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Abstract Short repeated cycles of peripheral ischemia/

reperfusion (I/R) can protect distant organs from subse-

quent prolonged I/R injury; a phenomenon known as re-

mote ischemic preconditioning (RIPC). A RIPC-mediated

release of humoral factors might play a key role in this

protection and vascular endothelial cells are potential tar-

gets for these secreted factors. In the present study, RIPC-

plasma obtained from healthy male volunteers was tested

for its ability to protect human umbilical endothelial cells

(HUVEC) from hypoxia–induced cell damage. 10 healthy

male volunteers were subjected to a RIPC-protocol con-

sisting of 4 9 5 min inflation/deflation of a blood pressure

cuff located at the upper arm. Plasma was collected before

(T0; control), directly after (T1) and 1 h after (T2) the RIPC

procedure. HUVEC were subjected to 24 h hypoxia dam-

age and simultaneously incubated with 5 % of the re-

spective RIPC-plasma. Cell damage was evaluated by

lactate dehydrogenase (LDH)-measurements. Western blot

experiments of hypoxia inducible factor 1 alpha (HIF1al-

pha), phosphorylated signal transducer and activator of

transcription 5 (STAT5), protein kinase B (AKT) and ex-

tracellular signal-related kinase 1/2 (ERK-1/2) were per-

formed. Furthermore, the concentrations of hVEGF were

evaluated in the RIPC-plasma by sandwich ELISA. Hy-

poxia–induced cell damage was significantly reduced by

plasma T1 (p = 0.02 vs T0). The protective effect of

plasma T1 was accompanied by an augmentation of the

intracellular HIF1alpha (p = 0.01 vs T0) and increased

phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phospho-

rylation of AKT and STAT5 remained unchanged. Ana-

lysis of the protective RIPC-plasma T1 showed

significantly reduced levels of hVEGF (p = 0.01 vs T0).

RIPC plasma protects endothelial cells from hypoxia–in-

duced cell damage and humoral mediators as well as in-

tracellular HIF1alpha may be involved.

Keywords Remote conditioning � Human endothelium �
Signalling kinases � Translational study

Introduction

Transient episodes of ischemia (ischemic preconditioning),

if applied before prolonged ischemia/reperfusion injury,

are organ protective [12, 26]. Ischemic preconditioning

does not only act locally, but is also able to protect remote

tissues from ischemia/reperfusion injury, a phenomenon

described as remote ischemic preconditioning (RIPC).

RIPC can be induced by inflation and deflation of a blood

pressure cuff located at the upper or lower limb. This

procedure has been shown to attenuate organ injury in a

number of experimental and clinical situations [26, 27, 58].

Despite the encouraging results of RIPC in pre-

clinical and animal studies, a translation of RIPC into

the clinic is still not fully achieved [2, 16, 49, 57].
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However, there are several clinical trials in progress

elucidating the potential clinical benefit of RIPC. In

patients undergoing coronary artery bypass graft

(CABG) surgery an acute and probably favourable at-

tenuation of cardiac enzyme release has been demon-

strated, and thus there is evidence that RIPC provides

perioperative myocardial protection and improves the

prognosis of these patients [9, 68, 69]. Similar protec-

tive effects could also be found in patients undergoing

elective percutaneous coronary intervention (PCI) [14,

34] and ST-elevation myocardial infarction (STEMI)

patients undergoing primary PCI [5, 65]. On the other

hand, deleterious effects with a significant increase in

cardiac injury have been described [10, 37, 59].

Therefore, the results of the large clinical trials ongoing

in CABG patients [22, 50] will substantially increase

our knowledge about the translatability of RIPC in the

clinical setting.

The underlying mechanisms of RIPC have been at-

tributed to humoral, neuronal and anti-inflammatory path-

ways [27]. However, the exact mechanisms are complex

and yet not completely understood [24, 62]. It is suggested

that the humoral mediators might be released from the

remote tissue into the blood stream from where they are

transported to the target organ, and/or that they are pro-

duced after stimulation via neuronal pathways in the target

organ itself [24, 47]. In the last years, several so far

unidentified mediators of RIPC have been described by

different groups: e.g. stomal derived factor (SDF) 1alpha

[6], exosomes [19], Apolipoprotein A1 [32], miR144 [45],

IL-10 [8], matrix metalloproteinases (MMPs) [74] and ni-

trite [60]. For review, also see [27].

