
A comparison of multiple indicator kriging and area-to-point 
Poisson kriging for mapping patterns of herbivore species 
abundance in Kruger National Park, South Africa

Ruth Kerrya,*, Pierre Goovaertsb, Izak P.J. Smitc, and Ben R. Ingramd

aDepartment of Geography, Brigham Young University, Provo, UT, USA

bBiomedware Inc., Ann Arbor, MI, USA

cScientific Services, South African National Parks, Skukuza, South Africa

dFacultad de Ingeniería, Universidad de Talca, Curicó, Chile

Abstract

Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of 

the African savannah. For the past 40 years, annual aerial surveys of herbivores have been 

conducted to aid management decisions based on (1) the spatial distribution of species throughout 

the park and (2) total species populations in a year. The surveys are extremely time consuming and 

costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was 

adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the 

distance method currently employed by the park only gives estimates of total species populations 

but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-

point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-

validation approach indicates that multiple indicator kriging makes poor estimates of the number 

of animals, particularly the few large counts, as the indicator variograms for such high thresholds 

are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: 

spatial density and proportion of a given species. Both Poisson approaches had standardized mean 

absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple 

indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the 

most abundant species and the proportion, Poisson approach (2), did for the least abundant 

species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs.
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1. Introduction

Kruger National Park (KNP), South Africa, provides 19,485 km2 of protected habitats for 

the unique biodiversity of the African savannah. Accurate estimation of abundance of large 

herbivores in both space and time is an integral component of conservation and management 

activities in KNP. Monitoring herbivore spatio-temporal abundance patterns can help detect 

and mitigate unacceptable levels of population change. Consequently, annual aerial surveys 

to monitor large herbivore populations have been conducted for the last 40 years. Results 

from these surveys have, inter alia, been used to understand (1) herbivore distribution 

patterns in relation to resources (e.g. Smit 2011), (2) how dynamic environmental factors 

influence herbivore population trends (e.g. Ogutu and Owen-Smith 2003, Owen-Smith and 

Mills 2006), (3) population declines and possible reasons therefore (Harrington et al. 1999, 

Kshatriya et al. 2001) and (4) how past management actions and possible future scenarios 

have or may influence herbivore distribution patterns (e.g. Smit and Grant 2009, Smit and 

Ferreira 2010).

From 1980 to 1993, the whole park was surveyed annually, but this was costly and time 

consuming. It involved almost 4 months of near-constant flying with four observers on 

board. In 1998, the park-wide census approach was replaced by a sampling strategy whereby 

the number of animals is recorded along 800 m wide East–West transects, spaced at 

intervals of 2.5–5.6 km (Kruger et al. 2008). However, such strip transects leave ‘gaps’ in 

the data spatially. The park currently uses a distance sampling method (Buckland et al. 

1993) to estimate the total number of various species in the park from the transect data. This 

method is based on fitting for each species a detection function based on the count data 

collected in various distance bands perpendicular to the aircraft. This method can also be 

used for ground surveys (Ogutu et al. 2006). Currently, Kruger Park scientists use the 

‘DISTANCE’ software developed by Thomas et al. (2004) for this analysis (Kruger et al. 

2008).

While the distance method generates global estimates of a species population in the park 

which are helpful in identifying increases or declines in population numbers, these estimates 

cannot be used to fill the gaps between survey transects and produce maps of animal 

distribution in a given season. Such maps are particularly useful for understanding herbivore 

distribution patterns in relation to resources, how dynamic environmental factors influence 

herbivore population trends and how management actions, such as artificial water provision 

and fire management, influence herbivore distribution patterns. In addition, especially for 

less abundant species or species that tend to be clustered in space, the following assumptions 

of the distance method are not met: (1) all animals on the transect line are detected, (2) 

animals are counted accurately, (3) all animals are observed in their original locations and 

(4) 60–80 sightings of each species are made per transect. Another potential problem with 

the distance method is that there seems to be a lot more noise in the total counts for the park 

when it is used (1998–2005) compared with the counts based on the full survey of the park 

(1985–1993) (Figure 1b), and the associated confidence intervals are wide. The large 

uncertainties and the spatial gaps associated with analysing the transect data with the 

distance method have prohibited using the data from the past 14 years to the same extent as 

the data from the previous surveys where the entire park was censused. Techniques that can 
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(1) provide reliable interpolation results for the gaps left by the sampling design and (2) 

increase the accuracy of the population estimates will greatly increase the value of this data 

set and will allow the answering of ecological and management questions currently not 

possible. In this article, our primary aim is to determine if multiple indicator kriging or area-

to-point Poisson kriging can achieve the first of these goals.

There have been several applications of geostatistics to the mapping of wildlife populations. 

