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Abstract

Motivation: The distribution of allele frequencies across polymorphic sites, also known as the site

frequency spectrum (SFS), is of primary interest in population genetics. It is a complete summary

of sequence variation at unlinked sites and more generally, its shape reflects underlying population

genetic processes. One practical challenge is that inferring the SFS from low coverage sequencing

data in a straightforward manner by using genotype calls can lead to significant bias. To reduce

bias, previous studies have used a statistical method that directly estimates the SFS from sequenc-

ing data by first computing site allele frequency (SAF) likelihood for each site (i.e. the likelihood a

site has each possible allele frequency conditional on observed sequence reads) using a dynamic

programming (DP) algorithm. Although this method produces an accurate SFS, computing the

SAF likelihood is quadratic in the number of samples sequenced.

Results: To overcome this computational challenge, we propose an algorithm, ‘score-limited DP’

algorithm, which is linear in the number of genomes to compute the SAF likelihood. This algorithm

works because in a lower triangular matrix that arises in the DP algorithm, all non-negligible values

of the SAF likelihood are concentrated on a few cells around the best-guess allele counts. We show

that our score-limited DP algorithm has comparable accuracy but is faster than the original DP

algorithm. This speed improvement makes SFS estimation practical when using low coverage

NGS data from a large number of individuals.

Availability and implementation: The program will be available via a link from the Novembre lab

website (http://jnpopgen.org/).

Contact: ehan416@gmail.com, jnovembre@uchicago.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A site frequency spectrum (SFS) describes the distribution of allele

frequencies across sites in the genome of a particular species. The

SFS is of primary interest in population genetics, as it is a complete

summary of sequence variation at unlinked sites and its shape

reflects underlying population genetic processes, such as growth,

bottlenecks and selection. Moreover, a number of population

genetic inferences can proceed directly from the SFS. For example,

demographic history (e.g. evidence for population expansions,

bottlenecks or migrations) can be directly inferred from the SFS

[using, for example, dadi (Gutenkunst et al., 2009) or (Excoffier et

al., 2013)]. The SFS can also be compressed down to univariate sum-

mary statistics that form the basis of popular neutrality tests (Achaz,

2008, 2009; Fay and Wu, 2000; Fu and Li, 1993; Tajima, 1989)

that underlie many empirical genome-wide selection scans (e.g.

Andolfatto, 2007; Begun et al., 2007). Hence, inferring the precise

SFS from genetic data is crucial in many population genetic

analyses.
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With the recent rapid progress in sequencing techniques, obtain-

ing large-scale genomic data from thousands to tens of thousands of

individuals is practical (e.g. 1000 Genomes Project Consortium,

2010, 2012; Fu et al., 2013; Nelson et al., 2012) and this increased

sample size enables us to conduct more accurate population genetic

inference. However, current massively parallel short-read sequence

technologies also pose many inherent challenges—for example,

reads have high error rates, read mapping is sometimes uncertain

and coverage is variable and in many cases low or completely ab-

sent. These challenges make accurate individual-level genotype calls

difficult and make some downstream analysis based on the inferred

genotypes problematic.

In a previous study (Han et al., 2014), we showed that the SFS

computed from genotype calls (a call-based estimation approach) is

biased at low to medium coverage (�10�), whereas the SFS directly

inferred from aligned short-read sequencing data (a direct

estimation approach) is unbiased even at low coverage. The direct

estimation approach infers the maximum likelihood estimate

(MLE) of the SFS by an EM algorithm (Li, 2011) or a

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Nielsen et

al., 2012), assuming independence across all individuals and sites.

Both of these algorithms are implemented in the ANGSD software

package (Nielsen et al., 2012).

Both of these algorithms require computation of the site allele

frequency (SAF) likelihood for all sites. These vectors contain the

likelihood that an allele for each possible allele frequency at a site

(regardless whether monomorphic or polymorphic) conditional on

observed sequence reads. Based on the precomputed SAF likeli-

hoods, the MLE of the SFS is obtained by optimization, using either

the EM (Li, 2011) or the BFGS algorithm (Nielsen et al., 2012). The

bottleneck in obtaining the MLE of the SFS is computing the SAF

likelihoods, rather than optimization. In fact, the maximization of

the likelihood either by the EM or the BFGS algorithm takes only a

small fraction of time compared with the computation of the SAF

likelihood. This is because computation of the SAF likelihood at

each site requires a summation over all possible genotype combin-

ations for n individuals and naive computation of this sum has a

runtime complexity of Oð3nÞ. To overcome this computational bur-

den, Li (2011) proposed a dynamic programming (DP) algorithm to

effectively compute the SAF likelihood for each site in Oðn2Þ and

Nielsen et al. (2012) implemented this algorithm in the ANGSD

software. However, this algorithm is still not practical to use if there

are large numbers of individuals, because it is quadratic in the num-

ber of genomes (see Fig. 1B for runtime). Moreover, this algorithm

is numerically unstable for a large sample (Li, 2011). To solve this

problem of computational inefficiency and numerical instability, we

compute the SAF likelihood in a more efficient way that still retains

the accuracy of the original DP algorithm. Our new method uses a

combination of rescaling and sensible approximation to compute

the SAF likelihood.

