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Abstract

Despite the heightened interest in developing biomarkers predicting treatment response that are 

used to optimize patient treatment decisions, there has been relatively little development of 

statistical methodology to evaluate these markers. There is currently no unified statistical 

framework for marker evaluation. This paper proposes a suite of descriptive and inferential 

methods designed to evaluate individual markers and to compare candidate markers. An R 

software package has been developed which implements these methods. Their utility is illustrated 

in the breast cancer treatment context, where candidate markers are evaluated for their ability to 

identify a subset of women who do not benefit from adjuvant chemotherapy and can therefore 

avoid its toxicity.

1 Introduction

There is an enormous amount of research effort being devoted to discovering and evaluating 

markers that can predict a patient’s chance of responding to treatment. A December, 2013 

PubMed search identified 8,198 papers evaluating such markers over the last 2 years alone. 

Treatment selection markers, sometimes called “predictive” (Simon (2008)) or 

“prescriptive” (Gunter, Zhu, and Murphy (2007)) markers, have the potential to improve 

patient outcomes and reduce medical costs by allowing treatment provision to be restricted 

to those subjects most likely to benefit, and avoiding treatment in those only likely to suffer 

its side effects and other costs.

Methods for evaluating treatment selection markers are much less well developed than for 

markers used to diagnose disease or predict risk under a single treatment. In the medical 

literature, the most common approach to marker evaluation is to test for a statistical 

interaction between the marker and treatment in the context of a randomized and controlled 

trial (see Coates, Miller, O’Toole, Molloy, Viale, Goldhirsch, Regan, Gelber, Sun, 

Castiglione-Gertsch, Gusterson, Musgrove, and Sutherland (2012), Busch, Ryden, Stal, 

Jirstrom, and Landberg (2012), Malmstrom, Gronberg, Marosi, Stupp, Frappaz, Schultz, 

Abacioglu, Tavelin, Lhermitte, Hegi, Rosell, Henriksson, and (NCBTSG) (2012) for some 
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recent examples). However this approach has limitations in that it does not provide a 

clinically relevant measure of the benefit of using the marker to select treatment and does 

not facilitate comparing candidate markers (Janes, Pepe, Bossuyt, and Barlow (2011)). 

Moreover, the scale and magnitude of the interaction coefficient will depend on the form of 

the regression model used to test for interaction, and on the other covariates included in this 

model (Huang, Gilbert, and Janes (2012)).

There is a growing literature on statistical methods for evaluating treatment selection 

markers. A number of papers have focused on descriptive analysis, specifically on modeling 

the treatment effect as a function of marker (see Bonetti and Gelber (2004), Royston and 

Sauerbrei (2004), Cai, Tian, Wong, and Wei (2011), Claggett, Zhao, Tian, Castagno, and 

Wei (2011), Zhao, Tian, Cai, Claggett, and Wei (2011)). In general these approaches are not 

well-suited to the task of comparing candidate markers. Other papers have proposed 

individual measures for evaluating markers (see Song and Pepe (2004), Baker and Kramer 

(2005), Vickers, Kattan, and Sargent (2007), Brinkley, Tsiatis, and Anstrom (2010), Janes et 

al. (2011), Huang et al. (2012)), some of which we adopt as part of our analytic approach as 

described below. Still others have focused on the specific problem of optimizing marker 

combinations for treatment selection (Lu, Zhang, and Zeng (2011), Foster, Taylor, and 

Ruberg (2011), Gunter, Zhu, and Murphy (2011), Qian and Murphy (2011), McKeague and 

Qian (2013), Zhang, Tsiatis, Laber, and Davidian (2012)). A complete framework for 

marker evaluation, on par with those developed for evaluating markers for classification 

(Pepe (2003), Zhou, McClish, and Obuchowski (2002)) or risk prediction (Pepe and Janes 

(2012)), is still forthcoming.

In this paper, we lay out a comprehensive approach to evaluating markers for treatment 

selection. We propose tools for descriptive analysis and summary measures for formal 

evaluation and comparison of markers. The descriptives are conceptually similar to those of 

Bonetti and Gelber (2004), Royston and Sauerbrei (2004), Cai et al. (2011), but we scale 

markers to the percentile scale to facilitate making comparisons. Our preferred global 

summary measure is the same as or closely related to that advocated by (Song and Pepe 

(2004), Brinkley et al. (2010), Janes et al. (2011), Gunter et al. (2011), Qian and Murphy 

(2011), McKeague and Qian (2013), Zhang et al. (2012)), a component of which was 

described by Zhao et al. (2011), Baker and Kramer (2005). We also propose several novel 

measures of treatment selection performance, motivated by existing methodology for 

evaluating markers for predicting outcome under a single treatment, i.e. for risk prediction. 