For example, Vandermeer and Leopold (1995) used variants of kriging to assess population 

size for the European storm petrel while Palma et al. (1999) presented an application to the 

Iberian lynx. At first glance, geostatistical methods seem ideal for populating data gaps 

between transects since they do not require some of the assumptions of the distance method, 

and numerous studies have demonstrated the greater accuracy of kriging relative to other 

common interpolation methods such as inverse distance, cubic splines and classification 

(Voltz and Webster 1990, Gotway et al. 1996, Kravchenko and Bullock 1999).

Steffens (1992) completed a geostatistical study of animal count data from KNP and 

suggested that should the park ever have to reduce the density of survey due to budget 

constraints, geostatistical methods would be appropriate for populating data gaps. Steffens 

(1992) recognized that the count data at point locations could not be directly used for 

ordinary kriging and counts first had to be aggregated to blocks. Yet, he proceeded to use 

traditional method of moments variograms and cross-variograms when the histograms for 

the derived animal count data were all highly positively skewed. When data are highly 

skewed or contain numerous outliers, the method of moments variogram estimator can be 

extremely unstable (Lark 2000, 2002, 2003, Kerry et al. 2007a, b, Bellier et al. 2010). This 

is especially the case for the rarer species or those that tend to cluster spatially. Rossi et al. 

(1992) provided a comprehensive overview of the ways in which geostatistical tools could 

be used to interpret and map patterns of spatial dependence in organisms and the many 

environmental variables with which they interact. They noted that the traditional variogram 

provides an incomplete and misleading summary of these patterns when the local means and 

variances change spatially or when data contain many outliers. They suggested the use of 

indicator variograms for presence/absence data and robust variogram estimators when there 

are many outliers in the data. Indicator variograms have been used to characterize variables 

with highly skewed histograms in several pollution studies (Goovaerts 1994, Goovaerts et 

al. 1997, Van Meirvenne and Goovaerts 2001, Lin et al. 2002, Saito and Goovaerts 2002, 

Liu et al. 2004, Lee et al. 2007) where indicator kriging was used to estimate the probability 

that various critical pollution thresholds are exceeded in a given location. Indicator kriging 

has also been used to delineate high-density areas in spatial Poisson fields of unexploded 

ordnance (Saito and McKenna 2007). Therefore, in conjunction with Rossi et al.’s (1992) 

recommendation, and the fact that animal count data are usually highly skewed, we first 

adopted an indicator approach for the animal count data treating each count number as a 

separate threshold. The number of separate variograms that need to be computed, modelled 

and used in post-processing can, however, make the approach very time consuming and 

computationally intensive. To facilitate the implementation of the indicator approach with 

many thresholds, Goovaerts (2009) devised an auto-indicator kriging (Auto-IK) approach 

whereby the variograms for each threshold are computed and modelled automatically, 
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followed by multiple indicator kriging. We investigate the use of this approach here with the 

animal count data.

We also explored a more recent approach to mapping count or density data that were 

devised after the review paper by Rossi et al. (1992), namely Poisson kriging (Monestiez et 

al. 2006, Bellier et al. 2010). The positive skew in the histograms of animal count data tends 

to approach the Poisson distribution (Figure 1a) and thus seems more appropriate for use 

with Poisson kriging than robust estimators because the latter are designed more specifically 

to deal with outliers rather than underlying asymmetry. Poisson kriging was developed by 

Monestiez et al. (2006) to obtain accurate maps of relative abundance of whales in the 

Mediterranean Sea on the basis of spatially heterogeneous observation efforts and infrequent 

and sparse animal sightings. The same approach was then applied to rates of phenomena like 

diseases (Goovaerts 2005) or crime (Kerry et al. 2010) where the denominator is a 

population size instead of observation time. Data based on larger populations receive more 

weight in the computation of the variogram and the kriging estimate through the 

incorporation of an ‘error variance’ term, derived from the Poisson distribution. Here, we 

applied the Poisson approach using two types of denominator for the KNP animal count 

data: (1) size of observational areas to map the spatial density of each species and (2) total 

number of animals from all species within areas of fixed size to map the relative proportion 

of each species. The predictions from both Poisson kriging methods were converted to 

counts to allow direct comparison with the estimates from multiple indicator kriging. The 

change of support associated with the computation of point estimates from block data 

(blocks of various sizes in Poisson approach (1) and constant size in Poisson approach (2)) 

was accomplished using area-to-point kriging (Kyriakidis 2004). This is an important issue 

that previous wildlife studies like that of Steffens (1992) did not take into account. Dealing 

with the change of support using area-to-point Poisson kriging allows the production of 

reliable maps of animal distribution patterns while also giving sensible total population 

estimates of each species for the park that are similar in magnitude to those of the distance 

method (see Figure 1b for an example). Area-to-point Poisson kriging, although evident in 

the health geography literature, has not been used in the wildlife context where 

administrative geographies with known populations are not in place, and this requires the 

development of new methods for preprocessing data.