2 Approach

To establish notation and background, we first review the existing

DP algorithm implemented in the ANGSD software (Nielsen et al.,

2012) and then introduce our approach.

2.1 DP algorithm used by ANGSD
Let D denote the short-read sequencing data and X represent a

total count of the derived allele for a sample of n diploid indi-

viduals at a particular site. The corresponding SAF likelihood,

h ¼ ðh0; h1;. . .; h2nÞ, is a ð2nþ 1Þ-dimensional vector in which each

element, hx ¼ PðDjX ¼ xÞ, is the likelihood that the derived allele

frequency in the sample is x=ð2nÞ:

hx ¼
1

2n

x

 !X2

g1¼0

. . .
X2

gn¼0

I

 Xn

k¼1

gk ¼ x

!Yn
k¼1

2

gk

 !
LkðgkÞ; (1)

where IðÞ is an indicator function and LkðgkÞ ¼ PðDkjGk ¼ gkÞ is a

genotype likelihood of the individual k for genotype gk.

To calculate the SAF likelihood h by the DP algorithm, define a

raw SAF likelihood for j individuals (ð2jþ 1Þ-dimensional vector),

given by zj ¼ ðzj
0; z

j
1;. . .; zj

2jÞ, in which each element is defined as

zj
x ¼

X2

g1¼0

. . .
X2

gj¼0

I

 Xj

k¼1

gk ¼ x

!Yj

k¼1

2

gk

 !
LkðgkÞ; (2)

where j ¼ 1;. . .;n and x ¼ 1;. . .; 2j. Note that this expression does

not include a rescaling factor
2n

x

 !�1

.

The vector zj is iteratively updated from the vector zj�1 (raw

SAF likelihood for j – 1 individuals) by the following recurrence

relation:

zj
x ¼ Ljð0Þzj�1

x þ 2Ljð1Þzj�1
x�1 þ Ljð2Þzj�1

x�2: (3)

In a final step, each element of the vector zn is rescaled by a

corresponding factor
2n

x

 !�1

to obtain the vector h

�
i:e: hx ¼ zn

x=
2n

x

 !�
, and then the resulting vector h is standar-

dized such that the maximum element of the vector becomes 1, as

likelihoods need only be defined proportional to a constant.

To illustrate the procedure, we show how the raw SAF likelihood

is recursively updated from z1 to zn by the DP algorithm in the

ANGSD software. Each row in a lower triangular matrix in

Figure 2A (top) represents the raw SAF likelihood for j individuals

(a vector of length 2jþ 1). Figure 2A also shows how the raw SAF

likelihood zn (middle) is converted to the final SAF likelihood h

(bottom) after rescaling by
2n

x

 !�1

and standardization.

BA

Sample 
size

Fold 
Difference

Original 
(10Mb)

AdaptiveK 
(10Mb)

100 2.7 1.3 hr 30 min

500 5.3 15.8 hr 3 hr

1,000 8.4 2.1 days 6 hr

2,500 17.5 11.2 days 15.4 hr

10,000 63 2.6 days

0 500 1000 1500 2000 2500

0
20

00
40

00
60

00
80

00
10

00
0

Sample size

R
un

tim
e 

(s
ec

)

Original
Score limited

Fig. 1. Runtime comparisons for updating the SAF likelihood by two different

algorithms (Original and Score-limited). The sequencing data were simulated

at coverage 3�, 5� and 10� with the error rate of 0.001 and the sample size

of 50, 100, 300, 500, 750 and 1000. Note that experiments are only performed

with n�1000, and the results for n > 1000 (the dotted line in A and the last

two rows of B) are extrapolated from the results with n�1000
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2.2 Rescaled DP algorithm
In our preliminary work, we observed that the value at the mode of

zn can be relatively large. In this example with 50 diploid individ-

uals, the mode of zn is 1973. With 500 diploid individuals, the mode

of zn can be about 8� 1012 (data not shown). This implies that the

DP algorithm can have an arithmetic overflow problem (i.e. a com-

puted value is greater in magnitude than the largest value that a

computer can store in memory) for large samples because the mode

of zn increases exponentially as the sample size increases.

Furthermore, the values at the edges of zn are very small. In this ex-

ample with 50 individuals, the value of the SAF likelihood function

for the derived allele count of 100 is 7� 10�110. With 500 diploid

individuals, the value of the SAF likelihood function for the derived

allele count of 1000 is smaller than 10�300 (data not shown). This

implies that the DP algorithm can have an arithmetic underflow

problem (i.e. a computed value is smaller in magnitude than the

smallest value that a computer can store in memory) for large sam-

ples because the values at the edges of zn keep decreasing exponen-

tially as sample size increases. Therefore, the original DP algorithm

will be numerically unstable for large samples, as the computation

of zn creates both numerical overflow (at the mode of zn) and under-

flow (away from the mode).