For several reasons the vascular endothelium, espe-

cially in the target organ, could play a central role in the

RIPC-mediated mechanisms of organ protection from I/R

injury: (1) humoral factors that are released into the blood

stream upon RIPC stimulus may directly interact with

endothelial cells which in turn may directly or indirectly

transfer the RIPC stimulus to the underlying tissue [51].

(2) Endothelial cells are among the first cell types that

will encounter hypoxia in the target organ and respond to

it [63]. (3) Endothelial dysfunction is a major reason for

severe local and systemic consequences of I/R injury [63].

Moreover, it has been demonstrated that RIPC before

primary percutaneous coronary intervention significantly

improves endothelial function in patients with acute my-

ocardial infarction, and this effect remains constant for at

least a week [48]. These data suggest that the improve-

ment of endothelial function may be one possible expla-

nation for the protective effects of RIPC. In this context it

is worth mentioning that the coronary circulation and

cardiac remodelling that are directly related to the en-

dothelial function just recently have been recognized to

be critical determinants of cardioprotective interventions

[28, 29].

In the present study, RIPC-plasma was obtained from

healthy male volunteers and tested for its ability to protect

human vascular endothelial cells (HUVEC) from hypoxia–

induced cell damage. We furthermore investigated the

cellular target mechanisms that were affected by RIPC-

plasma in HUVEC cells subjected to a hypoxic insult.

Materials and methods

Chemicals, solutions and culture media

If not otherwise stated all chemicals and solutions were

purchased either from Roche (Almere, the Netherlands),

Sigma-Aldrich (Zwijndrecht, Netherlands), Merck (Milli-

pore, Amsterdam, Netherlands) or Carl Roth (Karlsruhe,

Germany).

Isolation of human umbilical vein endothelial cells

(HUVEC)

HUVEC were freshly isolated from umbilical cords as

described previously [71] (Waiver: W12-167#12.17.096,

Ethical committee Amsterdam) and maintained in a hu-

midified atmosphere of 5 % carbon dioxide/95 % air at

37 �C in ECGM medium supplemented with endothelial

cell growth supplement (Promocell Bio-Connect, Huizen,

Netherlands), 1 % penicillin/streptomycin, 1 % ampho-

tericin B and 10 % heat-inactivated foetal bovine serum

(PAA, Germany, Freiburg). All culture surfaces were

coated with 0.75 % gelatine (BD Diagnostic Systems,

Netherlands, Breda) prior to cell seeding. Only cells from

passage 3 were used in the experiments. Characterization

of HUVEC cells was performed by detection of von

Willebrand-factor by fluorescence staining and fluores-

cence activated cell sorting FACS (data not shown).

Collection of human plasma

The study was approved by the local ethics committee of

the Academic Medical Centre (AMC), University of

Amsterdam, The Netherlands, (ISRCTN59201440) and

was performed in accordance with the Declaration of

Helsinki and the Medical Research Involving Human

Subjects Act. Ten healthy male volunteers

(25.20 ± 3.39 years) were subjected to a RIPC-protocol

consisting of 4 9 5 min inflation/deflation of a blood

pressure cuff located at the upper right arm. Prior to par-

ticipation, all subjects gave their written informed consent.

The following inclusion criteria were chosen: (1) healthy,

(2) male, (3) age between 18 AND 45 years. Exclusion
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criteria were as follows: (1) cardiovascular, kidney, pul-

monary or endocrine diseases, (2) alcohol or drug abuse,

and (3) no informed consent. We decided to only include

male volunteers into the study to avoid potential influences

of oestrogens [56]. Subject characteristics are given in

Table 1.

Blood was collected before (T0; baseline time point

prior to inflation of blood pressure cuff = controls), di-

rectly after (T1) and 60 min after (T2) the RIPC-protocol

(Fig. 1). The blood samples were collected in citrate vials

(BD bioscience, Breda, The Netherlands) and centrifuged

at 4 �C, 290 g for 10 min. Plasma was aliquoted, and

stored at -80 �C.

To evaluate the optimal concentration of human plasma

to be added to the culture medium, HUVEC cells were

incubated with different concentrations (0, 1, 5, 10 %) of

fetal bovine serum and growth characteristics as well as the

degree of hypoxia–induced cell damage were evaluated.

