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Human defensins are small, cysteine-rich host-defense peptides that contribute to innate 

immunity.[1] Human Defensin 5 (HD5ox) is a 32-residue α-defensin that is highly expressed 

in the small intestine and exhibits antimicrobial activity against a variety of bacterial and 

fungal species. Despite its importance in human health and disease, the mechanisms of 

action of HD5oxand many other peptides of the defensin family are not completely 

understood. Defensins are often generalized as membrane-permeabilizing peptides, but 

antibacterial mechanisms other than membrane disruption have been identified. We 

established an unbiased genetic screen based on a mutant library of the model organism 

Escherichia coli K-12 to identify bacterial pathways that modulate HD5ox susceptibility. 

The screen yielded thirty-one genes that confer hypersensitivity to HD5ox when knocked-

out, and included genes responsible for membrane biosynthesis and integrity. These genes 

were independently confirmed as being important for HD5ox-mediated killing of E. coli. 

Moreover, the unbiased screen uncovered an interaction between HD5ox and 

lipopolysaccharide.

HD5ox is an α-defensin and features a triple-stranded β-sheet secondary structure that is 

stabilized by three conserved intramolecular disulfide bridges (CysI—CysVI, CysII—CysIV, 

CysIII—CysV) in the oxidized form (Figure 1A,B).[2] The peptide is produced by small 

intestinal Paneth cells[3] and released into the lumen upon bacterial challenge.[4] HD5ox 

displays antimicrobial activity against an impressively broad spectrum of species that 

include Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.[5] Such 

broad-spectrum and seemingly unspecific activity typifies many defensins, and these 

peptides are often described to act by membrane permeabilization. Indeed, several studies 

demonstrated that membrane permeabilization occurs upon incubation of bacteria with 

various defensins,[6] and HD5ox treatment results in E. coli inner membrane damage.[7] 

Nevertheless, recent investigations delineate that the mechanism of action of defensins 

should not be generalized and that membrane disruption is only one factor governing 

antibacterial activity. Alternative antimicrobial or host-defense mechanisms are now 

appreciated for fungal plectasin,[8] human defensin 6,[9] and human β-defensins 2[10] and 

3.[11] Defensins differ significantly in amino acid sequence, overall charge, and 
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hydrophobicity; these factors confer different modes of action. Thus, a case-by-case 

evaluation is needed for each defensin. For HD5ox, it remains unclear how this peptide kills 

bacteria and thereby contributes to maintaining a healthy microbial flora in the gut and other 

organ systems,[12] although differences in antibacterial activity have been observed for 

Gram-negative and –positive strains.[5, 7] A robust tool that provides information about 

bacterial protection against and response to the attack by defensins would facilitate 

understanding of the mechanism of action of HD5ox as well as other defensin family 

members, and unveil similarities and differences between these important contributors to 

innate immunity in humans and other organisms. To address this need, we report an 

unbiased genetic screen optimized for identifying genes that affect HD5ox activity against 

Escherichia coli. This screening approach described herein will be adaptable to other 

defensin peptides and bacterial mutant libraries.

We established a genetic screen for defensins by using the Keio Collection, a genome-wide 

collection of single gene deletion mutants in the non-pathogenic model organism E. coli 

K-12. The Keio Collection contains 3,985 strains created by replacing single genes with a 

kanamycin resistance cassette.[14] The main advantage of using genetic mutant libraries is 

that they provide a direct link between a phenotypic screen (easy read-out) and the identity 

of the gene knock-out. Screens using bacterial mutant libraries have led to the identification 

of genes or pathways affected by certain antibiotics and other bioactive compounds and have 

afforded valuable contributions to mechanism-of-action studies.[15] The main disadvantage 

of using the Keio Collection and other libraries is that essential genes are not included and 

therefore cannot be screened. Nevertheless, there are relatively few essential genes in E. 

coli, and the Keio Collection covers 93% of all annotated genes.

We screened the Keio Collection against HD5ox to identify gene knock-outs that increased 

the susceptibility of E. coli to HD5ox. These genes account for bacterial protection against 

HD5ox. An antimicrobial activity assay (AMA) in liquid culture was employed because the 

antimicrobial activity of HD5ox, like many defensins, is attenuated by agar.[16]The AMA 

was optimized for the most suitable concentration of HD5ox, media composition, growth 

time, and temperature (Supporting Information). Most Keio mutants exhibit growth rates, 

hereafter described as “fitness,” that differ from that of the wild type (WT), resulting in 

variable cell densities as measured by OD600 in the AMA. We also observed that the cell 

density affected the sensitivity of E. coli to HD5ox. Therefore, we performed the AMA in 

the presence and absence of HD5ox and used a normalized fitness ratio (termed, see 

Supporting Information) in order to obtain robust data for the screen. Strains showing WT 

sensitivity to HD5ox are characterized by ϕ = 1 whereas strains which are hypersensitive to 

HD5ox are characterized by ϕ< 1. Strains exhibiting a ϕ> 1 may be linked to a resistant 

phenotype and are not considered in this study.

