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Abstract

Large-scale cancer data sets such as The Cancer Genome Atlas (TCGA) allow researchers to 

profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, 

TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to 

find candidate drugs to target tumors with specific clinical phenotypes or molecular 

characteristics. This represents a powerful computational approach for candidate drug 

identification, but due to the complexity of TCGA and technology differences between CMap and 

TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer 

in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform 

that addresses these challenges. CiDD integrates data from TCGA, CMap and Cancer Cell Line 

Encyclopedia (CCLE) to perform computational drug discovery experiments, generating 

hypotheses for the following three general problems: 1) determining whether specific clinical 

phenotypes or molecular characteristics are associated with unique gene expression signatures, 2) 

finding candidate drugs to repress these expression signatures, and 3) identifying cell lines that 

resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD 

is a clinical or molecular characteristic. The output is a biologically annotated list of candidate 

drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate 

drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and 

Corresponding authors: Eduardo Vilar, MD, PhD, Department of Clinical Cancer Prevention – Unit 1360, The University of Texas 
MD Anderson Cancer Center, PO Box 301439, Houston, TX 77230-1439, EVilar@mdanderson.org; Paul Scheet, Department of 
Epidemiology – Unit 1340, The University of Texas MD Anderson Cancer Center, 1155 Pressler, Houston, TX 77030, 
PAScheet@mdanderson.org.
*These authors contributed equally to this work.

Conflicts of interest: The authors disclose no potential conflicts of interest.

NIH Public Access
Author Manuscript
Mol Cancer Ther. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
Mol Cancer Ther. 2014 December ; 13(12): 3230–3240. doi:10.1158/1535-7163.MCT-14-0260.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates 

phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA.

Keywords

Colorectal cancer; drug screening; next-generation sequencing; systems biology; gene expression; 
Connectivity Map

Introduction

Selection of targeted therapies for cancer drug development has traditionally been based on 

the presence or absence of specific somatic mutations and this has been shown to be an 

effective strategy to improve patient outcomes (1–4). However, a large number of targeted 

drugs and other compounds that have anti-tumor properties have not been linked to specific 

mutations, or biomarkers, that could be used to predict their selective efficacy (5). Although 

next-generation sequencing (NGS) allows researchers to rapidly and comprehensively 

profile tumor mutations, the vast majority of these data have not been useful in the clinical 

setting since only a small number of mutations have been used to inform prognosis or guide 

therapeutic decisions (6–8).

Several computational approaches exist and have been implemented to predict the functional 

impact of mutations, and even to predict whether a specific mutation is a driver of the 

carcinogenesis process, based on several factors such as evolutionary conservation, 

predicted effects on protein structure and observed recurrence in existing cancer data sets 

(9–11). However, these computational predictions provide little insight into how cellular 

processes are altered as a consequence of the mutations. One strategy to assess whether or 

not specific mutations are influential on cellular processes is to determine whether or not a 

mutation induces a signature of gene expression changes (12). Gene expression signatures 

associated with an individual mutation could then be examined to characterize its cellular 

impact (13) and the signature could be used as a target for candidate drug therapies (14). We 

have developed the Cancer in silico Drug Discovery (CiDD) platform for the purposes of 

characterizing tumors with specific mutations, or more generally tumors with specific 

clinicopathological or molecular characteristics, based on their putative effects on gene 

expression, and to identify candidate drugs to treat these tumors.

Here, we describe the general framework and integrated data sets of this novel platform. 

CiDD has been designed to generate hypotheses for the following three general problems: 1) 

to determine if particular clinical or molecular characteristics are associated with unique 

gene expression signatures; 2) to find candidate drugs to treat specific tumor subgroups 

based on these expression changes; and 3) to identify cell lines that resemble the tumors 

being studied for subsequent in vitro experimentation. In addition, to illustrate the use of 

CiDD, we have applied it to a clinically relevant context in cancer drug development. We 

report the in silico identification of candidate drug therapies for colorectal cancers (CRCs) 

harboring the BRAF V600E mutation. Approximately 10% of CRCs harbor the BRAF 

V600E mutation, which confers a poor prognosis and presents a therapeutic challenge 

(4,15). We describe the analyses performed with CiDD that have identified novel targets for 
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BRAF mutant CRCs and drugs such as EGFR inhibitors that have already shown activity at 

the pre-clinical level in targeting this tumor subtype (4).