As mentioned earlier, the main aim of this article is to compare the performance of multiple 

indicator kriging and two area-to-point Poisson kriging approaches for mapping the spatial 

distribution of species abundance. Multiple indicator kriging and Poisson kriging are 

univariate approaches as animal abundance is estimated using only the spatial 

autocorrelation among animal counts. Such spatial autocorrelation is, however, an expected 

function of animal social behaviour and spatial autocorrelation in environmental factors 

which influence animal distribution. Therefore, the benefit of incorporating environmental 

data as secondary information into Poisson kriging approach (2) was also briefly explored.

Kerry et al. Page 4

Int J Geogr Inf Sci. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. Methods

2.1. Animal count observations

Animal counts were made during the dry season when leaves are generally absent from trees 

from a fixed-winged aircraft flying at approximately 76 m height and a speed of 167–185 

km h–1. A frame fitted to the aircraft (or calibrated strips drawn on the side windows of the 

aircraft) enabled animals to be located within distance classes (up to 50, 100, 200 and 400 

m) from the plane on either side (see Figure 2 in Kruger et al. 2008). This means that 

observations were made along East–West running transects that were 800 m wide, but also 

included a 36 m invisible zone under the aircraft. Transects were spaced at various intervals 

to achieve a specified percent coverage of the park in different years. For example in 1998–

2000, 64 transects were spaced at 5.6 km intervals to achieve 15% coverage of the park. The 

coverage of the park in other years was 22% in 2001–2003 and 22% in the south and 28% in 

the north in 2005–2006. Each time an animal or group of animals was observed from the 

plane, the position along the transect was recorded using a GPS, as well as the number of 

animals observed, the species and the distance class from the plane. No indication, however, 

was given of which side of the plane the animals were observed, and each species observed 

was recorded separately. Some potential errors associated with these observation methods 

include but are not limited to

1. miscounting/mere estimates of the count when large herds of the same species are 

present or altogether missing individuals or small herds (Redfern et al. 2002);

2. animals under the plane are not counted;

3. counts are likely to be influenced by environmental conditions (e.g. vegetation 

cover) as well as differences in cryptic colouration of animals (e.g. zebra is more 

conspicuous than impala) (Redfern et al. 2002);

4. location inaccuracies due to time delay in position recording when multiple species 

are present in one location; and

5. animals that move from one side of the plane to the other during flight can be 

double counted.

2.2. Environmental data

Several environmental data sets were available for KNP. The continuous variables included 

herbaceous biomass (B) estimated by cokriging of ground measurements of herbaceous 

biomass with Advanced Very High Resolution Radiometer (AVHRR) imagery (Smit 2007), 

distance to large rivers (DR), artificial water holes (DW) and woody cover (W) (Bucini et al. 

2010). The categorical variables included ecozones (E) (Hendry 2004), geology (G) (Venter 

1990), landscape (L) (Gertenbach 1983) and land systems (LS) (Venter 1990).

2.3. Preprocessing of animal count data

As animal counts were recorded along transects and records made only when an animal or 

group of animals was observed, the raw count data contain no zero counts. They are a point 

pattern of presences (Figure 2a and b), but we know that along the transects, the 
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observations are separated by areas with zero counts. To account for this type of sampling, 

data were preprocessed by migrating the observations to the nearest point on a grid, that is, 

the centroids of blocks were assigned the number of animals within a particular block. This 

is akin to the pooling to blocks employed by Steffens (1992). Grids of different spatial 

densities were explored (results not shown here), and it was found that for East–West 

transects (800 m wide) 5.6 km apart, within-transect spacing intervals of 1 km (Figure 2c, 

5167 data points) and 5 km (Figure 2d, 1082 data points) were most suitable for 

investigating the rarer and most abundant species, respectively (Table 1). Both the raw count 

data (Figure 2a and b) and the data migrated to grids were used with the Auto-IK approach.

For Poisson kriging (Monestiez et al. 2006), count data need to be preprocessed to yield a 

ratio. The following two types of denominator were considered:

1. the observational area (ratio = spatial density, Figure 3a) and

2. the total number of animals in a given area or block (ratio = proportion of a species, 

Figure 3b).

Figure 3a illustrates how spatial density for Poisson approach (1) along the 800 m wide 

transects was calculated. The midpoints between each observation and its two neighbours 

were considered as the limits of the area associated with each observation. Therefore, a large 

distance between successive observations of an animal translates into a large observational 

area. The observational area for the first and last observations on each transect was 

calculated to the park boundaries on one side. Figure 5b shows how the proportion of each 

animal was calculated for Poisson approach (2). Unlike approach (1), the size of each block 

(i.e. observational area) is constant. Each 800 m wide transect was divided into 5 km long 

blocks, and the total number of a given species observed in the 5 km by 800 m block was 

divided by the total number of all animal species in the 5 km by 800 m block giving a 

proportion of each species per block.