We develop methods for estimation and inference that apply to data from a randomized 

controlled trial comparing two treatment options where the marker is measured at baseline 

on all or a stratified case-control sample of trial participants. For illustration, we consider the 

breast cancer treatment context where candidate markers are evaluated for their utility in 

identifying a subset of women who do not benefit from adjuvant chemotherapy. Appendices 

include the results of a small-scale simulation study that evaluates the performance of the 

methods in finite samples and a description of the R package we have written that 

implements these methods.
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2 Setting and Notation

Suppose that the task is to decide between two treatment options, referred to as “treatment” 

(T = 1) and “no treatment” (T = 0). The clinical outcome of interest, D, is a binary indicator 

of a bad event within a specific time-frame following treatment provision; we refer to this 

outcome as an “adverse event” or “event”. The outcome D is thought to capture all potential 

impacts of treatment, so that any decrease in the rate of events justifies treatment; a 

generalization is discussed in Section 6.1. To achieve this, D may be chosen to represent a 

composite outcome such as an indicator of treatment-associated toxicity or death. We 

assume that the marginal treatment effect ρ0 − ρ1 ≡ P(D = 1|T = 0)−P(D = 1|T = 1) is 

positive, so that the default approach is to treat all subjects. The question is whether a 

marker, Y, if measured prior to treatment provision, is useful for identifying a subset of 

subjects who can avoid treatment. Note that the scenario where the marginal treatment effect 

is negative (or zero) and Y identifies a subset who benefit from treatment can be handled by 

simply reversing the treatment labels.

We focus on the ideal setting for evaluating treatment efficacy, a randomized and controlled 

trial (RCT) comparing T = 1 to T = 0. By necessity, this must be a relatively large trial; it is 

well-known that large sample sizes are generally needed to detect statistical interactions. We 

assume to begin that Y is continuous and measured at baseline on all trial participants. We 

generalize our methods to case-control sampling from within an RCT in Section 6.2.

3 Motivating Context

We illustrate our methods in the breast cancer treatment context. Women diagnosed with 

estrogen-receptor-positive and node-positive breast cancer are typically treated with both 

hormone therapy (e.g. tamoxifen) and adjuvant chemotherapy following surgery. This is 

despite the fact that it is generally well-accepted in the clinical community that only a subset 

of these women actually benefit from the adjuvant chemotherapy, and the remaining women 

suffer its toxic side effects, not to mention the burden and cost of unnecessary treatment 

(Early Breast Cancer Trialists Collaborative Group (2005)). A high public health priority is 

to identify biomarkers that can be used to predict which women are and are not likely to 

benefit from the adjuvant chemotherapy (Dowsett, Goldhirsch, Hayes, Senn, Wood, and 

Viale (2007)). The Oncotype DX recurrence score is an example of a biomarker that is 

currently being used in clinical practice for this purpose. This marker is a proprietary 

combination of 21 genes whose expression levels are measured in the tumor tissue obtained 

at surgery (Paik, Shak, Tang, Kim, Baker, Cronin, Baehner, Walker, Watson, Park, Hiller, 

Fisher, Wickerham, Bryant, and Wolmark (2004), Paik, Tang, Shak, Chungyeul, Baker, 

Kim, Cronin, Baehner, Watson, Bryant, Constantino, Geyer, Wickerham, and Wolmark 

(2006), Albain, Barlow, Shak, Hortobagyi, Livingston, and Yeh (2010)). The marker has 

been shown to have value for identifying a subset of women who are unlikely to benefit 

from chemotherapy (Paik et al. (2006), Albain et al. (2010)).

To illustrate our methods, we simulated a marker, Y1, with the same performance as 

Oncotype DX in the SWOG SS8814 trial which evaluated adjuvant chemotherapy 

(cyclophosphamide, doxorubicin, and fluorouracil) given before tamoxifen for treating post-
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menopausal women with estrogen-receptor positive, node-positive breast cancer (Albain, 

Barlow, Davdin, Farrar, Burton, Ketchel, Cobau, Levine, Ingle, Pritchard, Lichter, 

Schneider, Abeloff, Henderson, Muss, Green, Lew, Livingston, Martino, Osborne, and the 

Breast Cancer Intergroup of North America (2009), Albain et al. (2010)). We also simulated 

another marker, Y2, which we will demonstrate is a much stronger marker. Both markers Y1 

and Y2 are measured at baseline for 1,000 participants randomized with equal probability to 

tamoxifen alone (T = 0) or tamoxifen plus chemotherapy (T = 1). The outcome, D, is breast 

cancer recurrence or death within 5 years of randomization and the marginal treatment effect 

is ρ0 − ρ1 =0.24 − 0.21=0.03 as seen in SS8814. Marker Y1 is simulated to mimic the 

Oncotype DX distribution;  is normally distributed with mean 4.8 and standard 

deviation 1.8. Marker Y2 is standard normal. Each marker is related to D via a linear logistic 

model, logit P(D = 1|T,Y) =β0 +β1T +β2Y +β3YT, where for Y1 the model coefficients are 

chosen to mimic the performance of the Oncotype DX recurrence score (Albain et al. 