Materials and Methods

CiDD is a systematic drug discovery platform that integrates and analyzes large-scale cancer 

data sets with the primary goal of identifying candidate drugs and cell lines to be validated 

experimentally in vitro (see Figure 1). The core data sets used by CiDD include The Cancer 

Genome Atlas (TCGA), the Connectivity Map (CMap) and the Cancer Cell Line 

Encyclopedia (CCLE). CiDD is purely computational and depends on publicly available 

clinical and experimental datasets, as well as annotation databases. CiDD is written in 

Python, has R package dependencies and is command-line driven allowing it to be 

integrated into bioinformatics pipelines. The software and code are freely available at http://

scheet.org/software.

Data assembly

Required experimental data sets for performing CiDD analyses are TCGA (16) and CMap 

(14). CCLE (17) is required to identify cell-lines for subsequent experimentation. TCGA 

includes clinical, mutation and gene expression data for thousands of samples across 

multiple cancer types. CiDD provides commands to download, query and analyze these data. 

CMap is a collection of gene expression data for cell lines treated with small molecules 

paired with pattern-matching algorithms that attempt to identify biologically functional 

connections between drugs and gene expression profiles (14). CiDD utilizes CMap build 02, 

which contains more than 7,000 expression profiles representing the effects of 1,309 

compounds. CCLE provides molecular profiles for 947 cancer cell lines which include DNA 

copy number, gene expression and DNA mutation data (17).

The experimental data from CMap consists of rank-based gene expression values from the 

Affymetrix HG-U133A microarray. Thus, CMap is designed for the analysis of Affymetrix 

gene expression data only, which hinders using CMap with gene expression data collected 

from non-Affymetrix platforms. To overcome this limitation, CiDD transforms bulk-

downloaded CMap data from Affymetrix probe-based rank values to Entrez gene-based 

ranks. Gene-based ranks are determined by taking the mean probe rank for each gene, 

sorting the mean rank values and then assigning a rank for each gene based on the sorted 

values. This allows results from RNA sequencing and Agilent microarray technologies, such 

as those provided by TCGA, to be analyzed with the drug-perturbed data of CMap in a 

standardized way at the gene level. A similar strategy has been applied in the R package 

gCMAP (18) that allows users to query CMap using Affymetrix probe identifiers or gene 

symbols. Gene expression signatures derived from both Agilent microarrays and RNA 

sequencing have identified validated candidate drugs when analyzed with the Affymetrix-

based drug signatures of CMap (19–21) demonstrating the feasibility of a cross-platform 

approach.

CiDD also uses annotation datasets, which include the Molecular Signatures Database 

(MSigDB) (13) for characterizing gene sets and drug databases including DrugBank (22), 

Matador (23) and KEGG Drug (24) for annotating candidate drugs. These databases provide 
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information such as drug pharmacology, gene and pathway targets to make the CiDD’s drug 

reports more informative. Public data from TCGA are automatically downloaded by CiDD, 

while data from CMap, CCLE and MSigDB require registration at their respective websites 

prior to downloading. Upon download, CiDD automatically prepares and manages data sets 

for drug discovery analyses. Descriptions of these data sets are provided in Supplementary 

Methods.