2.4. Geostatistical methods

2.4.1. Multiple indicator kriging—The indicator approach computes the animal count at 

each location u as the mean of the local probability distribution F(u;z|(n)) = Prob{Z(u) ≤ z|

(n)} that is estimated for a series of thresholds zk using kriging of indicators defined as 

follows:

(1)

where the observations z(uα) are either animal data migrated to a grid (many zero counts) or 

raw animal count data (lowest count is 1). In its traditional implementation, this non-

parametric approach can be rather tedious since it requires the estimation and modelling of 

the following experimental semivariogram for each threshold zk:

(2)
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where N(h) is the number of pairs of observations separated by a vector h. The indicator 

variogram 2γ̂I (h; zk) measures how often two z-values a vector h apart are on the opposite 

side of the threshold value zk. Therefore, it quantifies the lack of spatial connectivity of the 

values exceeding zk. The probability Prob{Z(u) ≤ z|(n)} is then estimated as a linear 

combination of n(u) neighbouring indicators (Equation (1)) as follows:

(3)

The weights λak are the solution of the following system of (n(u)+1) linear equations:

(4)

where μk is a Lagrange multiplier accounting for the constraint on the weights.

The application of multiple indicator kriging in this study was greatly facilitated by the use 

of the public-domain Auto-IK program (Goovaerts 2009), which provides fully integrated 

indicator kriging with automatic computation and modelling of indicator semivariograms for 

many thresholds that are either automatically calculated or manually specified by the user. 

In addition, the program computes the mean and the variance of each probability distribution 

after increasing its resolution by performing a linear interpolation between tabulated bounds 

provided by the sample histogram (Deutsch and Journel, 1998). The optimal number of 

thresholds was determined by comparison of the leave-one-out (LOO) cross-validation 

statistics (mean absolute error and mean squared deviation ratio; MAE and MSDR) and the 

variogram structure from multiple runs with different numbers of thresholds and threshold 

values. The runs with the lowest MAEs, MSDR values closest to 1 and indicator variograms 

that showed most structure were selected.

2.4.2. Poisson kriging—The Poisson approach is parametric and models the noise 

attached to each observation using a Poisson distribution. Here the observations are ratios, 

r(vα) = z(vα)/d(vα), that take the form of spatial density (d(vα) = size of observational area 

vα) or proportion of animals (d(vα) = total number of animals in a given area vα); see 

previous section on data processing. The animal density/proportion for a location u is 

estimated as the following linear combination of n(u) neighbouring ratios:

(5)

For Poisson approach (1) where the denominator is the size of observational areas, count 

estimates are computed by multiplying the ratio estimate r̂(u) by the area d(u).

The kriging weights λa are computed by solving the ‘Poisson kriging’ system:
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(6)

where δαβ = 1 if α = β and 0 otherwise. Interpolator (5) can be interpreted as a form of 

kriging with non-systematic errors where observations with low denominators d(vα) receive 

less weight in the estimation. This is accomplished by adding the ‘error variance’ term, 

m*/d(vα), to the diagonal of the kriging system (6), leading to smaller weights for ratios 

measured over smaller areas/populations. The influence of these ratios on semivariogram 

computation is also reduced by using the following weighted estimator:

(7)

where N(h) is the number of pairs of areas (vα, vβ) whose observational area/population-

weighted centroids are separated by the vector h and m* is the observational area/

population-weighted mean of the N area ratios. The usual squared differences, [r(vα) – 

r(vβ)]2, are weighted by a function of their respective observational area/population sizes, 

d(vα)d(vβ)/[d(vα) + d(vβ)], which gives more importance to more reliable data pairs based on 

large observational areas/large total counts of animals (Monestiez et al. 2006, see also Kerry 

et al. 2010).

An additional difficulty is the fact that the measurement supports (areas vα) and prediction 

supports (point location u) have different spatial extents. Accounting for these different 

supports in the kriging system requires the use of area-to-area C̄R(vi, vj) and area-to-point 

C̄R(vi, u) covariances and knowledge of the point-support covariance C(h). Inference of the 

point-support covariance from the areal covariance (Equation (7)) was conducted using the 

deconvolution procedure developed by Goovaerts (2008) and implemented in BioMedware 

SpaceStat software (BioMedware 2011). The approach is illustrated for impala in Figure 4. 

This procedure seeks the point-support variogram (deconvoluted, solid grey line, Figure 4) 

that once regularized (grey dashed line, Figure 4) is closest to the areal-support variogram 

(black dashed and solid lines in Figure 4). The point-support variogram (area-to-point 

kriging) was used for producing maps and total population numbers for the park, but the 

areal-support variogram was used for LOO cross-validation using the various pre-processed 

data.