On the basis of these results, the optimal concentration of

plasma was selected. A similar approach has also been

chosen in our recently published study in which RIPC

serum was used [74]. These evaluations suggested that the

basic culture medium should be supplemented with 5 %

plasma.

Induction of in vitro hypoxia in HUVEC by enzymatic

oxygen depletion

Hypoxic conditions in HUVEC were induced using a

modified version of our recently described enzymatic

model [36, 75]. In the present study concentrations of the

hypoxia inducing enzymes were adapted to 4 U/ml glucose

oxidase (GO), and 120 U/ml catalase (CAT) and cell cul-

ture plates were transferred into an airtight chamber, which

was flooded with 1 bar, 10 l/min nitrogen gas until oxygen

was reduced to 1 %. The box was then kept inside an in-

cubator at 37 �C. Oxygen levels were monitored directly in

the culture medium using an OxyMini fibre optic oxygen

meter (World Precision Instruments, USA, Sarasota) and

OxyMicro Software v.00 04/2003.

Experimental protocol

HUVEC cells were seeded into gelatine-coated 12 well

plates 2 days before the experiment. At the beginning of

the experiment ECGM growth medium was exchanged

and cells were pre-incubated for 1 h with M199 medium

(PAN Biotech, Aidenbach, Germany) containing 5 % of

the respective RIPC-plasma (T0, T1, T2). Subsequently,

the normoxic medium was replaced by hypoxic M199

containing 5 % of the respective RIPC-plasma and the

culture plates were placed in an airtight chamber and

kept inside an incubator for 24 h. For colorimetric lactate

dehydrogenase (LDH)-measurements the cell culture

medium of each well was collected after 24 h of hypoxia

and frozen at -20 �C. For Western blotting experiments

the cells were harvested and frozen at -80 �C (Fig. 1).

Determination of cell death

LDH activity was colorimetrically evaluated using a Lac-

tate Dehydrogenase Activity Assay Kit (Biovision,

Uithoorn, Netherlands,) following the manufacturer’s pro-

tocol. Absorbance was measured before and after 30 min

of incubation (37 �C) at 450 nm using an ELISA reader

(Tecan, Crailsheim, Germany).

Western blotting

Western blotting was performed as described previously

[74]. Overnight incubation of the membranes was con-

ducted at 4 �C with appropriate dilutions of primary anti-

bodies directed against HIF1alpha (Acris, Novus

Biological, Herford, Germany, 1:1000), actin (Santa Cruz,

Heidelberg, Germany, 1:1000), pAKT (Cell Signalling,

Danvers, USA, 1:1000), AKT (Cell Signalling, Danvers,

USA, 1:2000), pERK-1/2 (Cell Signalling, Danvers, USA,

1:8000), ERK-1/2 (Cell Signalling, Danvers, USA,

1:8000), pSTAT5 (R&D Systems, Wiesbaden-Nordenstadt,

Germany, 1:1000), or against STAT5 (R&D Systems,

Wiesbaden-Nordenstadt, Germany, 1:1000). Membranes

were rinsed three times for 10 min with tris-buffered saline

plus tween buffer (TBST) at room temperature, and were—

depending on the primary antibody used—incubated for

1 h with the secondary horseradish peroxidase coupled-

antibody (anti-rabbit, DAKO, Eching, Germany, 1:10,000

or anti-goat, Santa Cruz, Heidelberg, Germany, 1:10,000),

with a biotin coupled-antibody (anti-rabbit, Abcam, Cam-

bridge, UK, 1:10,000), or with horseradish peroxidase-

coupled streptavidin for the biotinylated secondary

Table 1 Summarized volunteer data

Volunteer identification # 1 2 3 4 5 6 7 8 9 10 Mean SD

Age [years] 26 21 19 27 28 24 27 23 30 27 25.20 3.39

Height [m] 1.80 1.85 1.85 1.95 1.90 1.82 1.93 1.80 1.86 1.75 1.85 0.06

Weight [kg] 74 85 80 95 85 73 95 70 73 78 80.80 9.02
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antibody (AbD Serotec, Puchheim, Germany, 1:5000).