CiDD workflow

A common workflow using CiDD is illustrated in Figure 2. Initially, a CiDD project based 

on a TCGA cancer type is created and clinical, mutation and gene expression data for TCGA 

samples are automatically downloaded. For an analysis, CiDD first identifies TCGA 

samples for use in computational experiments based on user-defined clinicopathological 

phenotypes or molecular characteristics, such as specific gene mutations, microsatellite 

instability status, tumor stage, or a variety of other patient or tumor characteristics reported 

through TCGA projects. Based on the defined phenotype, CiDD identifies 2 classes of 

samples to compare. For a mutation-based phenotype, CiDD establishes one class containing 

samples with a defined mutation or set of mutations and a second class containing samples 

that are wild-type for the genes of interest. For a clinical phenotype, the user specifies both 

classes explicitly, such as two classes corresponding to microsatellite instable and stable 

tumors. CiDD attempts to identify a gene expression signature that is associated with the 

defined patient or tumor characteristic. If a gene expression signature exists for the 

phenotype of interest, that signature is characterized with MSigDB gene sets and the 

signature is used to identify candidate drugs through pattern-matching algorithms proposed 

by CMap. Subsequently, CiDD characterizes candidate drugs using databases such as 

DrugBank, Matador and KEGG Drug. Finally, CiDD identifies candidate cell lines on which 

to test the drugs in vitro by analyzing data from CCLE. The primary results of a CiDD 

execution are a biologically annotated candidate drug list and candidate cell lines for 

subsequent drug experimentation.

Gene signature identification

TCGA provides gene expression data from Agilent microarrays, Illumina GA RNA 

sequencing and Illumina HiSeq RNA sequencing. The data type to analyze can be specified 

as a parameter to CiDD. By default, CiDD will choose the technology that provides data for 

the largest number of samples with the phenotype of interest. Using the R package Limma 

(25) which is designed for both microarray and RNA sequencing differential expression 

analyses, CiDD identifies up- and down-regulated genes. CiDD characterizes these results 

with biological pathways by performing gene set tests using the piano Bioconductor 

package (26), while using gene sets defined by MSigDB.

Generation of a k-top scoring pairs (k-TSP) classifier

For generating a classifier that is robust across gene expression technologies, CiDD takes a 

non-parametric approach to classification and adopts an extension of the top scoring pairs 

(TSP) method (27). Using the R package ktspair (28), CiDD generates a k-TSP classifier for 
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predicting the status of the phenotype of interest on independent samples. The k-TSP 

algorithm is described in Supplementary Methods.

Candidate drug identification

CiDD connects gene expression changes associated with the phenotype of interest with 

candidate drug compounds that induce a negatively correlated (or “negatively connected”) 

gene expression profile. CiDD compares the phenotype gene expression changes, termed a 

query signature, to rank-based gene expression profiles induced by CMap compounds. To 

compare rank-based gene expression profiles, CiDD implements nonparametric pattern-

matching algorithms based on the Kolmogorov-Smirnov statistic as described by Lamb et al 

(14). An enrichment score ranging from −1 to +1 provides a measure of the negative or 

positivity connectivity of a drug to the phenotype of interest. A permutation p-value 

provides a measure of significance for the enrichment scores. These algorithms and the 

resulting metrics are described in Supplementary Methods.

Cell line identification

CiDD first selects CCLE cell lines based on user-specified tissue types. Then, CiDD 

optionally identifies cell lines that contain user-specified mutations by interrogating CCLE 

mutation data derived from either targeted sequencing of common cancer genes or from 

Oncomap 3.0, which is a SNP array that genotypes samples at known cancer-related sites. 

Finally, CiDD runs its k-TSP classifier on CCLE gene expression data to predict if a cell 

line’s gene expression profile is representative of the phenotype being studied. Cell lines 

that meet these criteria are reported as candidates for use in subsequent drug experiments.

Results

We applied CiDD to identify candidate drugs to treat CRCs harboring BRAF V600E 

mutations using mutation and RNA-sequencing data from the TCGA colon and rectum 

projects. We also identified cell lines from CCLE that are representative of colorectal 

tumors with BRAF mutations, thus making them candidates for in vitro drug testing. We 

refer to these analyses as the TCGA-derived analyses. The detailed commands to re-run 

these analyses are provided in Supplementary Methods. We then compared our systematic 

TCGA-derived analyses generated from CiDD with analyses performed using a previously 

published gene expression signature for BRAF V600E generated from CRC samples of the 

PETACC3 (Pan-European Trial Adjuvant Colon Cancer 3) clinical trial (15). We refer to 

these published gene expression analyses as the PETACC3-derived analyses.

