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PALMsiever: a tool to turn raw data into results

for single-molecule localization microscopy
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Abstract

During the past decade, localization microscopy (LM) has transformed into an accessible, commer-

cially available technique for life sciences. However, data processing can be challenging to

the non-specialist and care is still needed to produce meaningful results. PALMsiever has been

developed to provide a user-friendly means of visualizing, filtering and analyzing LM data.

It includes drift correction, clustering, intelligent line profiles, many rendering algorithms and 3D

data visualization. It incorporates the main analysis and data processing modalities used by

experts in the field, as well as several new features we developed, and makes them broadly access-

ible. It can easily be extended via plugins and is provided as free of charge open-source software.

Contact: thomas.pengo@gmail.com

Eight years since its inception, single-molecule localization micros-

copy (LM; Betzig et al., 2006; Rust et al., 2006) has transformed

from a specialist technique in the hands of a few labs, to an access-

ible, commercially available technique, widely used in the life sci-

ences (Patterson et al., 2010). Although the instrumentation

required for LM is now readily available, the data processing aspects

of the technique remain less well developed. Most recent develop-

ments in LM data processing have focused on extracting single mol-

ecule localizations from the raw data (ISBI LM Challenge 2012,

http://bigwww.epfl.ch/palm/), or visualization of processed data

(Baddeley et al., 2010). However, these represent just the first and

last steps of analysis. Equally important are the post-processing

steps required to convert raw localizations to meaningful data.

Filtering out spurious localizations, grouping and tracking of mul-

tiple localizations, correcting drift, choosing the appropriate render-

ing and performing statistical analysis on the localizations are just a

few equally important aspects for which little software support

exists (Wolter et al., 2012), leaving the non-specialist with the

unnecessary burden of developing ad hoc solutions.

PALMsiever was made publicly available in 2012 (Pengo and

Manley, 2012) to fill this void and has been under continuous devel-

opment since then (ISBI LM Challenge 2012, http://bigwww.epfl.ch/

palm/). While other complementary tools have since been intro-

duced (El Beheiry and Dahan, 2013; Ovesny et al., 2014),

PALMsiever provides a single user-friendly extensible platform for

LM data processing, combining visualization, post-processing, filter-

ing and analysis features. The user interface (Fig. 1a) encourages

data exploration, by rendering the data on-the-fly, interactively re-

sponding to re-centering and zooming. Spurious localizations can be

interactively eliminated by iteratively adjusting the display ranges

for each of the available parameters, either directly by inspecting its

histogram (Fig. 1ii), or automatically by removing the lower and

upper 5% (Fig. 1a, arrow). Microscope drift during acquisition can

be corrected using the 3D drift correction plugins, either by autocor-

relation analysis or using fiducial markers. Line profiles (a simple

right-click in the image) are automatically aligned to the underlying

structure by principal components analysis and fitted to a Gaussian

function. In the presence of curvilinear structures, the included
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tracing tool can automatically follow the structure (Fig. 1b) and gen-

erate a fit from the projected profile (Fig. 1c). To compensate for the

presence of multiple detections of the same molecule in successive

frames, PALMsiever also includes a grouping algorithm, where de-

tections are grouped into single molecules according to spatio-tem-

poral proximity. Cluster analysis of interacting biomolecules is

enabled by a plugin for the density-based cluster analysis DBSCAN

(Endesfelder et al., 2013; Ester, 1996), which also facilitates noise

removal (Fig. 1d, showing clustering of GaG-mEos2 data). Many

rendering methods are available such as scatterplot, 2D histogram,

blurred 2D histogram, automatic kernel density estimation (Botev,

2010), Delaunay triangulation, jittered 2D histogram, hue-encoded

depth and a novel occluding hue-encoded depth (Fig. 1e, in the same

order). Thanks to 3D data support across the software, 3D volumes

can be easily exported to a TIFF stack, visualized as a 3D isosurface

(Fig. 1f), explored using slicing, or rendered using either the classical

hue-based depth coding, or a novel rendering that correctly accounts

for overlapping structures. As an alternative, data can also be ex-

ported for visualization with ViSP (El Beheiry and Dahan, 2013).

PALMsiever has been designed with software interoperability in

mind, so a number of predefined input file formats have been pro-

vided, e.g. QuickPALM (Henriques et al., 2010), RapidSTORM

(Wolter et al., 2012), Leica SR GSD (Leica Microsystems, Wetzlar,

Germany), PeakSelector (courtesy of H.Hess, HHMI), uTrack

(Jaqaman et al., 2008), Vutara (Vutara, Salt Lake City, Utah, USA)

and Octane (Niu and Yu, 2008). It can also easily be extended to im-

port other file formats by adding new import filters or incorporate

new analyses by writing plugins using MATLAB, and renderings can

also conveniently be made available to the system clipboard or saved

as TIFFs for inclusion in presentations or publications. The software

is open-source and can be downloaded (together with example data-

sets) at http://code.google.com/p/palm-siever.
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Fig. 1. Single-molecule localization microscopy images, analyzed and ren-

dered with PALMsiever. (a) The user interface encourages exploration of the

data. The histogram (ii) of each parameter can be analyzed and automatically

trimmed to exclude the upper and lower 5% (arrow). (b) A curvilinear seg-

ment of a microtubule stained with alexa fluor 647 is traced and (c) the corres-

ponding histogram and double gaussian fit generated. (d) gag-meos2

clusters, analyzed using a density-based clustering algorithm, which also

allows to identify potential false localizations, i.e. Noise. (e) A microtubule

section is rendered using the many rendering algorithms available. In order

from 1 to 8: scatterplot, 2D histogram, blurred 2D histogram, kernel density

estimation (a novel automatic bandwidth estimation rendering), delaunay

triangulation, jittered histogram, hue-encoded depth, a novel occluding hue-

encoded depth. (f) A 3D isosurface reconstruction of the microtubule section

microtubule presented in e
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