2.4.3. Incorporation of environmental data into Poisson kriging—Simple kriging 

with local means (SKlm) was used to incorporate environmental data into the mapping of 

animal abundance. The Poisson kriging estimator (Equation (5)) thus became

(8)
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where the local means m(vα) and m(u) were derived using the arithmetical average of the 

species count in a given environmental category/class, that is, the local mean is assumed 

constant and only one categorical variable is used. The kriging weights are estimated using 

Poisson kriging and the variogram of residuals.

2.4.4. Cross-validation—LOO cross-validation was used to assess the relative 

performance of Auto-IK and both Poisson methods for estimating counts of animals along 

transects. Poisson kriged estimates of spatial densities or proportions were converted back to 

counts to allow direct comparison with the estimated counts produced by indicator kriging. 

In the LOO cross-validation approach, each observation is deleted one at a time and 

estimated using the remaining observations within a search radius that was set to slightly 

larger than the variogram range. The set of observations and their estimates are then usually 

compared using the following three statistics: mean error (ME), MAE and MSDR. Since the 

MEs were close to 0 (i.e. no marked bias) and most of the MSDR values were close to 1 (i.e. 

magnitude of kriging variance reflects the variance of prediction errors), the interpretations 

here will be based on MAE. The number of observations used for each method, year and 

species varies since data were preprocessed in various ways to implement the different 

kriging methods and account for differences in transect spacing and the number of 

observations of given species between years. To account for these effects, MAEs were 

divided by the standard deviation of the data to give standardized MAEs (St. MAE) and 

allow proper comparison between the methods and years.

3. Results and discussion

3.1. Multiple indicator kriging using Auto-IK

Table 2 shows the St. MAEs of prediction obtained by LOO cross-validation for the Auto-

IK approach. Using the raw count data instead of the migrated grid data leads to slightly 

lower St. MAEs because the lack of zero values in raw counts artificially reduces prediction 

errors in overestimation situations. The optimal number of thresholds for Auto-IK was 

determined by multiple runs in which the cross-validation statistics and the form of the 

variograms were compared. According to Goovaerts (2009), the accuracy of indicator 

kriging predictions is expected to increase with the number of thresholds. However, in this 

case, we found the reverse to be true as the variograms for the rare large counts were pure 

nugget. Consequently, the optimal number of thresholds in each case was between 3 and 10, 

and this led to a poor prediction at the locations with large counts. Comparison of the raw 

counts (Figure 5a) and the Auto-IK estimates based on raw counts (Figure 5b) illustrates the 

overestimation of the low counts and the underestimation of the large counts for zebra in 

2000. Indicator variograms for zebra in 2000 (Figure 6) indicate the lack of spatial 

connectivity of large counts (threshold 4), which explains the poor estimation of these 

counts in Figure 5b.

Comparison of the observed counts (Figure 2b) with migrated data (Figure 2d) and estimates 

obtained using migrated data (Figure 2e) shows that for all animals in 2001, the Auto-IK 

approach based on migrated data reasonably identifies the locations of low counts. However, 

the indicator variograms for the larger thresholds (i.e. larger counts) were still pure nugget 

and the number of thresholds had to be restricted, thus areas with large counts were poorly 
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estimated. Note that Table 2 does not report any prediction errors for the lower density 

species because indicator variograms for all thresholds were pure nugget. This shows that 

the Auto-IK approach is definitely not suitable for mapping these species.

The total number of impala in KNP estimated by Auto-IK for 2000 was just 2394 which is 

more than an order of magnitude too low when compared with Figure 1b. This clearly 

demonstrates the inability of this method to produce sensible total population estimates of a 

species in the whole park as well as local estimates of species distribution. This result 

probably stems from the fact that the indicator approach does not take into account the 

change of support when kriging from blocks to points and most indicator variograms have a 

large nugget effect (Figure 6).

3.2. Poisson kriging

3.2.1. Poisson kriging approach (1)—Table 2 shows the St. MAEs for Poisson kriging 

using approach (1). The St. MAEs for all animals in 1998, 2000, 2001 and 2005 are all two 

orders of magnitude lower than those for the Auto-IK approach. The greater accuracy of 

these Poisson kriged estimates (Figure 2g and h) is illustrated by comparison with the maps 

of raw count data (Figure 2a and b) and estimates obtained by multiple indicator kriging 

(Figure 2e). Figure 2g and h shows that both areas with high and low counts are well 

estimated in comparison to Figure 2a and b. The greater ability of Poisson approach (1) to 

distinguish between areas of high and low counts compared with Auto-IK probably relates 

to the shape of variograms. For Auto-IK (Figure 6) even the most structured indicator 

variograms include more than 50% nugget variance. In contrast, the areal-support 

variograms for Poisson approach (1) all have a nugget:sill ratio of 0 (Table 3 and Figure 4a).

Table 2 indicates that for the most abundant species (impala, zebra and giraffe; see Table 1 

for rank of abundance) Poisson approach (1) has markedly lower St. MAEs than Auto-IK, 

yet the improvement is not as large as for the ‘all animal cases’.