Identification of a BRAF V600E CRC gene expression signature

We used CiDD to identify 20 TCGA CRC samples with a BRAF V600E mutation and 149 

BRAF wild-type samples with available Illumina GA RNA sequencing data. CiDD 

identified 63 up-regulated and 170 down-regulated genes (log fold-change >= 2 and 

Benjamini Hochberg adjusted P-value <= 0.05) that generated a clustering of samples 

representative of BRAF mutation status as shown in Figure 3.
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We identified pathways associated with the BRAF signature through CiDD using Wilcoxon-

based gene set tests (26). For assessing significance of the gene set tests, CiDD performed 

1000 runs of the differential expression analyses, permuting the BRAF mutant status of 

samples within each run. Fifteen KEGG gene sets were associated with the BRAF V600E 

status (FDR adjusted P-value <= 0.05). To incorporate PETACC3-derived pathways as part 

of the pathway analysis, a list of the top 20 pathways based on an average ranking within the 

TCGA and PETACC3-derived pathway lists is provided in Table 1. Because raw gene 

expression data was not available for the PETACC3-derived signature, gene set tests were 

not performed. Instead, for the PETACC3-derived analysis, hypergeometric tests were 

applied to identify KEGG pathways enriched with genes from this signature. Twenty-seven 

KEGG pathways are enriched with genes from the PETACC3-derived signature (P-value <= 

0.05). The pathway ordering in Table 1 reflects the average of the P-value ranks within each 

set (complete results are provided in Supplementary Results). These pathways are 

consistently related to CRC biology such as the top ranked pathway (“Colorectal Cancer”) 

and other pathways related to TGFβ signaling (“TGF Beta Signaling Pathway”), which are 

well known for their role in CRC. Additionally, it is known that the BRAF gene plays a role 

in controlling cellular proliferation and differentiation through regulation of the MAP kinase 

signaling pathway (29), and the “MAPK Signaling Pathway” is also represented in the top 

ranked pathways.

Finally, we used CiDD to identify an 11-pair k-TSP classifier for predicting the BRAF 

V600E status of independent samples using the TCGA data set. The classifier gene pairs are 

listed in Supplementary Table S1.

Validation of the TCGA-derived gene-pair classifier for predicting BRAF V600E status

In order to validate the TCGA-derived gene expression analyses, we compared the 

performance of a previously reported BRAF V600E gene expression classifier derived from 

the PETACC3 clinical trial (15) against the gene expression classifier that we identified from 

the TCGA data set.

The PETACC3-derived gene expression signature consists of 193 up-regulated and 92 

down-regulated probes. These probes correspond to 224 unique genes. The research group 

also developed a 64-gene TSP classifier (these genes are defined in Supplementary Table 

S2) based on Affymetrix probe IDs for predicting the BRAF V600E status of CRCs. We 

translated these probe IDs to Entrez gene IDs so the classifier could be applied to RNA 

sequencing and Agilent test data sets. To assess the robustness of their gene expression 

results, we applied the gene-based PETACC3-derived classifier to TCGA samples that were 

retrieved and annotated with BRAF mutation statuses by CiDD. When applied to TCGA 

RNA sequencing data, the PETACC3-derived classifier resulted in 93.3% sensitivity and 

83.5% specificity for detecting BRAF V600E samples.