After washing three times with TBST buffer for 10 min,

the membranes were incubated with ECL detection reagent

(GE Healthcare Life Sciences, Freiburg, Germany) for

5 min. For signal detection, autoradiography films (GE

Healthcare Life Sciences, Freiburg, Germany) were ex-

posed to the membranes for various time periods in the

dark. Relative intensities of protein bands were analysed by

ImageJ v1.48 and GraphPad Prism 5.0 for Mac. In some

experiments, membranes were stripped and re-probed with

different antibodies. Therefore, the membranes were in-

cubated for 15 min at 56 �C with stripping buffer (4 ml

SDS 10 %, 2.5 ml Tris 0.5 M pH 6.8, 13.5 ml ultrapure

water, 160 ll 2-mercaptoethanol). After washing with

TBST buffer, the membranes were re-blocked with 3 %

BSA/TBST buffer for 1 h and were washed three times

with TBST buffer.

Quantification of human vascular endothelial growth

factor

The concentrations of the human Vascular Endothelial

Growth Factor (hVEGF) were determined in RIPC-plasma

by specific ELISA systems, (ScienceCell Research

Laboratories, USA, Carlsbad) according to the manufac-

turer’s protocol. Absorbance was measured at 450 nm us-

ing an ELISA reader (Tecan, Germany, Crailsheim) and

hVEGF concentrations were calculated from the standard

curve provided.

Statistical analysis

Statistics were performed using the software GraphPad

Prism 5.0 for Mac. D’Agostino normality testing was used

to check data for normal distribution. Parametric data were

analysed using One-Sample t-Tests (LDH-activity,

hVEGF) or Paired t-Tests (HIF1alpha, pSTAT5). Non-

parametric data were analysed using the Wilcoxon signed

rank test (pAKT, pERK-1/2). Variables are expressed as

mean ± SEM.

Results

Plasma obtained directly after RIPC reduces

the hypoxia–induced cell damage in HUVEC cells

LDH-assays were used to evaluate the influence of RIPC-

plasma (T1, T2) on hypoxia–induced cell damage of

HUVEC cells. T0-plasma, obtained prior to RIPC, was

used as baseline control. Mean LDH-activity in the culture

media at baseline was 7.58 ± 0.9 mU/ml, while the range

of LDH activity varied between different samples (mini-

mum LDH: 1.50 mU/ml, maximum LDH: 15.24 mU/ml;

Fig. 2a) Compared to plasma T0, plasma T1 significantly

reduced the hypoxia–induced cell damage (T1:

0.89 ± 0.04; T0 = 1; p = 0.02; Fig. 2b). Plasma T2 did

not significantly change the hypoxia induced damage in

HUVEC cells (T2: 1.04 ± 0.03; T0 = 1; p = 0.15;

Fig. 2b).

The reduction of hypoxia–induced cell damage

by RIPC-plasma is associated with an increased protein

expression of HIF1alpha and enhanced phosphorylation

of ERK-1/2

Using Western blotting, the expression of several proteins

potentially involved in RIPC-mediated organ protection

Fig. 1 Experimental setting. The RIPC-protocol consisted of

4 9 5 min inflation/deflation of a blood pressure cuff. Plasma was

obtained before (T0), directly after (T1) and 60 min after (T2) the

RIPC stimulus. HUVEC cells were incubated with the respective

plasma and subjected to 24 h of hypoxia. Employing cell culture

media and cell lysates, cell damage as well as cellular signalling

events were investigated. H hypoxia; green color, RIPC-plasma
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was investigated [21, 24, 39]. As only plasma T1 but not T2

was able to significantly reduce hypoxia–induced cell

damage in HUVEC cells (Fig. 2), all Western blotting

experiments were performed with HUVEC cells incubated

with T1 and the respective control plasma (T0). Den-

sitometric analyses revealed no statistically significant

differences in the phosphorylation of AKT in HUVEC cells

that were incubated with plasma T1 (T1: 0.12 ± 0.04 ar-

bitrary units (a.u.) versus T0: 0.16 ± 0.1 a.u.; p = 0.85;

Fig. 3a) or STAT5 (T1: 0.53 ± 0.1 a.u. versus T0:

0.65 ± 0.1 a.u.; p = 0.10; Fig. 3b). However, plasma T1

significantly augmented the amount of HIF1alpha (T1:

0.79 ± 0.2 a.u. versus T0: 0.43 ± 0.1 a.u.; p = 0.01;

Fig. 3c) and increased the phosphorylation of ERK-1/2

(T1: 0.66 ± 0.3 a.u. versus T0: 0.29 ± 0.1 a.u.; p = 0.03;

Fig. 3d) in HUVEC cells that were exposed to 24 h of

hypoxia. Control studies revealed that the significant in-

crease in HIF1alpha expression and the significantly in-

creased phosphorylation of ERK-1/2 that were detected

after the addition of protective plasma T1 was not evident

when employing the non-protective plasma T2 (data not

shown).

