
acids (domain 1V), predicted to be localized in the lumen
(extracellular) and external to the virion envelope. Initial
epitope tagging results indicate that domain I is located intra-
cellularly, whereas domain IV is located extracellularly, which
is in support of this model (data not shown). However, addi-
tional work is required in order to fully confirm this UL20p
topology model. Domain I is the largest domain (63 amino
acids), and it includes stretches of acidic amino acid (D and E)
clusters, which could form electrostatic interactions with other
proteins. These acidic clusters as well as the amino acid motif
YXXd (YSRL) have been shown to function in endocytosis of
alphaherpesvirus envelope proteins from plasma membranes
to the TGN (2, 3, 9, 40, 45). The acidic cluster motifs appear to
direct TGN localization by binding to a cellular connector
protein, PACS-1, which connects the glycoproteins to the AP-1
complex (43), while the YXX¢ motif binds adaptor proteins
directly (2, 3, 40).

UL20p domains that function in infectious virus production
and virus-induced cell fusion. Complementation experiments
of the HSV-1(KOS) UL20-null virus, in the presence or ab-
sence of either the gBsyn3 or gKsynl mutations, using each
mutant UL20 gene revealed that most mutations could be
broadly categorized into four major groups based on their
differential effects on infectious virus production and virus-
induced cell fusion (Table 3). Group I mutations comple-
mented infectious virus production and virus-induced cell fu-
sion. These mutations included CL5, CL11, CL16, CL23, and
CL30 in the amino terminus of UL20p (domain I); CL121
(domain III); CL173 and CL177 (domain IV); and CL209
(domain V). Considering that these cluster mutations involved
replacement of multiple amino acids by alanine residues, these
results indicate that the UL20p regions spanned by these mu-
tations were not crucial for the structure and functions of
UL20p.

Group II mutations were unable to complement infectious
virus production and virus-induced cell fusion. These muta-
tions included the CL153, 66t, 149t, 181t, 204t, and 211t mu-
tations. The 66t, 149t and 181t mutations specify large carbox-
yl-terminal UL20p truncations, which are expected to
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FIG. 4. Complementation for virus-induced cell-to-cell fusion of UL20-null viruses containing syncytial mutations in gK(synl) or gB(syn3).
Vero cells were transfected with plasmids encoding wild-type or mutant UL20 genes and then infected with either the A20gKsyn1 or the A20gBsyn3
viruses. At 24 h.p.i., cell fusion was determined by visualization of syncytia formation by fluorescence microscopy. The extent of syncytial formation
(complementation) obtained with the negative control plasmid, pA20NE (A), and positive control plasmid, p20R (B), is shown for reference
purposes. Representative images for the CL38, 204t, 211t, and 216t mutants (C, E, G, and I, respectively) and for the CL49, Y49A, S50A, and R51A
mutants (D, H, F, and J, respectively) are shown.
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CL38 CL41 CL46 CL49 216t

Rescue

FIG. 5. Plaque phenotypes of recombinant viruses derived from A20gKsyn1 (A, B, C, D, E, and F) and A20gBsyn3 (G, H, L, J, K, and L) and containing selected UL20 mutations
on Vero cells. Confluent cell monolayers were infected with the recombinant viruses containing wild-type UL20 (A and G) or the UL20 mutants CL38 (B and H), CL41 (C and

1), CL46 (D and J), CL49 (E and K), or 216t (F and L), and viral plaques were visualized by immunohistochemistry at 24 h.p.i.
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drastically affect the synthesis, transport, and membrane topol-
ogy of UL20p. Therefore, it is not surprising that these muta-
tions failed to complement both infectious virus production
and virus-induced cell fusion. The 204t and 211t mutations
encode carboxyl-terminal truncations of 18 and 11 amino acids,
respectively, encompassing UL20p domain V. Although, these
deletions are rather small and not predicted to affect the mem-
brane incorporation and topology of UL20p (not shown), they
may still affect the structure and function of UL20p. Alterna-
tively, this UL20p carboxyl-terminal domain may be involved
in protein-protein interactions necessary for UL20p-associated
viral functions. The UL20p domain IV is predicted to lie in the
lumen or extracellular side of membranes. Based on the fact
that the CL173 and CL177 mutations complemented the
UL20-null virus, but the CL153 did not, the data suggest that
amino acids 150 to 156 are important in infectious virus pro-
duction. However, none of the single amino acid changes
E153A, TI154A, S156A, or DI158A significantly altered
UL20p’s ability to complement the UL20-null virus, suggesting
that the combined effects of the CL153 mutations may affect
the conformation of this domain. Alternatively, this domain
may interact with luminal portions of other viral glycoproteins,
such as gB or gK, to facilitate infectious virus production and
virus-induced cell fusion.