In an initial screening round, the entire Collection was subjected to the AMA. Selected 

strains with initial ϕ values indicating hypersensitivity (see Supporting Information, n=367) 

were subjected to a second screening round. Only strains with a mean ϕ < 0.7 from the two 

screening rounds were selected and passed on to the third screening round (n=166). After 

three screening rounds, ninety-seven mutants displayed a hypersensitive phenotype (overall 

mean ϕ of three screening rounds < 0.7, Supporting Table S2). The ninety-seven mutants 
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identified as hypersensitive to HD5ox were further evaluated in a more robust AMA where 

the cell densities of the strains were normalized (rounds 4 and 5). For thirty-one mutants, the 

mean ϕ over five rounds of testing was < 0.7. These hypersensitive mutants were ranked 

according to the mean ϕ value obtained from two rounds of AMA with normalized cell 

densities to produce a final list of hits (Figure 1B).

To confirm the results of the Keio screen, AMAs were carried out for select membrane-

related mutants complemented with ASKA plasmids. The ASKA clone collection is a 

plasmid library where each plasmid contains one annotated E. coli gene expressed under an 

inducible promoter.[17] WT sensitivity to HD5ox, ascertained by ϕ value, to HD5ox was 

restored for about 50% of the complemented strains (Supporting Figure S4). Furthermore, 

successful complementation was observed for four of the five most sensitive mutants (rfaF, 

lpcA, rfaD, surA), validating the experimental screening approach.

Next, the thirty-one hits were analyzed with two publicly available bioinformatics resources. 

The EcoCyc web resource[18] was employed to identify enrichments for pathways or 

biosynthetic processes, cellular compartments, and gene ontology terms, and the STRING 

database[13] was used to establish networks based on gene relations. The STRING analysis 

afforded a wide network of connectivity and possible interactions for the hypersensitive hits 

(Figure 1C). These mutations are associated with the biosynthesis of membrane components, 

outer membrane protein folding and localization, and protein secretion systems. The “big 

picture,” obtained from both enrichments and network analyses, is that sensitive mutants are 

linked to components of the E. coli outer membrane (OM).

One pathway, the biosynthesis of L-glycero-β-D-manno-heptose, a sugar moiety found in the 

core of lipopolysaccharide (LPS), was highly enriched (p-value 1.8×10−9, when the 

enrichment was performed for pathways and all gene ontology terms using EcoCyc). L-

glycero-β-D-manno-heptose is biosynthesized in the cytosol as an ADP-activated derivative, 

and four enzymes are involved in its biosynthesis from sedoheptulose-7-phospate: LpcA, 

GmhB, RfaE, and RfaD.[19] The four corresponding knock-out mutants are among the 

highest-ranked hypersensitive hits obtained from the Keio screening of HD5ox (mutant (ϕ): 

rfaE (0.28), lpcA (0.30), rfaD (0.30), gmhB (0.42), Figure 1B).

LPS is an essential component of the OM of most Gram-negative bacteria.[20] In E. coli 

K-12, LPS consists of a Lipid-A anchor, a core made up of ten sugar units, and the 

enterobacterial common antigen (ECA, Figure 2).[21] In addition to the genes related to the 

biosynthesis of the LPS core, one mutant related to an enzyme that attaches an L-glycero-β-D-

manno-heptose unit to the Lipid-A anchor (RfaF)and mutants related to ECA biosynthesis 

were also identified as sensitive in the screen (Figure 2).

LPS provides a permeability barrier for the bacterial cell, and bacteria with LPS deficient in 

L-glycero- β-D-manno-heptose show increased sensitivity to certain antibiotics.[22] The four 

mutants of the L-glycero-β-D-manno-heptose biosynthesis pathway have been identified as 

sensitive to other antimicrobial compounds in other Keio screens. For example, the 

Collection was screened against a variety of clinically used antibiotics to create an 
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“antibiotic barcode,” and the rfaE mutant was observed to be hypersensitive to eleven of 

twenty-two antibiotics.[23]

On the basis of the lectin-like properties of HD5ox
[24] and the screening results, we reasoned 

that the peptide interacts with LPS, and performed additional AMAs where HD5ox was pre-

incubated with LPS prior to addition of a log-phase culture of E. coli K-12 (Figure 3A). 