To overcome the numeric instability of the DP algorithm, we

modified the original DP algorithm such that rescaling and stand-

ardization take place at each step of updating the SAF likelihood.

For this modified algorithm, we define a rescaled SAF likelihood for

j individuals (ð2jþ 1Þ-dimensional vector), hj ¼ ðhj
0; h

j
1;. . .; hj

2jÞ, of

which each element is defined as

hj
x ¼

1

2j

x
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. . .
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gj¼0

I

 Xj
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gk ¼ x

!Yj

k¼1

2

gk

 !
LkðgkÞ; (4)

where j ¼ 1;. . .; n and x ¼ 1;. . .; 2j. We can derive a recurrence rela-

tion to iteratively update the vector hj from the vector hj�1 (rescaled

SAF likelihood for j – 1 individuals) as follows:

hj
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)
:

(5)

Because the constant 1
2jð2j�1Þ in Equation (5) is cancelled out during

standardization, we can use the following recurrence equation to up-

date the rescaled SAF likelihood:

hj
x ¼ ð2j� xÞð2j� x� 1ÞLjð0Þhj�1

x þ 2xð2j� xÞLjð1Þhj�1
x�1

þ xðx� 1ÞLjð2Þhj�1
x�2:

for x ¼ 1;. . .;2j:

(6)

Figure 2B shows how the SAF likelihood is recurrently updated

from h1 to hn by the rescaled DP algorithm in a lower triangular ma-

trix (Figure 2B, top) and the final SAF likelihood h (Figure 2B, bot-

tom). Now, all values in the SAF likelihood hj range between 0

and1, suggesting there will be no potential numerical overflow.

Importantly, we observed that the most of the cells in the SAF likeli-

hood during update have a value close to 0 (shown in gray). This

implies that computing all values of the SAF likelihood is inefficient

and we can accurately approximate this vector by only computing

the first few elements and setting the rest of the elements to 0. This

motivated the development of the banded and score-limited DP

algorithm.

2.3 Banded and score-limited DP algorithm
We observed that all non-negligible values of the updated rescaled

SAF likelihoods, h1 to hn, are consistently concentrated on the

best-guess allele counts (Figure 2 for the allele frequency of 0 and

Figure 3 for the allele frequency of 0.7). For example, for a site that

is fixed for the ancestral allele, we observe that all non-negligible

values of the rescaled SAF likelihoods are consistently observed on

the first few cells of the vector, and the final SAF likelihood h has a

peak at the allele frequency of 0 (Fig. 2B). For a site that is poly-

morphic, we observe that the mode of the SAF likelihood typically

stays at 0 when we add an individual whose best-guess genotype is

0/0 (i.e. the genotype likelihood vector of that individual has the

highest value at genotype 0/0), whereas the mode typically moves to

the right when we add an individual whose best-guess genotype is 0/

1 or 1/1 (Fig. 3B). If we add an individual whose best-guess genotype

is 0/1, the mode tends to move one bin to the right and the best-

guess allele count increases by 1. By the same token, if we add an in-

dividual whose best-guess genotype is 1/1, the mode moves two bins

to the right and the best-guess allele count increases by two.

Based on these observations, we propose a new algorithm, called

a banded DP algorithm, which can compute the SAF likelihood in a
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Fig. 2. Updating the SAF likelihood for 50 diploid individuals at a particular

site fixed for an ancestral allele by the original (A) or the rescaled (B) DP

algorithm. The sequencing data were simulated at coverage 3� with

sequencing error rate of 0.001. Genotype likelihoods were calculated using a

Genome Analysis Tool Kit model (DePristo et al., 2011). (A) Top row shows

how the raw SAF likelihood is recurrently updated by the original DP algo-

rithm. Each row in a low triangular matrix represents the raw SAF likelihood

for j individuals (zj). The value of the SAF likelihood is shown in a color scale,

of which the range goes from 0 to 2000. Middle and bottom rows show how

the raw SAF likelihood zn (the last row of the lower triangular matrix) is con-

verted to the final SAF likelihood h by rescaling and standardization. Note

that the final SAF likelihood h has a peak at the derived allele count of 0. (B)

Top row shows how the rescaled SAF likelihood is recurrently updated by the

rescaled DP algorithm. Each row in the lower triangular matrix represents the

rescaled SAF likelihood hj for j individuals. The value of the SAF likelihood is

shown in a color scale, of which the range goes from 0 to 1. Bottom row

shows the final SAF likelihood h. In both (A) and (B), the gray area represents

the range of values computed by the original and the rescaled DP algorithm.

In this example, it requires computation of 2600 elements (because

3þ 5þ � � � þ 101 ¼
X50

i¼1
2i þ 1) to update the SAF likelihood
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more efficient manner than the original DP algorithm, but with

good approximation to the SAF likelihood computed by the original

DP algorithm (Fig. 3C). When updating the SAF likelihood (i.e. fill-

ing in each row of the lower triangular matrix), this algorithm finds

the most likely position for the mode, and only updates values of the

SAF likelihood d bins away from that position in both directions

and sets the rest of the values zero. Here d represents a user defined

bandwidth.