(2010)). Methods for simulating the data are described in the appendix.

4 Methods for Evaluating Individual Markers

4.1 Treatment Rule

Given that the task is to decide between treatment and no treatment for each individual 

subject, it is sensible and common to define a binary rule for assigning treatment on the 

basis of marker value. Let Δ(Y) = P(D = 1|T = 0,Y) − P(D = 1|T = 1,Y) denote the absolute 

treatment effect given marker value Y. The rule

can be shown to be optimal in the sense that it minimizes the population event rate (Brinkley 

et al. (2010), Zhang et al. (2012), Janes, Pepe, and Huang (2013)). Some of the marker 

performance measures we consider evaluate the properties of this rule; other performance 

measures do not depend on specification of a treatment rule. We refer to subjects with Δ(Y) 

< 0 as “marker-negatives” and Δ(Y) > 0 as “marker-positives”. More general treatment rules 

are considered in Section 6.1.

4.2 Descriptives

For descriptive analysis, it is useful to display the distribution of risk of the event as a 

function of the marker under each treatment. We plot “risk curves” P(D = 1|T = 1,Y) and 

P(D = 1|T = 0,Y) versus marker percentile F(Y), where F is the cumulative distribution 

function (CDF) of Y (Janes et al. (2011)). Figure 1 shows the risk curves for the Oncotype-

DX-like marker, Y1, and the much better marker, Y2. From these one can visually assess the 

variability in response on each treatment as a function of marker value. One can also 

determine the proportion of subjects with negative treatment effects who can avoid 

chemotherapy, 46% for Y1 vs. 38% for Y2.

Another informative display is the distribution of treatment effect, as summarized by Δ(Y) 

vs. FΔ(Δ(Y)) where FΔ is the CDF of Δ(Y) (Huang et al. (2012)). The example shown in 
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Figure 2 reveals that Y2 has much greater variation in marker-specific treatment effect than 

does Y1. For Y2 a greater proportion of marker-specific treatment effects are extreme 

whereas for Y1 the range is smaller and most treatment effects are near the average of ρ0 − 

ρ1 = 0.03.

4.3 Summary Measures

The following are useful measures for summarizing marker performance that depend on 

specification of the treatment rule:

• Average benefit of no treatment among marker-negatives,

• Average benefit of treatment among marker-positives,

• Proportion marker-negative, Pneg = P(Δ(Y) < 0)

• Decrease in population event rate under marker-based treatment,

where we define P(D = 1|T, Δ(Y) < 0) = 0 if P(Δ(Y) < 0) = 0. The measure Θ, or a 

variation on it, has been advocated by many as a global measure of marker 

performance (Song and Pepe (2004), Brinkley et al. (2010), Janes et al. (2011), 

Gunter et al. (2007), Zhang et al. (2012), McKeague and Qian (2013)). Θ varies 

between 0 and ρ1. The minimum value of 0 corresponds to an entirely useless 

marker with constant marker-specific treatment effect, Δ(Y) = ρ0 − ρ1 > 0 for all Y. 

For such a marker, Θ = ρ1 − [ρ1 · 1+0 · 0] = 0. The maximum value of Θ is 

achieved when P(D = 1|T = 1, Δ(Y) > 0) = P(D = 1|T = 0, Δ(Y) < 0) = 0, so that Θ 

=ρ1 − [0 · P(Δ(Y) > 0)+0 · P(Δ(Y) < 0)] =ρ1.

The constituents of Θ, namely Bneg and Pneg, are helpful for dissecting the impact of the 

marker. The measures Bneg and Bpos inform on the average benefit of the treatment policies 

recommended to marker-negatives and marker-positives, respectively. Bneg itself has been 

advocated by some as a measure of marker performance (see Zhao et al. (2011), Baker and 

Kramer (2005)), but clearly cannot be interpreted in isolation as it can be made arbitrarily 

large by making the marker-negative subgroup more extreme; i.e. the size of the subgroup 

(Pneg) is also relevant.

We also consider two marker performance measures that do not depend on specification of a 

treatment rule:
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• Variance in treatment effect, VΔ =Var(Δ(Y)) = ∫ (Δ(Y)− (ρ0 − ρ1))2 dFΔ

• Total gain, the area between the treatment effect curve and the marginal treatment 

effect, TG = ∫ |Δ(Y) − (ρ0 − ρ1)| dFΔ.

The VΔ and TG measures suffer because of lack of clinical interpretation, but have the 

advantage of being independent of treatment rule and potentially form the basis for more 

efficient comparisons of markers. These measures are extensions of those used to evaluate 

markers for predicting risk of the event under a single treatment, rather than the treatment 

effect.