Colistin (polymyxin E), which binds the Lipid-A portion of LPS,[25] and vancomycin, an 

antibiotic that binds to Lipid II,[26] were used as controls. When the compounds were pre-

incubated with LPS, attenuated antibacterial activity was observed for colistin whereas 

exogenous LPS had negligible effect on the activity of vancomycin. Decreased antibacterial 

activity was also observed for HD5ox in the presence of LPS, suggesting that LPS interacts 

with this peptide as previously observed for other defensins,[27]and provides protection of E. 

coli against the peptide.

To ascertain the interaction of HD5ox with LPS in an in vitro assay, the Limulus Amebocyte 

Lysate (LAL) assay was performed, which allows for the quantification of the bound 

fraction of LPS, using colistin and vancomycin as controls (Figure 3B).[27–28] In agreement 

with the AMA, the LAL assay revealed LPS binding for both colistin and HD5ox. LPS 

binding was not observed with increasing concentrations of vancomycin. These experiments 

further confirm that HD5ox binds to LPS. Taken together, these LPS-binding assays suggest 

that LPS is important for bacterial defense against HD5ox, and confirm the results of the 

screen as relevant for HD5ox activity.

One possible explanation for the observed hypersensitivity of LPS-deficient mutants to 

HD5ox is the loss of barrier function provided by LPS, leading to facilitated OM 

permeabilization/damage or cellular entry. To probe whether a compromised OM affords 

enhanced HD5ox antibacterial activity, the E. coli imp4213 mutant was evaluated in the 

AMA. This mutant exhibits increased OM permeability to a variety of molecules including 

maltodextrins and antibiotics.[29] It was also more susceptible to HD5ox than the parent 

strain (Figure 3C), confirming that a compromised OM enhances E. coli susceptibility to 

HD5ox. Along these lines, enterobacterial E. coli OM polysaccharides were recently found 

to have a protective function against HD5ox.[30]

Because mutants in LPS biosynthesis and mutants related to membrane integrity exhibited 

increased sensitivity to HD5ox in the AMA, we evaluated whether the observed 

hypersensitivity to HD5ox would manifest as a different morphological phenotype. The WT 

and the five most sensitive E. coli mutants were studied by phase-contrast microscopy 

(Figure 4 and Supporting Figure S5). The morphologies observed when treating the WT 

cells with HD5ox included clumping, cell elongation, and formation of blebs. When treating 

the five most sensitive mutants with HD5ox, similar phenotypes were obtained. These results 

indicate that the hypersensitivity to HD5ox observed for the mutants does not correlate with 

altered cellular morphologies, at least at the level observable by phase-contrast microscopy, 

but rather to the lack of LPS.

In summary, screening of the Keio Collection robustly identified genes that confer HD5ox 

hypersensitivity when knocked out. One result from this unbiased approach and subsequent 

Moser et al. Page 4

Chembiochem. Author manuscript; available in PMC 2015 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



bioinformatic analyses is that many of the hypersensitive mutants are related to E. coli OM 

integrity, and that the most sensitive hits are all related to LPS biosynthesis. Using 

independent techniques, we confirmed the interaction of HD5ox with LPS that we identified 

by means of the unbiased screen.

A compromised OM results in enhanced susceptibility to HD5ox, indicating that the E. coli 

OM provides protection against attack by HD5ox. This observation is significant because E. 

coli contributes to human health and disease in organ systems where HD5ox is expressed; E. 

coli strains include both commensals of the human gut as well as pathogens that cause 

intestinal and urinary tract infections.[31] Moreover, knowledge about which genes, when 

knocked-out, render the bacteria hypersensitive to HD5oxmay facilitate the identification of 

adjuvant targets and therefore be useful for designing molecules that enhance the 

antibacterial activity of HD5ox.[32]

Several possibilities for the origin(s) of the hypersensitive phenotype exist and are relevant 

for mechanism-of-action studies, and warrant further exploration. Because the OM of Gram-

negative bacteria prevents various small molecules and antibiotics from entering the cells, 

one working model is that the OM serves a barrier function and inhibits HD5ox entry and 

access to one or more targets. In this model, the association of HD5ox with LPS inhibits 

HD5ox entry. Another possibility is that HD5ox more readily damages the compromised 

OMs of the mutant strains, which affords the hypersensitive phenotype; however, the phase-

contrast microscopy images presented in this work provide no clear evidence for enhanced 

OM damage for the hypersensitive mutants.