Group III mutations included the CL49 and 216t mutations,
located at the amino and carboxyl termini of UL20p, respec-
tively, which complemented for virus-induced cell fusion at a
reduced level, but failed to efficiently complement infectious
virus production. The carboxyl terminus of UL20p (Domain
V) is composed of 18 amino acids and predicted to localize
intracellularly. The 216t complementation results suggest that
the terminal six amino acids of UL20p are crucial for infectious
virus production. This result was further corroborated by the
recombinant virus expressing the 216t mutation, which pro-
duced an ultrastructural phenotype similar to the UL20-null
virus characterized by the accumulation of unenveloped cap-
sids into the cytoplasm. The 216t mutation was able to com-
plement both gBsyn3 and gKsyn1-induced cell fusion, albeit at
levels lower than those of the wild-type UL20 gene. However,
the recombinant virus carrying the 216t mutation in the
A20syn1 and A20syn3 genetic backgrounds revealed no appar-
ent differences in the size and extent of syncytial plaque for-
mation in comparison to the corresponding A20synl and
A20syn3 viruses expressing the wild-type UL20 allele, indicat-
ing that the UL20 216t mutation did not adversely affect virus-
induced cell fusion.

The CL49 mutant phenotype in the amino terminus of
UL20p is of particular interest because alignment of the pre-
dicted amino acid sequences of multiple UL20 homologues
encoded by alphaherpesviruses revealed conservation of cer-
tain amino acid motifs within the UL20p amino terminus (not
shown). One such motif is the YXX¢ (YSRL) amino acid
sequence overlapping the CL49 mutated sequence, which is
conserved in HSV-1, HSV-2, and cercopithecine herpesvirus 1
and 2, but not in varicella-zoster virus or pseurodabies virus
(not shown). This motif is known to function in the retrieval of
cell surface-expressed proteins to the TGN compartment (11,
26, 27, 29, 30, 42). Mutagenesis of the Y residue of a YXX¢
(YTKI) motif within gK domain IV, shown to lie in the cyto-
plasmic side of membranes, produced a gK-null phenotype
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(16). Similarly, site-directed mutagenesis of the Y49, S50, and
R51 residues within this motif revealed that only the Y49A
mutation caused failure to complement the UL20-null virus,
indicating that this tyrosine residue played an important role in
infectious virus production. Tyrosine residues within YXX¢
motifs are known to be potentially phosphorylated. Therefore,
it is possible that the Y (amino acid position 49) residue of
UL20p is phosphorylated and that this phosphorylation may be
required for proper intracellular localization and function of
UL20p. This result was further supported by the ultrastructural
phenotype of the recombinant viruses expressing the CL49 and
Y49A mutations, both of which showed an accumulation of
unenveloped capsids into the cytoplasm similar to that of the
UL20-null virus. However, the CL49 and the Y49A mutations
complemented, albeit at reduced levels, both gBsyn3- and
gKsynl-induced cell fusion, suggesting that these mutations
only partially inactivated the UL20p functions required for
virus-induced cell fusion. This result was further supported by
the small but syncytial plaque phenotype of the recombinant
viruses expressing the CL49 mutation in either the gKsynl or
the gBsyn3 genetic background.

Group IV mutations exhibited a variable effect on virus-
induced cell fusion but did not drastically reduce infectious
virus production. Specifically, the CL38 UL20 mutant gene
complemented virus-induced cell fusion caused by the
A20gBsyn3 and A20gKsynl viruses at low levels, while the
CL41 and CL46 mutant genes complemented A20gKsynl at
low levels but A20gBsyn3 at high levels and levels equivalent to
the complementation levels produced with the wild-type UL20
gene. The initial complementation results were further sup-
ported by the recombinant viruses carrying either the CL41 or
the CL46 mutation in the gKsynl or gBsyn3 genetic back-
ground. Specifically, the gKsynl recombinants carrying either
the CL41 or CL46 mutations produced small syncytial plaques,
while the gBsyn3 recombinants carrying either the CL41 or
CL46 mutations produced large syncytial virus plaques indis-
tinguishable to the gBsyn3 recombinant virus carrying the wild-
type UL20 allele. These results suggest that the UL20p amino-
terminal domain demarcated by the CL38 to CL46 mutations
is important in virus-induced cell fusion; however, the specific
amino acid requirements within this domain may be different
for gBsyn3 versus gKsynl-induced cell fusion.