Concentrations of VEGF are reduced in protective

RIPC-plasma T1

As VEGF is discussed to be a humoral factor involved in

RIPC-mediated organ protection [11, 13, 55], we evaluated

the concentrations of human VEGF (hVEGF) in RIPC

plasma using a sandwich ELISA system. Mean hVEGF

concentrations in plasma T0 were 67.91 ± 32.9 pg/ml,

while the range of hVEGF varied between plasma samples

of different donors (minimum hVEGF: 8.26 pg/ml, max-

imum hVEGF: 352.80 pg/ml; Fig. 4a) Concentrations of

hVEGF were significantly reduced in the protective plasma

(T1) which was derived directly after RIPC (T1:

0.87 ± 0.04; T0 = 1; p = 0.01; Fig. 4b).

Discussion

The major findings of the present study are the following:

(1) human plasma retrieved directly after remote ischemic

preconditioning (RIPC) is able to reduce hypoxia–induced

damage of human endothelial cells cultured in vitro. (2)

Expression of HIF1alpha but not phosphorylation of ERK-

1/2, AKT or STAT5 seems to be involved in the protective

effects of RIPC-plasma. (3) The protective RIPC-plasma

contains decreased amounts of VEGF.

To date, the exact mechanisms of RIPC are not fully

understood. However, three hypotheses to explain the

phenomenon of remote ischemic organ protection have

been established: (1) RIPC triggers the release of humoral

factors into the bloodstream from where they reach the

remote target organ; (2) neuronal pathways confer the

RIPC-protection; and (3) a systemic anti-inflammatory and

anti-apoptotic response is induced by the RIPC stimulus

[24, 62]. Recently, several circulating mediators have been

identified, e.g. stromal derived factor (SDF) 1alpha [6],

exosomes [19], Apolipoprotein A1 [32], miR144 [45], IL-

10 [8], or nitrite [60] that may be involved in RIPC-me-

diated cell and organ protection. Using an in vitro ap-

proach, we showed that serum from cardiac surgical RIPC

patients as well as culture media from hypoxia–conditioned

HUVEC cells are both able to reduce hypoxia–induced cell

damage in intestinal cell cultures [36, 74]. These results

underline the potential role of secreted factors for RIPC-

mediated organ protection. Here we extended our recent

Fig. 2 Effects of RIPC-plasma on hypoxia–induced damage of

HUVEC cells. a Quantification of LDH-activities as a marker for

cell damage in HUVEC cell culture media. Culture media were

supplemented with 5 % plasma (T0, T1 and T2) from the various

volunteers (#1–#10) and LDH-activities were measured after 24 h of

hypoxia. b Relative LDH-activities in culture media of HUVEC cells

after 24 h of hypoxia. Cell culture media were supplemented with

plasma T0, T1 or T2. Hypoxia–induced cell damage is significantly

reduced by the addition of plasma T1. Numbers in the columns show

the numbers of different plasma samples used. Columns display the

mean ± SEM
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studies and applied RIPC-plasma, which was retrieved

from healthy male volunteers, to cultured endothelial cells.

In our study, plasma from RIPC volunteers (obtained

before, directly after and 60 min after RIPC) was added to

the HUVEC cell cultures 1 h before the hypoxic insult and

cells were incubated with plasma-substituted medium for

24 h. It is known that ischemic preconditioning [42] rep-

resents a biphasic phenomenon with a first and a second

window of protection [35] and similar mechanisms may

also be effective in RIPC. The early phase of protection

develops quickly within minutes from the initial ischemic

conditioning event and lasts for 2–3 h. This is followed by a

delayed phase that begins after 12–24 h and lasts up to

4 days. The mechanisms of the two phases of precondi-

tioning are rather different. While the early phase is caused

by rapid release or modification of pre-existing proteins, the

delayed phase requires synthesis of new proteins [43, 44].