Table 1 contains estimates of VΔ and TG measures for markers Y1 and Y2 in the breast cancer 

example. Focusing on Y2, we see that the population impact of Y2-based-treatment is a 10% 

reduction in the 5-year recurrence or death rate; this is a consequence of 38% of subjects 

avoiding adjuvant chemotherapy and a 26% reduction in the event rate due to avoiding 

chemotherapy in this subgroup. Among marker-positives, chemotherapy decreases the event 

rate by 21% on average. Less interpretable, but somewhat useful for global marker 

comparisons, are the values of VΔ = 0.08 and TG = 0.22.

4.4 Estimation and Inference

Our proposed estimation and inference methods build on methodology developed for risk 

prediction (see Huang, Sullivan Pepe, and Feng (2007), Huang and Pepe (2010b,a)). This 

section overviews these approaches which are evaluated in a small-scale simulation study 

described in the appendix. An R software package that implements these methods is also 

described in the appendix.

4.4.1 Estimation—Given data consisting of i.i.d copies of (Yi,Ti,Di), i = 1, …,N, the first 

step in estimation is to fit a model for risk as a function of T and Y. We use a general linear 

regression risk model with an interaction between T and Y,

(1)

Typically we let g be the logit function because of its advantages with case-control data (see 

Section 6.2) and because we have found logistic regression to be remarkably robust to model 

mis-specification. We note that the general linear model (1) is flexible in that the marker Y 

can itself be a transformed marker value. The risk and treatment effect estimates that result 

from fitting from this model are written 

, and . We estimate the marker and treatment effect 

distributions empirically and denote these by F̂ and F̂
Δ. The estimated risk curves are 

 and  versus F̂(Y). Pointwise α-level horizontal confidence intervals 

inform about the variability in the proportion of participants at or below a given risk level; 

we obtain these using the percentile boot-strap method. The estimated treatment effect curve 

is Δ̂(Y) vs. F̂
Δ. Here pointwise horizontal confidence intervals capture the variability in the 

estimated proportion of individuals with treatment effects below a certain value.

Janes et al. Page 6

Int J Biostat. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For the summary measures that depend on treatment rule, we consider both “empirical” and 

“model-based” estimators. An empirical estimator uses the estimated risk model (1) to 

classify individuals as marker-positive or marker-negative, and the performance of this rule 

is estimated empirically. For a model-based estimator, the risk model is used both to classify 

each individual and to estimate the performance of the classification rule. For example, the 

empirical estimator of Bpos estimates the average treatment effect empirically given Δ ̂(Y) > 

0, and the model-based estimator averages Δ̂(Y) for this subgroup. The empirical estimators 

are less efficient but less reliant on risk model assumptions than model-based estimators (see 

appendix). The estimators are listed below, where e and m superscripts indicate empirical 

and model-based estimators, P̂ denotes an empirical probability estimate and Ê denotes an 

empirical mean:

The treatment-rule-independent summary measures are estimated using the following 

model-based estimators:

where ρ̂
0 and ρ̂

1 are empirical estimates of P(D = 1|T = 0) and P(D = 1|T = 1). Confidence 

intervals for each summary measure are obtained using the percentile bootstrap.

4.4.2 Hypothesis Testing—Testing whether a marker has any performance for treatment 

selection is of interest for two reasons. First, this is a logical first step in marker evaluation. 

Second, the performance measures described above may have poor statistical properties at 

and near the null of no marker performance. This is similar to problems that have been 

identified with measures of risk prediction model performance (see Vickers, Cronin, and 

Begg (2011), Kerr, McClelland, Brown, and Lumley (2011), Pepe, Kerr, Longton, and 

Wang (2011), Seshan, Gonen, and Begg (2012), Demler, Pencina, and D’Agostino (2012), 

Kerr, Wang, Janes, McClelland, Psaty, and Pepe (2013)); Section 7 includes further 

discussion of this point. Therefore, we advocate a simple pre-testing approach, whereby the 

marker performance measures are only estimated if the null hypothesis H0 : Θ=0 

corresponding to no marker performance is rejected.

For an unbounded marker, under risk model (1), H0 is equivalent to  where β3 is 

the coefficient of interaction in the risk model. Therefore H0 can be tested using a (most-

powerful) likelihood ratio (LR) test for β3. However if Y is bounded,  implies H0 but the 
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reverse does not hold; it is possible that β3 ≠ 0 but Θ = 0. Therefore we perform two 

hypothesis tests:  is tested using a LR test and  using a 

Wald or percentile-bootstrap-based test, where −β1/β3 is the marker value where Δ(Y) = 0 

under model (1) and Ymin and Ymax are the known upper and lower limits for Y. That is, 

testing  assesses whether the marker positivity threshold Y such that Δ(Y) = 0 lies within 

the range of possible marker values. We declare H0 to be rejected if both  and  are 

rejected. Using two-sided α-level tests for  and  controls the overall type-I error rate at 

α since 

. 