3.2.2. Poisson kriging approach (2)—Table 2 shows that St. MAEs for the most 

abundant species are larger for Poisson approach (2) than for Poisson approach (1), whereas 

the less abundant species (those with a rank of 5 in Table 1) often display the opposite trend. 

This suggests that Poisson approach (2) is most effective for estimating the less abundant 

species and Poisson approach (1) for the most abundant species.

For Poisson approach (2), the optimal block size for investigating the proportions of 

different species is an important parameter to determine. The St. MAEs (not shown) 

suggested that larger (5 km) blocks were more suitable for the most abundant species and 

smaller (1 km) blocks for the less abundant species. For example, for a less abundant 

species, three adjacent 1 km cells could contain some animals and be surrounded by cells 

with zero counts, leading to a short-range variogram. However, if a 5 km block size were 

used, there would be only one cell with a larger count surrounded by cells with zero counts 

and the variogram would appear as pure nugget. This typically does not happen for the more 

abundant species where specimens are found in many cells. The results also suggested that 

the optimal block size may be influenced by other factors such as average herd size and the 

preferred habitat of the species.
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3.2.3. Variography—The lack of structure in the indicator variograms for all thresholds 

and particularly the thresholds for large counts are in part responsible for the poor prediction 

performance of the Auto-IK approach with the more abundant species. Complete lack of 

variogram structure was responsible for the failure of Auto-IK to predict the less abundant 

species. The nugget:sill ratio of the variograms for Poisson approach (2) (Table 3) tends to 

be smaller for the most abundant species, impala, and greater for the less abundant species.

This means that there is less of a random component when an impala or group of them is 

spotted compared with the less abundant species such as giraffe and zebra. For Poisson 

approach (1) all areal-support variograms in Table 3 had a nugget:sill ratio of 0. The 

difference in the sill values of areal and deconvoluted variograms is the largest for Poisson 

approach (2) where the variogram has a shorter range and larger nugget:sill ratio (Figure 

4b). This is expected since the impact of aggregation (i.e. reduction in the sample variance 

and symmetrization of the histogram) decreases as the spatial pattern becomes more 

continuous (Goovaerts 2008).

The range of variograms (Table 3, see impala in particular) for a given species is sometimes 

consistent between years and sometimes not. We hypothesize that the variogram range for a 

given species may be similar in years with similar resource conditions; for example, ranges 

could be smaller for dry years because forage and water resources have a more restricted 

distribution in low rainfall years. This hypothesis needs to be further investigated.

3.2.4. Differences between years—The different kriging approaches were each 

implemented for more than 1 year. The St. MAEs in Table 2 give some indication of how 

the prediction performances vary between years when different sampling densities were 

used. The sampling density was lower in 1998–2000 than 2001–2006; however, there is no 

consistent pattern as to whether a greater density of observations lowers St. MAEs for a 

given kriging method. This suggests that for geostatistical approaches, in contrast with the 

distance method, spending extra time and money on collecting denser data may not be 

necessary. If there were an advantage to sampling more densely, one would expect the St. 

MAEs to be lowest for 2005 and highest for 1998 and 2000 consistently. This result is likely 

to relate to whether the scale of spatial variation in the data for a given year has been 

properly resolved by the variogram. Kerry and Oliver (2003) showed for soil properties that 

an accurate variogram for kriging can be obtained so long as samples are collected at an 

interval smaller than half the variogram range of appropriate ancillary data. Therefore 

should a geostatistical approach to populating data gaps be adopted in the park, it would be 

useful to compute the variogram for various animal food resources in distinct areas of the 

park to determine what the sampling density should be in a given year. We intend to conduct 

an in-depth study of these geostatistical sampling issues in the context of KNP by computing 

variograms for each species for the years when the whole park was surveyed.

Figure 2g–i shows that there are some consistencies in the patterns of abundance of all 

animals with the north of the park usually having fewer animals. This is likely due to the 

rainfall gradient, with average annual rainfall being generally higher in the south than in the 

north of the park. Furthermore, Figure 2 also shows that the spatial distribution of all 

animals in 2000 (Figure 2g) greatly differs from the other years in that animal distribution 
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patches seem larger and more ‘smoothed out’ (Figure 2f, h and i). This difference is hard to 

distinguish from the raw count maps (Figure 2a and b), which stresses the need for 

interpolation between transects to make sensible management decisions as the year 2000 had 

very distinctive weather.