Let GCj denote the number of derived allele in the best-guess

genotype for individual j (GCj 2 f0;1; 2g) and ACj the best-guess al-

lele count for j individuals. For each row of the lower triangular ma-

trix, the banded DP algorithm computes the number of derived

allele in the best-guess genotype (GCj) based on the genotype likeli-

hoods of a given individual, and then updates the best-guess allele

count (ACj) using the best-guess genotype:

ACj ¼ ACj�1 þGCj;

where AC 2 ½0;2j�. Next, it computes the values of the SAF likeli-

hood only within d bins away from the best-guess allele count (ACj)

in both directions and outside of which it sets the values of the

SAF likelihood to zero—i.e. hj
x is computed by Equation (5) if

max ð0;ACj � dÞ�x�min ðACj þ d; 2jÞ and otherwise hj
x ¼ 0. By

doing so, the SAF likelihood is updated in a banded-fashion (com-

puting at most 2d þ 1 values at each updating step, where d is a uni-

form bandwidth) rather than updated in a triangular fashion

(computing 3þ 5þ � � � þ ð2nþ 1Þ values). This makes computation

time close to O(dn) rather than the original Oðn2Þ.
Our algorithm has connections with existing banded DP algo-

rithms (for example, banded Needleman-Wunsch alignment algo-

rithm and banded Smith–Waterman alignment algorithm) (Sung,

2009). The banded DP algorithm fills in only the middle part of the

DP matrix in a banded fashion (with band length of 2d þ 1), and

does not compute the lower and upper triangles in the matrix.

However, unlike existing banded DP algorithms, we need to repeat

the same process across all sites and we realized that using the uni-

form value of band length d across all site does not work in practice

due to site-to-site variability of the SAF likelihood (see Fig. 4B).

Moreover, around the best-guess allele count, the number of values

we need to compute is not usually symmetric in the left and right

sides, implying that using the same band length for both sides is not

efficient. Therefore, we propose another new algorithm, called a

score-limited DP algorithm. This algorithm is different from the

banded DP algorithm in a way that the number of cells to be com-

puted at each updating step is adaptively changed rather than being

kept at a uniform band length (2d þ 1).

Our score-limited DP algorithm also starts from computing the

number of derived allele in the best-guess genotype based on the

genotype likelihoods of a given individual. Then, it proposes left and

right boundaries within which we update values of the SAF likeli-

hood. Let Lj and Rj denote the left and right boundaries, respect-

ively, within which we update the SAF likelihood for j individuals

(hj). It updates the left and right boundaries using the best-guess

genotype:

Lj ¼ Lj�1 þGCj and Rj ¼ Rj�1 þGCj:

For example, for the individuals whose best-guess genotype is 0/0

we do not change the boundaries (Lj ¼ Lj�1;Rj ¼ Rj�1). For individ-

uals whose best-guess genotype is 0/1 we move both boundaries

one bin to the right (Lj ¼ Lj�1 þ 1;Rj ¼ Rj�1 þ 1), and for the
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Fig. 3. Updating the SAF likelihood for 50 diploid individuals by the original

DP (A, referred to as Original), the rescaled DP (B, referred to as Rescaled),

the banded DP (C, referred to as Banded) and the score-limited DP (D, referred

to as score-limited) algorithm. The sequencing data were simulated at cover-

age 3� with error rate of 0.001. A random site with the true derived allele fre-
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the intermediate SAF likelihood for j individuals. The gray area represents the

range of values computed by all four algorithms. Note that for the original DP

algorithm, we standardized each row of the lower triangular matrix such that

the maximum elements are assigned to one to compare with other three

algorithms
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Fig. 4. Performance of the three algorithms (Rescaled, Banded and Score-lim-

ited) for updating the SAF likelihood with simulated sequencing data (A) and

real data (B). (A) It shows how the SAF likelihood is updated for 50 individuals

as a function of sequencing coverage in simulated sequencing data. The

sequencing data were simulated at coverage 3� (top), 5� (middle) and 10�
(bottom) with error rate of 0.001, and a site with the true allele frequency of

0.51 is randomly picked. Each row of the lower triangular matrix represents

the SAF likelihood vector for j individuals, and the gray area represents the

range of values computed by each algorithm. The final SAF likelihood h by all

three algorithms is shown in black (Rescaled), blue (Banded), and red (Score-

limited). Note that all three distributions almost completely overlap, and the

mean and variance are the same for all three distributions. (B) It shows how

the SAF likelihood is updated for 50 GBR individuals in the 1000 Genome

Project at two random sites with the same best-guess allele frequency of 0.5.

Two sites (top for position 10 085 321 and bottom for position 10 012 499 in

chromosome 10) have the different variance of the SAF likelihood

Fast and accurate SFS estimation 723

2C
()
.
 - 
e
.
. 
-
),
Figure 3B
(). 
y
().
().
(),


individuals whose best-guess genotype is 1/1 we move both bounda-

ries two bins to the right (Lj ¼ Lj�1 þ 2;Rj ¼ Rj�1 þ 2).