Other approaches have been proposed for testing the null of no marker performance (e.g. 

Gail and Simon (1985), Shuster and J. (1983)); optimizing this test is not our focus.

For the unbounded markers Y1 and Y2 in our breast cancer example, H0 is rejected with p = 

0.005 and p < 0.0001, respectively.

4.5 Calibration Assessment

Assessing model calibration is a fundamental step in marker evaluation. We rely on standard 

methods for visualizing and testing goodness of fit for the risk model (1), and extend these 

methods to assess calibration of the treatment effect model.

Since patients are provided risk estimates under both treatment options, first we assess the fit 

of the risk model separately in the two treatment groups. Specifically, we define a well-

calibrated model to be one for which P(D = 1|T = 0, Risk0(Y) = r) ≈ r and P(D = 1|T = 1, 

Risk1(Y) = r) ≈ r. To assess this, we split each treatment group t = 0,1 into G equally-sized 

groups where the observations in each group have similar . Commonly G = 10 and 

the groups are based on quantiles of . In each group, we calculate the average 

predicted risks, , and the observed risks, P̂(D = 1|T = t, G = g). Following Huang 

and Pepe (2010a), we plot the distribution of  and , overlaying the G 

observed risk values on the plot, as shown in Figure 3.

To formally assess model calibration, a traditional Hosmer-Lemeshow goodness of fit test 

(Lemeshow and Hosmer (1982)) can be applied separately to the two treatment groups. 

Specifically, for group T = t the test statistic

where Ntg is the number of participants in the gth group for T = t, is compared to a χ2 

distribution with G − 2 degrees of freedom.

Another aspect of calibration is the extent to which the treatment effect model fits well. We 

want to ensure that P(D = 1|T = 0, Δ(Y) =δ) − P(D = 1|T = 1,Δ(Y) =δ) ≈ δ. Following the 
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approach above, we split the data into G evenly-sized groups based on Δ̂(Y) and calculate 

the average predicted treatment effect, Δ̄g(Y), and observed treatment effect, P̂(D=1|T 

=0,G=g) − P̂(D=1|T =1,G= g), in each group. We plot the treatment effect curve and overlay 

the G observed treatment effect values as shown in Figure 3. Based on Figure 3 we see that 

the risk and treatment effect models for Y1 and Y2 in the breast cancer example are well-

calibrated; the Hosmer-Lemeshow test statistics are 4.5 (p = 0.81) and 8.9 (p = 0.35) given T 

= 0 and 5.0 (p = 0.76) and 2.9 (p = 0.94) given T = 1. The Risk0(Y2) and Δ(Y1) curves 

suggest some evidence of poor calibration, which in our simulated data setting is attributable 

to sampling variability in the observed risks that are calculated using 50 observations each.

5 Comparing Markers

The descriptives and summary measures proposed herein form the basis for comparing 

candidate markers. We assume that the two markers, Y1 and Y2, are measured on the same 

subjects, i.e. that the data are paired. With unpaired data, the analyses described above can 

be applied to each individual data set and inferences can be drawn easily given that the 

estimated summary measures are statistically independent.

For drawing inference about the relative performance of two markers given paired data, 

confidence intervals for the differences in performance measures and hypothesis tests of 

whether these differ from zero are informative. We fit separate models for P(D = 1|T,Y1) and 

P(D = 1|T,Y2), use these to estimate performance measures for Y1 and Y2, respectively, and 

bootstrap the differences in estimated performance measures. While global measures of 

marker performance such as Θ, VΔ, and TG are appropriate as the basis for formal marker 

comparisons, differences in the other summary measures inform about the nature of the 

difference between markers. We advocate Θ as the primary measure on which to base 

marker comparisons, given its clear clinical relevance and interpretation.

The results of the comparative analysis for the breast cancer example are shown in Table 1. 

We can see clearly that Y2 has uniformly better performance than Y1, with an estimated 10% 

vs. 1% reduction in the 5-year recurrence or death rate. Despite the fact that there are 

estimated to be fewer marker-negative subjects based on Y2 (38% vs. 46%), there is a much 

greater estimated benefit of no chemotherapy among Y2-marker-negatives (26% vs. 2% 

reduction in the 5-year recurrence or death rate). In general the variation in treatment effect 

is larger for Y2.

6 Extensions

6.1 General Treatment Rules

In some settings there may be additional consequences of treatment that are not captured in 

the outcome, for example treatment-associated toxicities. This means that a treatment effect 

somewhat above zero may still warrant no treatment because it is offset by the other 

consequences of treatment. In these settings the optimal treatment rule can be shown to be
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where δ > 0 is equal to the burden of treatment relative to that of the adverse event (Vickers 

et al. (2007), Janes et al. (2013)). The performance measures described above generalize 

naturally to this treatment rule:

Note that the VΔ and TG measures do not require specification of a treatment rule. Further 

generalization to the setting where the burden of treatment and/or of the adverse event varies 

between individuals, perhaps as a function of Y, is described by Janes et al. (2013).