To assess the quality of the systematic TCGA-derived classifier generated by CiDD, we 

compared the performance of the TCGA- and PETACC3-derived classifiers on 3 

independent data sets (see Table 2) – two have been previously published and are available 

in the Gene Expression Omnibus (30,31) and the third is the CCLE data set. The sensitivity 

and specificity of both classifiers are comparable on the GSE35896 and GSE42284 data sets 
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with the PETACC3-derived classifier exhibiting small improvements in specificity. The 

PETACC3-derived classifier achieved 100% sensitivity but only 30% specificity for BRAF 

status prediction on the CCLE large intestine data set. The TCGA-derived classifier had 

lower sensitivity (71%) but achieved better specificity (62%). These results suggest that the 

systematically obtained BRAF V600E classifier from CiDD is comparable to the published 

PETACC3-derived signature and that the TCGA-derived classifier may even have improved 

specificity for distinguishing BRAF wild-type cell lines from the BRAF mutant cell lines.

Candidate drug therapies for BRAF V600E CRC

Using both TCGA and PETACC3-derived gene expression signatures, CiDD identified 

candidate drugs to treat BRAF V600E CRCs. Drugs with a negative enrichment score and a 

permutation P-value less than 0.1 using the TCGA and PETACC3-derived gene expression 

signatures are listed in Table 3 and Supplementary Table S3 respectively. Three compounds, 

Gefitinib, MG-262 and Trapidil, were identified in both lists. Independent research groups 

have recently shown that EGFR inhibitors such as Gefitinib and proteosome inhibitors such 

as MG-262 are effective drugs for treatment of colorectal tumors with BRAF mutations 

(4,32). Trapidil is a novel candidate drug that inhibits phosphodiesterase and TXA2. The full 

candidate drug reports are provided in Supplementary Results.

Cancer cell lines that most resemble BRAF V600E CRC

In order to identify candidate cell lines for in vitro testing, CiDD analyzed data from the 

CCLE. From 947 cell lines in the CCLE, CiDD identified 48 large intestine samples that we 

consider to be representative of colorectal tumors. Then CiDD reduced this number to 7, 

representing those large intestine cell lines that have BRAF V600E mutations. Using the 11 

gene-pair k-TSP classifier generated by CiDD, 5 of these cell lines were predicted to be 

BRAF V600E on the basis of having similar gene expression profiles to the TCGA BRAF 

V600E mutated CRCs. The five identified cell lines include RKO, SNUC5, CL34, 

COLO205 and HT29. OUMS23 and SW1417 are the two BRAF V600E large intestine cell 

lines that are predicted to be BRAF wild-type by the TCGA-derived classifier.

Discussion

As genomic technologies have ushered in the potential for targeted drug development, large-

scale public genomic databases have matured in size, scope and information content to 

complement this effort. It is thus advantageous, and indeed possibly necessary, to apply 

computational genomics to inform the drug discovery process. While subgroup classification 

for prognostic assessment and therapeutic planning has been applied clinically for decades, 

especially among hematologic malignancies and in some solid tumors such as breast 

cancers, other tumor types such as CRCs appear phenotypically homogenous and are thus 

clinically indistinguishable. In order to reveal subclasses for these tumors and to generalize 

their genome-based classification, the use of genetic and transcriptomic analyses may prove 

essential. Systems biology tools such as CMap, and we believe CiDD, help fill this need of 

identifying candidate interventions that target specific pathways deregulated in these tumor 

subclasses. In this regard, CMap provided the original approach to guide drug development 

based on transcriptomic data. CiDD is taking this approach further by extending CMap with 
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the clinical and molecular data of TCGA along with the high-throughput experiments of the 

CCLE for the purposes of systematic cancer drug discovery. While current public resources 

such as that of TCGA are impressive, they are likely just a beginning. The basic logic of 

CiDD naturally extends to utilization of forthcoming, larger-scale databases from drug 

perturbation experiments and genetic and transcriptomic sequencing of tumors of a wider 

array of sizes and associated clinical outcomes.