Next, it checks whether a value at the left boundary (hj
Lj

) is

greater than a very small value � (for example, we set � ¼ 10�9) and

if so, it expands the appropriate boundary to the left until the value

at the updated left boundary is less than or equal to �. By the same

token, it checks the value at the right boundary (hj
Rj

) and if the value

is greater than �, then it expands the right boundary to the right until

the value at the updated right boundary is less than or equal to �.

Finally, it computes the values of the SAF likelihood only within the

left and right boundaries and outside of which we set the values of

the SAF likelihood to zero—i.e. hj
x is computed by Equation (5) if

max ð0;LjÞ � x�minðLj; 2jÞ and otherwise hj
x ¼ 0. By doing this at

each step of calculating the SAF likelihood, it only computes Rj � Lj

þ1 number of elements, which is dynamically changing at each

updating step, but always much smaller than 2jþ 1. We present the

pseudo-code for the score-limited DP algorithm in the

Supplementary Appendix.

This revised algorithm has connections with existing score-

limited DP algorithms. For example, in a score-limited Smith–-

Waterman algorithm, the DP matrix is explored in both directions

starting from the mid-point of the hit. When the alignment score

drops off by more than � (a user-defined parameter), the extension is

truncated. Our adaptive algorithm is similar to this algorithm in

that it uses � to stop computing values of the updated SAF likeli-

hood. We found in practice that our choice of � (10�9) behaves well,

but users are encouraged to test the algorithm and decide the appro-

priate value for themselves (� is a command-line parameter of our

software). Our algorithm is, however, different in that it does not

extend from the mid-point in both directions, but it proposed the

left and right boundaries and computation is done from right to left.

This is required because in real implementation, the updated SAF

likelihood for j individuals stored in the same vector for the SAF

likelihood for j – 1 individuals and in order to properly update val-

ues, computation should be done from right to left.

Figure 3 shows with an example how that the score-limited DP

algorithm captures the important regions of the SAF likelihood.

Hence, the score-limited DP algorithm is faster than the original DP

algorithm, as reflected by the reduced computation area (shown in

gray in Fig. 3). Moreover, we retain the accuracy of the final SAF

likelihood h with the score-limited DP algorithm and it is as stable

as the rescaled DP algorithm. The shape of the distribution h is iden-

tical in all four cases (original, rescaled, banded and score-limited),

reflected by the same mean and variance of h in all four cases

(Fig. 3).

3 Methods

3.1 Generating simulated sequences
To compare the four algorithms (original, rescaled, banded and

score-limited DP algorithm) for computing SAF likelihoods, we gen-

erated aligned short-read sequencing data by changing sequencing

coverage (3�, 5� and 10�) and sample size (50, 100, 300, 500 and

1000 diploid individuals). For this purpose, we first conducted

population genetic simulations to produce haplotype data of a given

sample size assuming the standard model (with an effective popula-

tion size of 10 000 diploid individuals, a mutation rate per-base

per-generation of 2:5� 10�8 and a recombination rate of 10�8), and

then overlaid sequencing errors (with error rate of 0.001) to gener-

ate paired-end short-read sequencing data given sequencing cover-

age. For detailed descriptions of the coalescent and sequencing

simulations, refer Material and Methods section in Han et al.

(2014).

3.2 Sequencing data from the 1000 Genomes Project
To demonstrate the score-limited DP algorithm’s utility with real

data, we downloaded the VCF file and the BAM files from the 1000

Genomes Project FTP site in order to estimate the SFS. We used the

genotype calls of 365 European and 228 sub-Saharan African indi-

viduals from the VCF file, which contains the genotype calls for

1092 individuals sampled from 14 populations drawn from Europe,

East Asia, sub-Saharan Africa and the Americas (1000 Genomes

Project Consortium, 2010, 2012). For the BAM files, we only used

low-coverage Illumina sequencing data (coverage 2� to 4�) (1000

Genomes Project Consortium, 2010, 2012) for these same individ-

uals. Due to file size constraints, we downloaded only a subsection

of the genome (region of 10–20 Mb in chromosome 10) by using

SAMtools (version 0.1.18) (Li et al., 2009).

3.3 Estimating the SFS
To infer the SFS from simulated aligned short-read sequencing data,

we used the direct estimation approach using the freely available

program ANGSD (version 0.588) with the EM algorithm option to

obtain the MLE of the SFS (Nelson et al., 2012). We refer to results

of this procedure as Original. Then, we modified the source code of

ANGSD to implement the rescaled DP and the score-limited DP

algorithm. All code is written in Cþþ.

For the 1000 Genomes Project data, we evaluated two

approaches to infer the SFS: the call-based and direct estimation

approaches. For the call-based estimation approach, we used geno-

type calls in the VCF file and then reconstructed the SFS by allele

counting using vcfTools (version 0.1.10) (Danecek et al., 2011). For

the direct estimation approach, we directly estimated the SFS from

the BAM files with the score-limited DP algorithm.