6.2 Case-Control Sampling

The methods described above apply to the setting where the marker is measured at baseline 

on all RCT participants. However when the outcome D is rare, case-control sampling from 

within the RCT is a well-known efficient alternative that recovers much of the information 

contained in the entire trial population. This section extends the methods to the setting where 

the data consist of a case-control sample from the RCT, or a case-control sample stratified 

on treatment assignment, T. We consider case-control designs that sample all or a fixed 

proportion of the cases in the RCT, as well as a number of controls (perhaps stratified on T) 

that is a fixed multiple of the number of cases sampled.

Consider first unstratified case-control sampling. Suppose ND and ND̄ cases and controls 

occur in the trial “cohort” (N = ND +ND̄). The case-control sample consists of a sample of nD 

= f · ND cases and nD̄ = k · nD controls, where f ∈ (0,1] and the control:case ratio k is an 

integer. Commonly all the cases are sampled (f = 1) and 1–5 controls are sampled per case. 

Alternatively f may be set to a value less than 1 for a common event or when budget 

concerns or sample availability limit the number of cases that can be sampled; in these 

instances we assume that selection into the case-control sample is completely random 

conditional on D = 1.

Let S = 1 be an indicator of selection into the case-control sample. Given the case-control 

data, the task is to correct the estimates of P(D = 1|T,Y,S = 1) and P(Δ(Y) < δ |S = 1) for the 

case-control sampling. Suppose that an estimate of P(D = 1) is available from the cohort. 

Using Bayes’ Theorem and the assumption of case-control sampling that P(S=1|

T,Y,D)=P(S=1|D) we obtain he following identity which is used to correct the estimates of 

P(D = 1|T,Y,S = 1) for the case-control sampling:
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This result was originally cited by Prentice and Pyke (1979) as the rationale for using 

logistic regression to model risk with case-control data. Note that P(D = 1|T,Y,S = 1) can be 

estimated using the logistic regression risk model (1) fit to the case-control data, P(D = 1) 

can be estimated from the trial cohort, and P(D = 1|S = 1) estimated from the case-control 

data.

The distribution of Δ(Y), or equivalently of Y itself, can be estimated in the cases and 

controls in the case-control data and corrected to the cohort distribution via

where superscript cc denotes estimation in the case-control sample and D and D̄ subscripts 

denote case and control subsets.

We use a modified bootstrapping procedure for case-control data. To reproduce the 

variability in the cohort from which the case-control study is sampled, we first sample 

 and set . Next we sample  cases and 

 controls from the subjects in the case-control study. The estimation procedure is 

then performed in each bootstrap sample and quantiles of the bootstrap distribution are used 

to characterize uncertainty.

Case-control sampling stratified on treatment assignment can also be accommodated. Here 

we assume a cohort with (ND0,ND̄0,ND1,ND̄1) subjects in each D×T stratum. The case-

control sample consists of nD0 = f0 · ND0 and nD1 = f1 · ND1 cases for fixed proportions f0 

and f1 in the two treatment groups, and nD̄0 = k0 · nD0 and nD̄1 = k1 · nD1 controls for fixed 

control:case ratios k0 and k1. Assume that estimates of P(D = 1|T = 0), P(D = 1|T = 1), and 

P(T = 1) are available from the cohort. A similar identity can be exploited for estimation:

The distribution of Δ(Y) combines empirical CDFs from the four D×T strata:

Bootstrapping is implemented by first sampling 

, and 

 where . The stratified case-control sample is 

then sampled from the case and control subsets.

For calibration assessment, we plot observed and predicted risks and treatment effects as 

described in Section 4.5, where all are corrected for the biased sampling as described above. 
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We also implement a variation on the Hosmer-Lemeshow test applied to case-control data 

(expression (7) of Huang and Pepe (2010a)).

7 Discussion

This paper proposes a statistical framework for evaluating a candidate treatment selection 

marker and for comparing two markers. Estimation and inference techniques are described 

for the setting where the marker or markers are measured on all or a treatment-stratified 

case-control sample of participants in a randomized, controlled trial. An R software package 

was developed which implements these methods. Developing a solid framework for 

evaluating and comparing markers is fundamental for accomplishing more sophisticated 

tasks such as combining markers, accounting for covariates, and assessing the improvement 

in performance associated with adding a new marker to a set of established markers.

Our approach to marker evaluation also applies when the marker is discrete. In addition, it 

can be applied when there are multiple markers and interest lies in evaluating their 

combination; Δ(Y)=P(D=1|T =0,Y)− P(D=1|T =1,Y) is the combination of interest and the 

measures described here can be used to summarize the performance of this combination.