We believe CiDD is the first framework that supports systematic drug discovery based on 

user-specified TCGA clinical phenotypes and molecular characteristics. CiDD allows 

researchers to perform the following: (1) assess whether or not a mutation or clinical 

phenotype is associated with a gene expression signature, (2) identify candidate drugs to 

target this gene expression signature, and (3) identify cell lines for subsequent in vitro drug 

experimentation. We have illustrated the power of such an approach in a meaningful 

application to CRCs with somatic mutations in BRAF. CiDD also offers utility to researchers 

simply wishing to interrogate and organize TCGA data, as it can be applied to create an 

inventory of available TCGA data with particular clinical or genomic features, such as 

available data sets or patients with particular mutations, independently of its drug 

identification capabilities.

One of the most crucial steps in the BRAF V600E analysis was identifying a gene expression 

signature associated with the BRAF V600E mutation and generating a classifier for 

predicting mutation status. In both of these cases, we showed that the signature and classifier 

of the CiDD framework are comparable to those identified from the published PETACC3-

derived analyses (15). Similarly to the PETACC3-derived signature and classifier, the 

CiDD-generated signature was composed of genes representative of known pathways 

associated with the BRAF V600E mutation, most notably the “MAPK Signaling Pathway”, 

and the performance of the classifier on independent data sets generated from orthogonal 

gene expression technologies showed robustness. The advantage of CiDD analyses is that 

they are systematic studies of generally available datasets. We did not have to generate any 

of our own experimental data, and the gene expression analyses can be relatively easily 

replicated and repeated for other mutation or clinical phenotypes.

Once we validated the gene expression signature, we used CiDD to identify candidate 

compounds for tumors harboring the well-known BRAF V600E mutation. Since the initial 

communication of the presence of mutations in the kinase BRAF in cancer (33), activating 

mutations have been described in several malignancies with different frequencies such as 

hairy cell leukemia (100%), melanoma (50–60%), thyroid carcinoma (30–50%) and CRC 

(10%) (34). The most frequently identified mutation is a valine-to-glutamic acid substitution 

at codon 600 (V600E) that activates the signaling cascade downstream of MEK and ERK 

(33). Other mutations have been found at the same codon and are considered equivalent in 

terms of oncogenic activation (34). Therefore, substantial efforts were invested on 

developing ATP-competitive RAF inhibitors such as Vemurafenib and Dabrafenib to 

specifically target the MAPK pathway. Yet, the clinical success of BRAF inhibition has been 

variable and highly dependent on the tumor context. In this regard, Vemurafenib has 

demonstrated improvement in survival in patients diagnosed with stage IV melanomas 

harboring the BRAF V600E mutation (35). However, this degree of clinical benefit has not 
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been observed in the same molecular context in CRCs and papillary thyroid cancers (36). 

This is probably secondary to the intrinsic mechanisms of resistance to BRAF inhibition that 

are specific to the tumor context (34). BRAF mutations in the context of metastatic CRCs 

have been associated with poor prognosis and an aggressive disease course contrasting with 

cases in early stages. In addition, they have a characteristic clinical phenotype consistent 

with older age at diagnosis, female gender, right-sided location and the presence of high 

levels of microsatellite instability (37,38).

Two strategies have been suggested to overcome the primary resistance to BRAF inhibition 

in CRC biology. One strategy that has been supported independently by two different groups 

is the inhibition of the EGFR pathway by using monoclonal antibodies against EGFR (such 

as Cetuximab) or kinase inhibitors (such as Gefinitib and Erlotinib) in combination with 

BRAF inhibitors. EGFR is activated by feedback mechanisms upon BRAF inhibition, thus 

reactivating ERK via RAS and CRAF, therefore combinations of EGFR and BRAF inhibition 

will synergize in terms of activity (4,39–41). The second strategy is based on targeting the 

proteasome pathway. This has demonstrated specific activity against BRAF V600E mutant 

CRC cell lines and tumor xenografts. This set of experiments was performed using classical 

(Bortezomib) and novel (Carfilzomib) proteasome inhibitors and demonstrated similar 

activity. However, as opposed to EGFR feedback, proteasome inhibition seems to function 

independently of BRAF inhibition (32). CiDD has been able to identify both types of 

compounds (EGFR and proteasome inhibitors) as candidate drugs through an agnostic 

approach, thus providing a biological validation of the value of CiDD as a screening tool to 

identify novel drugs to be tested and further developed in specific tumor subtypes.