Our present findings showing cytoprotective effects of

RIPC-plasma that was obtained directly after RIPC, but not

of plasma derived 60 min after RIPC is somewhat in

Fig. 3 Effects of RIPC-plasma on protein expression and phospho-

rylation in HUVEC cells exposed to hypoxia. a Phosphorylation of

AKT; b phosphorylation of STAT5; c expression of HIF1alpha;

d phosphorylation of ERK-1/2. e Western blotting experiments

performed with lysates of HUVEC cells that were treated with RIPC-

plasma samples (#1–#10). Numbers in the columns show the numbers

of different plasma samples used. Columns display the mean ± SEM
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contrast to the above mentioned studies, clinical observa-

tions and also to our previous publication in intestinal cells

(subjected to a hypoxic insult) [74]. However, in the frame

of our previous study, RIPC sera were collected from

mostly older cardiac surgical patients, while in the study

presented here, 10 young and healthy donors were inves-

tigated. Several authors have shown that age, diet, hor-

monal status, comorbidities and other factors may influence

and modify the protective potential of ischemic condi-

tioning [1, 15, 17, 53]. Furthermore, the observation that

only plasma that was derived directly after RIPC protected

HUVEC cells from hypoxia–induced cell damage could be

related to the half-life of the responsible factor(s). Potential

mediators that might transfer the RIPC protection are

adenosine [52, 61, 66], bradykinin [38, 61], opioids [67] as

well as matrix MMPs [46, 73, 74] for review see [41], all of

which have a limited half-life in circulation [54] and cell

culture [18] and—especially in the case of MMPs—can be

modified and/or degraded by other proteases [6, 73].

It should also be mentioned that while other authors

employed serum [74], in the study presented we used

plasma from RIPC treated volunteers. Compared to

serum, plasma contains clotting factors such as fibrino-

gen but is deficient of mediators that are released from

blood cells (mainly thrombocytes) upon coagulation.

There is no evidence that these molecules interfere with

RIPC-mediated processes and we therefore do not expect

differences in the protective potential of serum in com-

parison to plasma.

Taken together, although we do not have a clear ex-

planation why plasma obtained 60 min after RIPC was not

effective in protecting HUVEC cells from hypoxia–in-

duced cell damage in the study presented, individual

characteristics (age, gender, hormonal status, diet, etc.) of

the plasma donors and the use of an in vitro culture system

(devoid of e.g. immune cells, humoral factors, blood cir-

culation, etc.) may at least partially be responsible for this

observation. Moreover, not all aspects of ischemia/reper-

fusion injury as they appear in vivo can be reflected using

this in vitro system. However, the cell culture model en-

ables us to reproducibly investigate isolated events of is-

chemia/hypoxia and the associated cellular as well as

molecular mechanisms, which is probably the biggest ad-

vantage over animal and clinical studies.

Regarding the mechanisms that are induced by RIPC in

the target cells, we found an increased amount of

HIF1alpha protein in hypoxia stressed HUVEC cells that

were treated with plasma derived directly after RIPC.

HIF1alpha acts as an oxygen-regulated transcription factor

controlling oxygen homeostasis [64] and activation of

HIF1alpha leads to induction of target gene activation of

e.g. erythropoetin, hexokinase 1 and 2, iNOS and VEGF

[33]. Although little is known about the precise role of

HIF1alpha in RIPC, several studies proposed an involve-

ment of the protein in ischemic preconditioning [7, 25, 64].

However, there is also a study suggesting that upregulation

of HIF1alpha in limb is not associated with myocardial

protection of early RIPC and might only act locally [40].

Employing cardiac tissue of cardiosurgical patients that

received RIPC or sham intervention, we recently showed

that HIF1alpha expression was significantly increased in

cardiac tissue of RIPC patients [3], pointing towards pos-

sible organ protective effects of enhanced HIF1alpha ex-

pression. The protective role of HIF1alpha is also

supported by our preliminary experiments employing the

HIF1alpha inhibitor LY294002 (10 lM) [72] which

showed that the cytoprotective effects of plasma T1 are

attenuated by inhibiting the translation of HIF1alpha.