This work extends existing approaches for evaluating markers for risk prediction (see Pepe 

and Janes (2012), Huang et al. (2007), Gu and Pepe (2009)). It also unifies existing 

methodology for evaluating treatment selection markers. In particular, our preferred marker 

performance measure has been advocated by Song and Pepe (2004), Brinkley et al. (2010), 

Janes et al. (2011), Gunter et al. (2011), Qian and Murphy (2011), McKeague and Qian 

(2013), Zhang et al. (2012).

There are challenges with making inference about the performance measures we propose, 

similar to problems that have been identified with measures of risk prediction model 

performance including the area under the ROC curve (Vickers et al. (2011), Pepe et al. 

(2011), Seshan et al. (2012), Demler et al. (2012)), the integrated discrimination index (Kerr 

et al. (2011)), and the net reclassification index (Kerr et al. (2013)). The problems may arise 

when the sample size is modest and marker performance is weak. In particular for the 

Oncotype DX example, given that the marker is weak and the primary study evaluating its 

performance by Albain et al. (2010) included just 367 women, our simulation results suggest 

that the resultant estimate of Θ is likely an over-estimate and that the confidence interval 

may be conservative. For this reason, we propose testing for non-null marker performance 

prior to estimating the magnitude of performance. This approach performed reasonably well 

in our simulation studies, but improved approaches to inference, for the treatment selection 

as well as risk prediction problem, merit investigation.

The methods described here can and should be extended to accommodate other types of 

outcomes. Extension to continuous or count outcomes is straight-forward. Specifically, after 

replacing P(D = 1) with E(D) and using a risk model appropriate to the scale of the outcome, 

e.g. a linear or log-linear model for a continuous outcome, the analysis proceeds as above. 

The conceptual framework also applies to time-to-event outcomes, with the task being to 

predict risk of the outcome by a specified landmark time.
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The methods may also be generalized to an observational study setting, or to a setting where 

data on the two treatments come from two different studies– perhaps historical data are 

paired with a single-arm trial of T = 1. However the usual concerns about measured and 

unmeasured confounding in estimating the treatment effect apply. In this setting an analyst 

would be well-advised to stratify on variables that are potentially associated with treatment 

provision and outcome. More generally, methods for adjusting for covariates in the 

evaluation of marker performance warrant further research.
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8 Appendix

8.1 Simulation Studies

This section describes a small-scale simulation study that was performed to evaluate the 

statistical performance of our methods. Data were simulated to reflect the breast cancer RCT 

example, with T an indicator of chemotherapy in addition to tamoxifen, randomly assigned 

to half of study participants. Rates of 5-year breast cancer recurrence or death (D) were set 

to 21% and 24% with and without chemotherapy, respectively, as in SWOG SS8814 (Albain 

et al. (2010)). We explored the performance of the methods for a weak marker and a strong 

marker, both of which relate to D via the linear logistic model (1). The weak marker, Y1, 

mimics the performance of the Oncotype-DX recurrence score as seen in (Albain et al. 

(2010));  is normally distributed with mean 4.8 and standard deviation 1.8. The strong 

marker, Y2, follows a standard normal distribution. We used the following procedure to 

simulate data. We denote the potential outcomes with and without treatment by D(1) and 

D(0). We specified models for P(D(0),D(1)|Yj), j = 1,2 that induce marginal linear logistic 

models as in (1). Specifically, we assumed

(1a)

where k ensures that
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and

(2a)

These models fully specify the joint distribution of (D(0),D(1)) given Yj, j = 1, 2. Note that 

our measures and estimators depend only on the marginal distributions P(D(0) = 1|Yj) and 

P(D(1) = 1|Yj), j = 1, 2, and hence are invariant to the choice of joint distribution. Next, we 

used Bayes Theorem to calculate P(Yj|D(0),D(1)), j =1, 2. We first simulated pairs of 

potential outcomes (D(0),D(1)) from the multi-nomial distribution induced by (1a) and (2a). 

Then we simulated independent Y1 and Y2 from P(Yj|D(0),D(1)), j = 1, 2. Treatment 

assignment, T, was generated independent of potential outcomes and marker values. The 

observed outcome D was defined as D = D(1)T +D(0)(1−T). True values for the marker 

performance measures were calculated as the average parameter estimates, using the true 

risk function (1), across 10 very large datasets (N = 20,000, 000).

We explore the bias and variance of the parameter estimates and false-coverage probabilities 

of the bootstrap percentile confidence intervals (CIs) for sample sizes ranging from N = 250 

to N = 5, 000. A total of 5,000 simulations were performed for each sample size. To explore 

the impact of our proposed pre-testing strategy, whereby the parameters are not estimated if 

H0 : Θ = 0 is not rejected, we evaluate the parameter estimates and confidence intervals 

marginally and conditionally. Marginal means of parameter estimates include all estimates 

regardless of H0 rejection, and conditional means are computed only among datasets where 

H0 is rejected. The following probabilities of false coverage of nominal 95% CIs are 

evaluated: 1. Marginal probability of false coverage, where CIs are calculated regardless of 

H0 rejection; 2. Conditional probability of false coverage, computed only among datasets 

where H0 is rejected; and 3. Probability of rejecting H0 and the CI not covering the true 

value, termed the “false conclusion probability” (Benjamini and Yekuteili (2005)).