CiDD also addresses the important issue of identifying appropriate publicly available cell 

lines as pre-clinical models for cancer researchers. Systematic comparisons between cancer 

cell lines and tumor samples from human tissues have documented substantial differences 

between the two, emphasizing the importance of making genomically informed choices 

when identifying cell lines as pre-clinical models of a tumor subtype (42). The CCLE 

provides mutation and gene expression data that allow CiDD to make these molecularly 

informed decisions in selecting cell lines. In our BRAF V600E analysis, CiDD identified 7 

large intestine cell lines harboring the BRAF V600E mutation. However, only 5 of the 7 

were predicted to be BRAF V600E based on CiDD’s gene expression classifier, suggesting 

heterogeneity among the BRAF V600E mutated cell lines. CiDD prioritized those cell lines 

into 2 groups for in vitro testing, proposing that 5 of the 7 BRAF V600E mutated large 

intestine cell lines more closely resemble the TCGA CRC BRAF V600E tumors at a gene 

expression level. We note however, that there may be a more ideal strategy for obtaining cell 

lines for in vitro testing for researchers wishing to deviate from the use of publicly available 

cell lines. The use of isogenic cell lines in drug experiments has been shown to be very 

effective, thus allowing for direct association of the sensitivity of a drug with a specific 

mutation (43). As an example, in our BRAF mutant application, a researcher could obtain a 

colon cancer cell line that is wildtype for BRAF, then create a second identical cell line from 

this cell line except that it has a mutation in BRAF.

CiDD has some limitations that could restrict its application in specific situations. Primarily, 

CiDD is dependent on identifying a gene expression signature representative of a phenotype 
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of interest. In some cases, there may be no gene expression signature associated with a 

clinical phenotype or mutation. In other clinical contexts, such as for rare mutations and 

infrequent clinical phenotypes, CiDD may not have the power to identify the true underlying 

gene expression signature associated with the phenotype, because CiDD is limited by the 

number of samples available in TCGA with that specific phenotype. In these rare-phenotype 

analyses, CiDD may fail to identify a statistically significant gene expression signature 

representative of the phenotype of interest. Researchers interested in rare clinical or 

molecular subgroups will need to consider alternative strategies for increasing their sample 

sizes. These strategies may include aggregating TCGA tumor types or grouping mutations or 

clinical phenotypes in biologically meaningful ways, such as aggregating rare mutations at a 

gene or pathway level to increase the sample size. The CiDD command that generates gene 

expression signatures based on defined mutations provides support for aggregating 

mutations by listing amino acid substitutions explicitly, by specifying types of mutations 

(such as nonsense mutations) or by defining sets of mutations based on gene and gene set 

membership. Additionally, the CiDD framework does not support the identification of 

candidate drug combinations to target tumor subtypes. CMap provides drug-perturbed data 

that were generated by applying compounds to cell lines one compound at a time. If future 

drug-perturbed data sets provide gene expression data of multiple compounds being applied 

to cell lines, incorporation of this data into CiDD should be relatively straightforward. As an 

alternative, the computational identification of multiple interacting candidate drugs based on 

current data sets is a potential area for future CiDD development.

Of course, these limitations apply more generally for these difficult scenarios and are not 

unique to CiDD. In fact, CiDD helps address these limitations by being easy to run and 

repeat to test multiple hypotheses quickly. Further, CiDD is a framework rather than a 

specific method per se. As public databases evolve and expand, and as robust statistical 

methodologies mature for cross-platform expression-based signature identification, CiDD 

can be adapted to incorporate these improved components. In this sense, what we have 

demonstrated here is a “lower bound” of sorts, and we expect more powerful findings to 

emerge from such efficient systems-based computation. Finally, the field of gene expression 

analysis, particularly for identifying signatures of cancer subtypes, has been criticized for 

failing to adhere to standards of repeatability (44). Our software facilitates repeatability and 

even enables replication of findings with external data sets. In all of these aspects, we expect 

the community of cancer genomic researchers to benefit from, and further contribute to, this 

framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A CiDD analysis produces a list of candidate drugs to treat tumors with the molecular or 

clinicopathological phenotype of interest and a list of cell lines that are representative of the 

phenotype of interest.
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Figure 2. 
A CiDD workflow shows the 5 main steps of an analysis with their data set dependencies. 