To evaluate the accuracy of the SFS estimated from simulated

short-read sequencing data, we computed the relative deviation of

the inferred SFS (computed from sequencing data) compared with

the ground-truth SFS (computed from the known values for the

genotype data) in each derived allele frequency bin i=ð2nÞ:

Relative deviation
i

2n

� �
¼

fseq
i

2n

� �
� ftrue

i
2n

� �
ftrue

i
2n

� � ;

where fseq
i

2n

� �
represents a fraction of sites with a derived allele

frequency i=ð2nÞ in the inferred SFS and ftrue
i

2n

� �
represents a frac-

tion of sites with a derived allele frequency i=ð2nÞ in the ground-

truth SFS.

4 Results

We evaluated whether the score-limited DP algorithm is robust to

different sequencing coverage and the variance in the site likelihood

vector. This evaluation is important because one of the characteris-

tics of the next-generation sequencing data is highly variable cover-

age across sites that affect the variance of the genotype likelihood

vector at the individual-level and the variance of the site likelihood

vector at the sample-level.

4.1 Performance for changing sequencing coverage
First, we investigated the impact of different sequencing coverage on

the performance of the score-limited DP algorithm in computing the

SAF likelihood. For this purpose, we simulated sequencing data for
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50 diploid individuals under the standard model at coverage 3�, 5�
and 10�. Figure 4A shows how the SAF likelihood is updated at a

random site with true allele frequency of 0.51 as a function of

sequencing coverage. We observed that the SAF likelihood h is more

diffuse as coverage decreases, whereas it is more peaked around the

true allele frequency of 0.51 as coverage increases (Fig. 4A, the

variance of the SAF likelihood h is 7.2 with 3�, 2.3 with 5� and

0.21 with 10�). This is because the genotype likelihood vectors tend

to be more spread out at low coverage, whereas they tend to be

more peaked at the unknown individual genotype at high coverage.

This implies that if the banded DP algorithm is used, the choice of

bandwidth should depend on coverage—the higher coverage, the

smaller d. With this simulated data, we used d of 15 for 3�, 10 for

5� and 5 for 10�, and this worked well for all sites (Fig. 4A,

Banded). However, this requires for users to calibrate an appropri-

ate bandwidth before using the algorithm. This difficulty of choos-

ing the appropriate bandwidth is solved with the score-limited DP

algorithm. We observed that the optimal bandwidth is adaptively

chosen at each updating step (each row of the lower triangular ma-

trix) with the score-limited DP algorithm, and this resulted in a

more tight computation area to approximate the SAF likelihood

compared with that with the banded DP algorithm. Furthermore,

the resulting SAF likelihood has a comparable accuracy to the SAF

likelihood computed by the rescaled DP algorithm across all cover-

age (Fig. 4A). The shape of the distribution h is the same, with the

same mean and standard deviation of h; for all three algorithms

across coverage.

4.2 Performance for variation in the site likelihood

vector
Next, we evaluated that whether the score-limited DP algorithm

works well with real data. For this purpose, we used low-coverage

sequencing data for 50 diploid GBR individuals in the 1000

Genome Project, and then compared the SAF likelihood computed

by the three algorithms (rescaled, banded and score-limited) at mul-

tiple random sites with the same best-guess allele frequency in the

sample. Compared with the simulated sequencing data matched at

average coverage (5�), we observed that low-coverage sequencing

data in the 1000 Genomes Project tend to have bigger site-to-site

variation of the SAF likelihood. Figure 4B shows how the SAF likeli-

hood h is updated at two random sites with the best-guess allele fre-

quency of 0.5 in the sample. We observed that the first site (position

10 012 499 in chromosome 10) has a bigger variance in the SAF

likelihood than the second site (position 10 085 321 in chromosome

10)—the variance of the SAF likelihood at the first site is 12,

whereas that at the second site is 1.4 (Fig. 4B). Due to large differ-

ences in the variability of the SAF likelihoods, the banded DP

algorithm with the uniform bandwidth (d¼10) performs badly for

the first site but performs well for the second site. However, unlike

the banded DP algorithm, the score-limited DP algorithm performs

well for both sites, because it is capable of changing the bandwidth

accordingly to the observed variance of the SAF likelihood at differ-

ent sites—the larger the variance of the SAF likelihood, the larger

the bandwidth. Moreover, the resulting SAF likelihood computed by

the score-limited DP algorithm has a comparable accuracy to that

computed by the rescaled DP algorithm—same shape, and the mean

and standard deviation with the three algorithms (Fig. 4B)

4.3 Evaluating the accuracy of the inferred SFS
We evaluate the accuracy of the inferred SFS by the score-limited DP

algorithm (score-limited) compared with the inferred SFS using the

original DP (original). For this comparison, we simulated 100 repli-

cates of sequencing data for 100, 300 and 500 diploid individuals

each from genomic regions of length 100 Kb under the standard

model. The accuracy of the inferred SFS was evaluated by two

metrics: (i) the shape of the inferred SFS in comparison to the

ground-truth SFS (Fig. 5A) and (ii) the relative deviation of the

inferred SFS compared with the ground-truth SFS at each allele fre-

quency bin (Fig. 5B).