We hypothesize that the larger patches and smoother appearance of the distribution of all 

animals in 2000 (Figure 2g) reflect the unusual climatic conditions in this exceptionally wet 

year which resulted in widespread flooding. The annual recorded rainfall in KNP for 2000 

was 1249 mm compared with the long-term average of 557 mm (based on records from nine 

rainfall stations in the park since 1941). We therefore propose that due to the high rainfall of 

2000, forage and water resources were more widely and evenly distributed than in years 

with lower rainfall. Based on how the sizes of patches in the distribution of all animals vary 

between years with different climatic conditions, and the fact that we know that animal 

distributions are influenced by changes in their habitat, we investigated the incorporation of 

environmental variables into Poisson approach (2) to see if St. MAEs were further reduced.

3.3 Poisson kriging with secondary information

This preliminary analysis was conducted for the 2001 data to illustrate the benefit of 

incorporating environmental variables into estimation. The types of environmental data used 

are listed in Section 2.2 and two examples, one continuous, variable (herbaceous biomass 

(B) (Smit 2007), and one categorical variable (LS) (Venter 1990, a classification of the park 

into areas of broadly similar geomorphology and vegetation) are shown in Figure 7d and e, 

respectively. The biomass data could not be incorporated into the SKlm-within-class (WC) 

approach detailed in Section 2.4.3, but the value of these and other continuous 

environmental data was briefly investigated through Poisson regression. Table 1 shows for 

each species the environmental data with significant contributions and regression MAEs 

smaller than those of Poisson approach (2). Clearly, several of the environmental data sets 

could be useful in a Poisson kriging approach similar to that of Bellier et al. (2010) where 

environmental variables are used to determine the trend or local drift in the animal counts. 

However, for warthog and kudu, none of the available environmental data are useful. Given 

that herbaceous biomass is the continuous variable most frequently identified as significant 

in Poisson regression (Table 1) and that the LS classification of Venter (1990) includes 

consideration of broad vegetation type, we employed a simple WC approach to SKlm where 

only the categorical data (LS) are used. The approach proceeds in two steps: (1) the average 

proportion of a species (i.e. local mean) is derived from the secondary information (LS 

classification) and (2) residuals are interpolated using Poisson kriging and added to the local 

mean.

Table 2 lists the St. MAEs achieved for each species using the SKlm-WC approach. For 

elephant bulls, the variogram of the class residuals showed no structure and the St. MAEs 

for warthog and kudu for SKlm-WC exceed those for Poisson approach (2). This latter result 

is probably caused by the lack of significant contribution of these environmental data in 

Poisson regression (Table 1). Until appropriate environmental covariates are found for 

predicting these species, the univariate Poisson approach (2) appears to be one of the most 

accurate options for mapping species abundance.
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The St. MAEs in Table 2 show that SKlm-WC using the LS classification outperforms 

Poisson approach (2) for giraffe, impala, waterbuck, wildebeest and zebra. For waterbuck 

and wildebeest, the order of magnitude drop in St. MAEs (Table 2) for SKlm-WC compared 

with Poisson approach (2) clearly shows the benefit of the simple LS classification for 

predicting the location of these species. For some species (giraffe, impala and zebra), there 

is little difference in St. MAEs for Poisson approach (2) and SKlm-WC. In particular, the 

maps for zebra display only minor differences which occur mainly in some isolated areas of 

the Letaba landsystem (Figure 7e), where medium counts of zebra are predicted despite 

predominantly low counts of zebra being observed (Figure 7c). The analysis here suggests 

that the straightforward SKlm-WC approach to incorporating environmental data into 

Poisson kriging is useful and, as it only uses one categorical data set, it avoids potential 

multi-colinearity problems.

4. Conclusions

This study indicated that multiple indicator kriging is less accurate than Poisson kriging for 

mapping animal abundance. Regardless of whether raw count or migrated data are used, the 

rare occurrences of large counts cause only a few indicator variograms to show any structure 

and the number of thresholds had to be reduced. The total population estimates derived from 

this method were more than an order of magnitude too low, and the pure nugget indicator 

variograms for all thresholds make this method of no use at all for mapping the lower 

density species.

Based on St. MAEs, Poisson approach (1) is more suitable for mapping the more abundant 

species and Poisson approach (2) for less abundant species. Total population estimates for 

all species derived from area-to-point Poisson kriging approach (2) are similar to those 

produced by the distance method (results for impala only are shown in Figure 1b), the 

current method used by KNP to estimate total species populations in the park. The benefit of 

area-to-point Poisson kriging is its ability to produce accurate maps of species distributions 

in addition to sensible total population totals. The uncertainty attached to the total 

population estimates produced by area-to-point Poisson kriging methods needs to be 

modelled using stochastic simulation for a proper comparison with the distance method in 

this aspect.

Incorporating environmental data in Poisson approach (2) reduced St. MAEs for most 

species, particularly for waterbuck and wildebeest. As warthog and kudu abundance was not 

significantly related to any of the available environmental data, suitable environmental 

covariates need to be found for these species. Potential covariates are abundance patterns of 

these species from previous years when the whole park was surveyed. This preliminary 

study illustrated the utility of a straightforward SKlm-WC approach, however, given the 

range of variables identified as significant in Poisson regression; more complex methods 

that incorporate various continuous and categorical environmental data into Poisson kriging 

are worth investigating.