Input to this workflow includes point mutations (such as BRAF V600E) or other molecular 

and clinical phenotypes of interest paired with a cancer type (e.g., CRC). The primary output 

includes a candidate drug list that has been annotated with drug databases and a list of cell 

lines for subsequent experimentation.
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Figure 3. 
CiDD-generated heat map and clustering of BRAF V600E mutated CRCs based on TCGA 

Illumina GA RNA sequencing data. Differentially expressed genes comparing BRAF V600E 

and BRAF wildtype samples were identified using the Limma package in R and required to 

have a Benjamini Hochberg adjusted p-value <= 0.05 and a minimum log fold change >= 2. 

Hierarchical clustering of the samples and genes were performed using hclust with a 

“pearson” distance measure in R. The BRAF V600E gene expression signature is 

represented with the vertical colored bar on the right side of the figure, where red represents 

down-regulated genes and blue up-regulated genes. BRAF V600E mutant samples all reside 

within 2 sample clusters of the heatmap, which suggests that the BRAF V600E signature 

captures the gene expression response of BRAF V600E mutations.
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Table 2
Performance of the TCGA- and PETACC3-derived BRAF V600E CRC classifiers when 
applied to independent gene expression data sets

The sensitivity and specificity of both classifiers are comparable with the PETACC3-derived classifier 

exhibiting small improvements in specificity on the GSE35896 and GSE42284 data sets. The TCGA-derived 

classifier had lower sensitivity (71%) but achieved better specificity (62%) on the CCLE data set. These 

results suggest that the systematically obtained BRAF V600E classifier from CiDD is comparable to the 

published PETACC3-derived signature and that the TCGA-derived classifier may even have improved 

specificity for distinguishing BRAF wild-type cell lines from the BRAF mutant cell lines.

Data Set
TCGA-derived classifier PETACC3-derived classifier

sensitivity specificity sensitivity specificity

GSE35896 (n = 62) (Affymetrix U133 Plus 2.0 Array) 4/6 (0.67) 39/56 (0.70) 4/6 (0.67) 45/56 (0.80)

GSE42284 (n = 178) (Agilent Homo sapiens 37K DiscoverPrint_19742) 33/36 (0.92) 91/142 (0.64) 33/36 (0.92) 107/142 (0.75)

CCLE LARGE_INTESTINE (n = 57) (Affymetrix U133 Plus 2.0 Array) 5/7 (0.71) 31/50 (0.62) 7/7 (1.00) 15/50 (0.30)

Mol Cancer Ther. Author manuscript; available in PMC 2015 December 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Lucas et al. Page 19

Table 3
Candidate drug compounds identified systematically by CiDD for BRAF V600E CRC 
based on the TCGA-derived gene expression signature

Nine drugs were identified having both a negative enrichment score and a maximum permutation P-value of 

0.1. Three of these drugs (*) were also identified using the PETACC3-derived gene expression signature.

Compound Enrichment score Permutation p-value Specificity

gefitinib* −0.995 0.016 0.000

2-deoxy-D-glucose −0.977 0.051 0.022

5286656 −0.967 0.075 0.038

yohimbic acid −0.901 0.003 0.000

amrinone −0.884 0.001 0.003

trapidil* −0.852 0.004 0.016

mycophenolic acid −0.735 0.024 0.048

withaferin A −0.679 0.026 0.054

MG-262* −0.656 0.073 0.141
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