We found that the score-limited DP algorithm behaves equiva-

lently to the original DP algorithm. We observed the identical shape

of the inferred SFS (Fig. 5) with both algorithms. Moreover, consist-

ent with our previous study (Han et al., 2014), both algorithms led

to unbiased estimates of the SFS even at low coverage (such as 3�)

regardless of sample size. The shape of the inferred SFS was similar

to the ground-truth SFS (Fig. 5A) and the relative deviation of the

inferred SFS was close to 0 in all allele frequency bins (Fig. 5B)

across all sequencing coverage.

4.4 Runtime comparisons
We next evaluated the runtime for computing site likelihood vectors

by the score-limited DP algorithm (score-limited) compared with the

runtime by the original DP algorithm (original). We observed

runtime speed-ups with the score-limited DP algorithm compared

with the original DP algorithm for all sample sizes we tested (Fig. 1).

For example, on average, with 500 individuals we observed 5.3-fold

speed-up, and with 1000 individuals we observed 8.4-fold speed

up. Moreover, consistent with our expectation, the runtime of the

original DP algorithm increases quadratically with sample size,

whereas the runtime of the score-limited DP algorithm has a linear

fit (Fig. 1). These results imply that as a sample size increases, we

will observe even more dramatic differences in the runtimes of the

two algorithms. For example, when we extrapolated runtime from

the results with n�1000, we expect 17.5-fold speed-up with 2500

individuals and 63-fold speed-up with 10 000 individuals. The speed

improvement with the score-limited DP algorithm will greatly facili-

tate direct inference of the SFS even when the number of individuals

is large.

We want to emphasize that the runtime in Figure 1 is per 10 Mb

region, and for the whole genome the runtime would be greater by a

factor of 300. However, computational efficiency can be further im-

proved by distributing SAF likelihood computation across nodes.

Another possibility is sub-sampling random sites across the genome

and distributing the SAF likelihood computation across nodes based

on only those sub-sampled sites.

We also note that the score-limited DP algorithm will have less

memory usage than the original DP algorithm, which requires mem-

ory on the order of n to store the SAF likelihood. With the score-lim-

ited DP algorithm, the memory needed is to store the Rn � Ln þ 1

elements of the vector, and we expect that number to stay nearly

constant or to scale upwards slowly in proportion to n. In our imple-

mentation, when writing the output of the SAF likelihood to a file,

at each site, we only output non-zero values of the SAF likelihood,

the left boundary (Ln), and the number of non-zero values

(Rn � Ln þ 1), rather than outputting all 2nþ 1 values. This vastly

saves file size to store SAF likelihoods across all sites, and requires

less memory to read in the SAF likelihood file to subsequently run

an EM algorithm or a BFGS algorithm. For example, for simulated

sequencing data of 500 individuals at 5�, the size of the SAF likeli-

hood file is 764 Mb with the original DP algorithm, whereas that

with the score-limited DP algorithm is 8.9 Mb. For simulated

sequencing data of 1000 individuals at 5�, the file size with the
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original DP algorithm becomes 1.5 Gb, whereas that with the score-

limited algorithm is 9.0 Mb.

4.5 Application to the low-coverage 1000 Genomes

Project sequencing data
Finally, we compared the SFS inferred by the call-based approach

with the SFS inferred by the direct estimation approach using our

score-limited DP algorithm. We used 365 European (EUR) individ-

uals and 228 sub-Saharan African (AFR) individuals to infer the

SFS. For the call-based estimation approach, we used the genotype

calls stored in the VCF file and then estimated the SFS by allele

counting. Note that the VCF file is generated by an LD-aware multi-

sample genotype calling pipeline (1000 Genomes Project

Consortium, 2012). For the direct estimation approach, we inferred

the SFS directly from low coverage short-read sequencing data

(stored in the BAM files, coverage 2�–4�) using our score-limited

DP algorithm.

First, we constructed the SFS for 365 EUR individuals with either

the call-based approach or the direct estimation method. We

observed a striking lack of singletons in the call-based SFS compared

with the directly estimated SFS (Fig. 6A and B). The proportion of

singletons in the inferred SFS by the VCF file is 0.21 and that by the

BAM files is 0.38 (Fig. 6A), showing that 82% less singletons are

inferred in the 1000 Genomes genotype call sets (Fig. 6B). This is

consistent with our previous study (Han et al., 2014) that shows

multisample callers lead to underestimation of rare variants, because

a small number of correct alternate reads tend to be ignored.

Consistent with this, we observed more positive Tajima’s D for the

call-based SFS compared with the directly estimated SFS (Fig. 6C).

Moreover, we observed an excess of sites fixed for an ancestral allele

in the called-based SFS, implying that there might be more poly-

morphic sites in the genetic region we analysed than the reported

polymorphic sites in the VCF file provided from the 1000 Genome

Project (data not shown).