Poisson approaches that incorporate secondary information are recommended for mapping 

species abundance wherever suitable environmental data and sufficient knowledge of the 
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environmental factors that are linked to the distribution of a particular species are available. 

In particular, Bellier et al. (2010) showed that taking account of the heterogeneity of wildlife 

population habitats (i.e. non-stationarity in spatial trends) in Poisson kriging leads to 

different estimates in sparsely sampled areas (extrapolation situation). If such information is 

not available or until more exhaustive research of the best environmental covariates is done, 

Poisson approach (1) is recommended for mapping relatively abundant species and Poisson 

approach (2) for less abundant species. Using such approaches that consider only spatial 

autocorrelation is sensible in such instances because the spatial autocorrelation in animal 

counts is likely to reflect indirectly the social behaviour of the species or spatial 

autocorrelation in the environmental characteristics that influence its distribution.
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Figure 1. 
(a) Histogram of impala count observations along transects in Kruger National Park for 2001 

and (b) numbers of impala observed in Kruger National Park when the whole park was 

surveyed (1985–1993) and estimated from transects using the distance method (with 95% 

confidence intervals) and area-to-point Poisson kriging approach (2), 1998–2005.
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Figure 2. 
Maps of counts of all animals: (a) raw count data for 2000, (b) raw count data for 2001, (c) 

2001 counts migrated to a grid with 1 km spacing along transects 5.6 km apart, (d) 2001 

counts migrated to a grid with 5 km spacing along transects 5.6 km apart and (e) 2001 

counts produced using Auto-IK and migrated data and (f) 1998 counts, (g) 2000 counts, (h) 

2001 counts and (i) 2005 counts produced by Poisson approach (1).

Note: For (a) and (b) white areas show zero counts and dark blue is ≥ 1, for (c)–(i) dark blue 

is 0–1.
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Figure 3. 
Calculation of (a) spatial density of all animals from 800 m wide transect data for Poisson 

approach (1) and (b) proportion of impala from 5 km long blocks of the 800 m wide transect 

data (i.e. number of impala in 5 km by 800 m block/total number of all animals in 5 km by 

800 m block) for Poisson approach (2).

Kerry et al. Page 19

Int J Geogr Inf Sci. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Experimental variogram for areal data (black dashed line), model for areal data (black solid 

line), deconvoluted variogram (solid grey line) and theoretically regularized variogram (grey 

dashed line) for 2001 counts of impala using (a) Poisson approach (1) and (b) Poisson 

approach (2).
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Figure 5. 
(a) Observed counts of zebra in 2000 and kriged maps of counts produced by (b) Auto-IK 

and raw count data, (c) Poisson approach (1) and (d) Poisson approach (2).

Note: For (a) white areas show zero counts and dark blue is ≥1, for (b–d) dark blue is 0–1.
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Figure 6. 
Indicator variograms computed and modelled by the Auto-IK program for 2000 zebra count 

data and four thresholds: (a) 2, (b) 3, (c) 6 and (d) 10 animals.
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Figure 7. 
(a) Observed counts of zebra in 2001, kriged maps of counts produced by (b) Poisson 

approach (2) and (c) Poisson SKlm-WC, (d) Smit (2007)’s herbaceous biomass and (e) 

Venter’s (1990) land systems.

Note: For (a) white areas show zero counts and dark blue is ≥ 1, for (b–c) dark blue is 0–1.
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Table 1

Background information on species and environmental variables found significant in Poisson regression of 

each species.

Species/abbreviation Feeding guild Rank of abundance Index of herding
Significant variables (abbreviations) in Poisson 
regression

Elephant bulls (Eb) Mixed feeder 5 5 Woody cover (W)

Giraffe (Gi) Browser 4 3 Herbaceous biomass (B), geology (G)

Impala (Im) Mixed feeder 1 1 Herbaceous biomass (B), distance to river (DR), land 
system (LS)

Kudu (Ku) Browser 5 3 a

Warthog (WH) Grazer 5 3 a

Waterbuck (WBk) Grazer 5 3 Distance to river (DR)

White Rhino (WR) Grazer 5 4 Herbaceous biomass (B), woody cover (W)

Wildebeest (WiB) Grazer 3 1 Herbaceous biomass (B)

Zebra (Ze) Grazer 2 2 Herbaceous biomass (B)

Notes: Rank of abundance shows the relative abundance of the species based on historical data (1 is most abundant and 5 least). Index of herding 
shows the degree to which the species groups in herds based on the inter-quartile range of herd size (1 is most prone to herding and 5 is least). 
Species with comparable abundance (or index of herding) were given the same rank.

a
None of the available environmental variables were significant in Poisson regression.
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