To the best of our knowledge, this work constitutes the first genetic screen reported for a 

defensin peptide. We expect that the optimized screening conditions developed for HD5ox in 

liquid culture will be applicable to other defensins and will be useful for elucidating 

similarities and differences in bacterial susceptibility as well as mechanism of action for 

various defensin family members. We envision that the screen will serve as resource for 

defensin studies and ultimately afford a “defensin bar-code” like what currently exists for 

small-molecule antibiotics.[23]

Experimental Section

Antimicrobial Activity Assay for Keio Screen

Strains were inoculated from agar plates or glycerol stocks in 150 µL of LB-Lennox 

(kanamycin 25 µg/mL) in a flat-bottom 96-well plate using a 96-metal-prong replicator and 

incubated at 37 °C overnight. The next morning, an aliquot (1–2 µL) of overnight culture 

was transferred to 150 µL of LB (NaCl 50 mg/mL, kanamycin 25 µg/mL) using the 

replicator and incubated for 2 h at 37 °C. After that time, an aliquot (1–2 µL) of the culture 

was first transferred with the replicator to 20 µL of sterile water, and then further transferred 

from the water (1–2 µL) to 50 µL of assay mixture using the replicator. The assay mixture 

consisted of 10 mM potassium phosphate pH 7.4 and 1% trypticase soy broth (TSB) with or 

without 8 µM HD5ox. The plates were incubated at 37 °C for 1 h in a shaking incubator (150 

rpm). After that time, a 50-µL aliquot of 2x AMA media (adapted from Orchard et al,[33] 

Supporting Information) was added and the plates were sealed with parafilm. The plates 
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were incubated first at 37 °C for 2 to 3 h, then at 30 °C overnight in a shaking incubator 

(150 rpm). The OD600 was measured 20 h after addition of the AMA media on a plate reader 

after stirring the cultures with the replicator.

LAL Assay

The Thermo Pierce LAL Endotoxin Quantitation kit was used. LPS from E. coli was 

provided with the kit. The assay was performed following the manufacturer’s instructions 

with modifications (Supporting Information).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Membrane-related mutants are sensitive to HD5ox. A) NMR solution structure of HD5ox 

(PDB: 2LXZ)[2] and primary amino acid sequence. Grey lines indicate native disulfide 

bonds. B) Ranking of sensitive mutants obtained from the Keio screen. The first column lists 

the gene knock-outs. The second column shows the results of three screening rounds (ϕ (1–

3)). In the third column, the ϕ values obtained from two confirmation rounds using an AMA 

with normalized cell count are outlined (ϕ (4–5)). Hits are ranked according to ϕ (4–5). C) 

Adaptation of the confidence view of an interaction network analysis of hypersensitive hits 
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from the Keio screen using the STRING database.[13] Spheres represent proteins and the 

corresponding gene names are indicated, and the lines represent connectivity. The relative 

thickness of each line indicates the relative confidence of interaction between the genes. The 

spheres of the five most sensitive mutants are depicted in blue.
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Figure 2. 
Sensitivity of mutants deficient in LPS biosynthesis. A) Structure of ADP-L-glycero-β-D-

manno-heptose. B) ϕ values indicative of the sensitivity of LPS-related mutant to HD5ox. C) 

Scheme of LPS from E. coli, which consists of a Lipid-A anchor, an inner core of ten sugar 

moieties, and the enterobacterial common antigen (ECA).
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Figure 3. 
LPS binds to HD5ox and decreases its antibacterial activity. (a) AMA against E. coli K-12 

with exogenous LPS. Compounds and LPS were pre-incubated for 10 min before cells were 

added. (b) LAL assay to quantify bound LPS with increasing concentrations of colistin, 

vancomycin, or HD5ox. Compound and LPS mixtures were incubated for 30 min before 

addition of LAL. The fraction of free LPS was calculated using an LPS standard curve and 

converted to bound LPS (bound LPS (in Endotoxin Units/mL) = 1 – free LPS).[28] (c) AMA 

using the E. coli leaky membrane mutant imp4213. The mutant is more sensitive to HD5ox 

compared to the WT.
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Figure 4. 
Phase-contrast microscopy reveals that WT (E. coli BW25113) and the rfaF mutant exhibit 

similar morphological changes upon treatment with 40 µM HD5ox (1 h, 37 °C, ~108 CFU/

mL). Scale bar represents 5 µm.
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