UL20p mutations that cause virus-induced cell fusion.
Characteristically, recombinant viruses expressing the CL49,
Y49A, CL209, R209A, and 216t UL20p mutations in a wild-
type genetic background formed small syncytial plaques on
Vero cells. Recombinant viruses specifying the T212A and
R213A mutations did not produce syncytial plaques on Vero
cells, indicating that the R209A mutation was responsible for
the syncytial phenotype of the CL209 mutation. Thus, it is
evident that the amino and carboxyl termini of UL20p are
directly associated with virus-induced cell fusion in the context
of wild-type gB or gK expression. Therefore, the ability of
these mutations to complement either gBsyn3 or gKsyn1 virus-
induced cell fusion discussed earlier may be in part due to the
inherent fusogenic character of the mutated UL20p. Most
likely, this is not the case because recombinant viruses carrying
the UL20 R209A syncytial mutation as well as either the
gBsyn3 or the gKsynl mutation did not exhibit increased virus-
induced cell fusion in comparison to viruses specifying either

FIG. 6. Domains of UL20p associated with UL20p-induced cell fusion. Plaque phenotypes of recombinant viruses containing selected UL20 mutations are shown on Vero (Al, B1, C1, D1,
El, F1, G1, H1, I1, and J1) and G5 (A2, B2, C2, D2, E2, F2, G2, H2, 12, and J2) cells. Confluent cell monolayers were infected with recombinant viruses containing wild-type UL20 (Al and
A2), or the UL20 mutants CL49 (B1 and B2), Y49A (C1 and C2), S50A (D1 and D2), R51A (E1 and E2), 216t (F1 and F2), CL209 (G1 and G2), R209A (H1 and H2), T212A (I1 and 12),

or R213A (J1 and J2) at an MOI of 0.001, and viral plaques were visualized at 30 h p.i. White arrows indicate syncytia.
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FIG. 7. Electron micrographs of Vero cells infected with A20DIVS (A), A20-rescue (B), or 216t (C, D, E, and F) viruses. Confluent cell
monolayers were infected at an MOI of 5, incubated at 37°C for 24 h, and prepared for TEM. Panel D shows a higher magnification of panel C.
Panel F shows a partially enveloped capsid often seen in UL20-null-infected cells. Nuclear (n), cytoplasmic (c), and extracellular (e) spaces are
marked.
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FIG. 8. Electron micrographs of Vero cells infected with the CL49 (A and B), Y49A (C), S50A (D), or R51A (E) viruses. Confluent cell
monolayers were infected at an MOI of 5, incubated at 37°C for 24 h, and prepared for TEM. Nuclear (n), cytoplasmic (c), and extracellular (e)
spaces are marked.

TABLE 3. Differential effects of mutations on infectious virus production and cell fusion

Complementation for Complementation for virus-induced cell fusion
Group Mutants infectious virion
production gKsynl gBsyn3
1 CL5, CL11, CL16, CL23, CL30, CL34, Yes High High
CL121, CL173, CL177, CL209
I CL153, 66t, 149t, 181t, 204t, 211t No No No
11 CLA49, 216t No Low Low (CL49) High (216t)

v CL38, CLA41, CL46 Yes Low Low (CL38) High (CL41, CL46)
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the gBsyn3 or gKsynl mutation and the wild-type UL20 gene
(not shown). Alternatively, UL20p may function as a regulator
of virus-induced cell fusion through interactions with other
viral proteins such as gB and gK, and disruption of these
interactions by specific UL20p mutations may result in the
formation of syncytia.

Deletion of the gK gene or lethal gK mutation causes en-
trapment of enveloped virions within cytoplasmic vesicles pre-
sumably originating from the TGN compartment and the ac-
cumulation of unenveloped capsids in the cytoplasm (16, 24).
Similarly, deletion of the UL20 gene or lethal UL20p muta-
tions cause accumulation of unenveloped capsids into the cy-
toplasm and a small portion of enveloped capsids within cyto-
plasmic vesicles (17, 18). These results suggest that UL20p and
¢K may have interrelated functions with regard to cytoplasmic
virion envelopment. The fact that the Y49A, CL49, and 216t
mutant viruses produced syncytial plaques, although their ul-
trastructural phenotypes seemed to be similar to that of the
UL20-null virus, suggests that UL20 functions for virus-in-
duced cell fusion may be distinct from those functioning in
cytoplasmic virion envelopment. Alternatively, the same do-
mains may function in both cytoplasmic virion envelopment
and virus-induced cell fusion; however, virion envelopment
may be more susceptible to the negative effects of these mu-
tations than to virus-induced cell fusion.

Overall, our previous findings and the results presented in
this paper suggest the existence of functional interactions be-
tween gK and UL20p as well as between UL20p and gB. In this
regard, it is interesting that syncytial mutations in gB lie in the
intracellular carboxyl terminus of gB, allowing the possibility
that intracellular domains of UL20p (domains I and V) directly
or indirectly interact with the carboxyl terminus of gB altering
gB’s fusogenic properties.
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