Fig. 4 Quantification of hVEGF concentrations in human RIPC-plasma. a hVEGF concentrations in RIPC-plasma T0 and T1. b Relative hVEGF

concentrations in T1-plasma. Numbers in the columns show the numbers of different plasma samples used. Columns display the mean ± SEM
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Besides an enhanced expression of HIF1alpha, phos-

phorylation of ERK-1/2 was increased in hypoxia stressed

HUVEC cells that were treated with plasma derived di-

rectly after RIPC. It is known that phosphorylation of ERK,

being part of the pro-survival MAPK/ERK-pathway, re-

sults in inhibition of the pro-apoptotic Bad and is thus

impeding the process of apoptotic cell death [20, 62]. In

HUVEC cells, transient hypoxia can induce anti-apoptotic

events and increase cell survival via ERK-dependent

pathways [20] and in the porcine heart RIPC effects are

also associated with augmented levels of phosphorylated

ERK-1/2 [23]. Interestingly, our preliminary data em-

ploying the ERK kinase inhibitor PD98059 (10 lM) in

combination with the protective plasma T1 did not confirm

an involvement of ERK-1/2 in our in vitro setting, as the

inhibition of ERK-1/2 phosphorylation did not result in

increased cell damage measured by LDH activity. We

propose that further work is necessary to elucidate the

precise role of ERK-1/2 activation in RIPC-mediated cy-

toprotection, especially in endothelial cells.

Hausenloy et al. [23] not only reported pERK-1/2 to be

involved in RIPC-mediated organ protection, but also

pAKT. Similar to pERK-1/2, pAKT is involved in cellular

survival pathways: the PI3 K/AKT-pathway, also known as

‘‘reperfusion injury salvage kinase (RISK) pathway’’,

phosphorylates and thereby inactivates the pro-apoptotic

Bad leading to an inhibition of apoptosis [39, 62]. Inter-

estingly, in the present study we did not observe an in-

creased phosphorylation of AKT, which might indicate that

different cell types (e.g. myocardial cells versus endothelial

cells) respond differently to the RIPC stimulus.

In the literature, the involvement of STAT5 in RIPC is

discussed controversially. While an increased phosphory-

lation of STAT5 was described in ventricular cells after

RIPC in humans [31], other authors did not find alterations

in STAT5 phosphorylation using cultured intestinal cells

[36]. From recent studies it appears that STAT3 and

STAT5 might have reverse functions in animals and hu-

mans: STAT5 but not STAT3 activation is associated with

protection in humans [31], whereas STAT3 activation and

possibly STAT5 inhibition are associated with protection

in animals [30]. In a clinical trial with RIPC patients un-

dergoing coronary artery bypass surgery, Heusch et al. [31]

have shown that the phosphorylation of STAT5 increased

from baseline before ischemic cardioplegic arrest to

10 min of reperfusion with RIPC, and that STAT5 phos-

phorylation during reperfusion was greater in patients with

RIPC than in control patients. Once more, the target organ

and/or target cell type might determine which signalling

pathways are induced via RIPC and this might explain the

lack of STAT5 phosphorylation in the context of our study.

Concerning possible factors transferring the RIPC signal

to the target cells, VEGF could be a potential candidate

[11, 13, 55]. Several studies suggested that VEGF reduces

ischemic damage via ERK-1/2 dependent pathways [11,

13]. Surprisingly, in our study employing RIPC-plasma in

combination with a cell culture system, VEGF specific

ELISAs revealed significantly reduced levels of the protein

in protective RIPC plasma. In the first place these data

would suggest that VEGF is not involved in RIPC-medi-

ated protection of endothelial cells. However, VEGF in-

fluences endothelial cell proliferation and migration and

has been reported to stimulate the expression of metallo-

proteinases (MMPs) in HUVEC cells [4, 70]. We have

recently shown that activities of MMP-2 and MMP-9 are

reduced by RIPC in cardiac tissue of cardiosurgical pa-

tients [73]. These findings suggest that MMPs could be

involved in RIPC and VEGF mediated mechanisms, how-

ever, further studies are needed to confirm a potential

causal relationship between RIPC, VEGF and MMPs.

In conclusion, the results of the present study support

the hypothesis that humoral factors confer RIPC-mediated

cell and organ protection and we suggest endothelial cells

as targets for RIPC-released mediators.
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