Next, we inferred the SFS for 228 AFR individuals and a com-

bined sample of 593 EUR and AFR individuals with either the call-

based approach or the direct estimation approach. We observed a

similar pattern as with the European population, implying that our

results apply to all samples in the 1000 Genomes Project (data not

shown).

5 Discussion

A large sample size enables us to infer more precise summary statis-

tics and parameters in many population genetic analyses. However,

at the same time, we confront computational challenges with large

samples and in many cases, we have to deal with these challenges to

make the method practical with large sample sizes. We showed that

although the direct estimation approach for computing the SFS can

provide the unbiased SFS even at low coverage, it does not scale up

to large sample sizes because the computation time for running this

method is quadratic in a number of diploid individuals. To over-

come this problem, we developed a new algorithm, called the score-

limited DP algorithm, and showed that the computation time for

running this algorithm is linear in the number of genomes. This algo-

rithm exploits the observation that for most sites the SAF likeli-

hood’s non-negligible values are all concentrated on a few elements

around the element corresponding to the best-guess allele count.

Therefore, we approximate this vector by curtailing computation to

only a few components of the DP update vectors. More importantly,
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Fig. 5. The accuracy of the inferred SFS as a function of sequencing coverage

for different sample sizes. The sequencing data were simulated at coverage

3� (top), 5� (middle) and 10� (bottom) with the error rate of 0.001 and the

sample size of 100, 300 and 500. (A) Shapes of the inferred SFS (shown in col-

ors in legend) compared with the ground-truth SFS (shown in gray). (B)
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the directly estimated SFS (referred to as BAM: Score-limited). The SFS was

constructed for 365 EUR individuals in the 1000 Genomes Project. (A) Shapes

of the inferred SFS (shown in colors in legend). As the VCF file only contains

sites that are inferred to be polymorphic, we only considered polymorphic

sites for the SFS inferred from the BAM files and rescaled it so that all elem-

ents sum to 1. (B) Relative deviation of a fraction of sites with the derived al-

lele count of 1–20. We computed the relative deviation of the SFS inferred

from the BAM files compared with the SFS computed from the VCF file in

each derived allele frequency bin i=ð2nÞ. (C) Tajima’s D comparison
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this algorithm can adaptively choose the bandwidth d during updat-

ing the SAF likelihood for each site. We showed that the bandwidth

change is robust to sequencing coverage and the variation of the

SAF likelihood. We also showed that the EM combined this new al-

gorithm has comparable accuracy but is 8-fold faster than the ori-

ginal DP combined with the EM algorithm when analysing the data

from 1000 individuals. Our new algorithm’s improvement in speed

makes it possible to directly estimate the SFS from very large sam-

ples of low coverage short-read sequencing data.

Our score-limited DP algorithm could be applied to other DP al-

gorithm whose runtime is quadratic in a sample size. For example,

Yi et al. (2010) proposed an empirical Bayes approach to estimate a

posterior probability of a minor allele frequency (MAF). They used

a DP algorithm to effectively compute summation over all possible

genotype configurations for n diploid individuals, and therefore this

algorithm has a runtime complexity of Oðn2Þ similar to the DP algo-

rithm introduced here. Furthermore, similar to the distribution of

the SAF likelihood, the distribution of the posterior probabilities of

the MAF is unimodal and most of the probabilities are close to 0.

Therefore, we can apply our score-limited DP algorithm for this DP

algorithm to reduce runtime complexitiy to be O(dn) rather than

original Oðn2Þ where d is the maximum bandwidth.

Our score-limited DP algorithm can also be directly applied to

speed up estimation of the 2D SFS. Li (2011) derived the EM algo-

rithm to get the MLE of the 2D SFS as an extension to the 1D SFS

estimation, and this requires precomputation of the SAF likelihoods

for all sites for each population independently. This implies that we

can make this method faster with the score-limited DP algorithm

compared with the original DP algorithm. The computation time for

running the original algorithm is Oðn2
1 þ n2

2Þ, whereas the runtime

of the score-limited DP algorithm becomes Oðd1n1 þ d2n2Þ, where

n1, n2 represent a sample size for each population and d1, d2 are the

maximum bandwidth.

One might argue that uncertainty associated with genotype calls

can be overcome by simply increasing sequencing coverage and there

is therefore little need for algorithms that handle low coverage data.

However, cost constraints require difficult choices between increas-

ing sample size and increasing coverage. There are certain cases

where one prefers a large sample of low-coverage sequencing data

over a smaller sample size with high coverage. For example, in gen-

ome-wide association studies, one can obtain more power by

sequencing a large number of individuals at low coverage (Kim et

al., 2010; Pasaniuc et al., 2012). As another example, identification

of rare variants always requires large sample sizes, and moderately

rare loci will be detectable even with low coverage data. Finally,

even though sequencing cost keeps dropping, cost constraints

will not disappear because users will continue to work with limited

budgets and push these limits with applications involving very

large numbers of individuals; thus we expect low-coverage sequenc-

ing will remain an attractive approach for many investigators and

that methods like ours will retain their appeal for the foreseeable

future.
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