8.1.1 Strong Marker

The results for the strong marker are contained in Tables A.1, A.2, and A.3. For this marker, 

we see that the estimates and CIs have uniformly good performance. Marginal bias is small 

and false coverage is near nominal; the pre-testing has no impact because of the 100% 

power to reject H0 for this marker. There is minimal increase in variance due to using 

empirical vs. model-based estimators.

8.1.2 Weak Marker

The results for the weak marker are contained in Tables A.4, A.5, and A.6. With N = 250 or 

500, conditional on rejecting H0 the bias in parameter estimates and false-coverage of CIs 

can be substantial; however rejecting H0 is unlikely with power 21% or 36%. Marginally, 

mean parameter estimates are substantially closer to their true values and false-coverage 

probabilities are generally near-nominal. False conclusion probabilities are less than nominal 
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but sometimes substantially below 0.05 indicating over-conservatism. With N = 1,000 or 

5,000, conditional and marginal bias is generally small and false-coverage probabilities are 

near or below nominal. False conclusion probabilities continue to be less than nominal. This 

example demonstrates that, for markers with near-null performance, substantial sample sizes 

are required for accurate inference. We also see that with smaller sample sizes there can be a 

substantial increase in variability associated with use of empirical vs. model-based 

estimators.

8.2 Software

We developed a package in the open-source software R called TreatmentSelection that 

implements our methods for evaluating individual markers and for comparing markers. The 

software is available at http://labs.fhcrc.org/janes/index.html. The following functions are 

included:

• trtsel creates a treatment selection object

• eval.trtsel evaluates a treatment selection object, producing estimates and 

confidence intervals for the summary measures described in Section 4.3

• plot.trtsel plots a treatment selection object, producing risk curves and the treatment 

effect curve described in Section 4.2

• calibrate.trtsel assesses the calibration of a fitted risk model and treatment effect 

model using methods described in Section 4.5

• compare.trtsel compares two markers using methods described in Section 5

Case-control and treatment-stratified case-control sampling are accommodated.

Here we illustrate use of the code by showing how the results shown in Figures 1–3 and 

Table 1 of the main text are produced. First we load the data using the following commands.

> library(TreatmentSelection)

> data(tsdata)

> tsdata[1:10,]

trt event Y1 Y2

1 1 1 39.9120 -0.8535

2 1 0 6.6820 0.2905

3 1 0 6.5820 0.0800

4 0 0 1.3581 1.1925

5 0 0 7.6820 -0.2070

6 0 0 41.1720 -0.0880

7 1 0 19.4920 0.1670

8 1 1 20.8220 -1.0485

9 0 0 6.9620 -0.2435

10 0 0 2.5020 0.2030
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Treatment selection objects are created and displayed for Y1 and Y2 using the commands

> trtsel.Y1 <- trtsel(event = “event”, trt = “trt”, marker = “Y1”,

data = tsdata, study.design=”randomized cohort”

)

> trtsel.Y1

Study design: randomized cohort

Model Fit:

Link function: logit

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.51814383 0.235642511 -10.686288 1.179991e-26

trt 0.48938620 0.311762857 1.569739 1.164759e-01

marker 0.04760056 0.006453791 7.375597 1.636104e-13

trt:marker -0.02318881 0.008324063 -2.785756 5.340300e-03

Derived Data: (first ten rows)

event trt marker fittedrisk.t0 fittedrisk.t1 trt.effect marker.neg

1 1 1 39.9120 0.35016583 0.2583742 0.0917916549 0

2 0 1 6.6820 0.09974358 0.1340472 -0.0343036269 1

3 0 1 6.5820 0.09931697 0.1337641 -0.0344471266 1

4 0 0 1.3581 0.07918316 0.1196652 -0.0404820847 1

5 0 0 7.6820 0.10410005 0.1369063 -0.0328062456 1

6 0 0 41.1720 0.36393311 0.2643117 0.0996213622 0

7 0 1 19.4920 0.16933976 0.1746644 -0.0053246137 1

8 1 1 20.8220 0.17843231 0.1793943 -0.0009620341 1

9 0 0 6.9620 0.10094678 0.1348426 -0.0338958439 1

10 0 0 2.5020 0.08324538 0.1226384 -0.0393929781 1

> trtsel.Y2 <- trtsel(event = “event”, trt = “trt”, marker = “Y2”,

data = tsdata, study.design=”randomized cohort”

)

> trtsel.Y2

Study design: randomized cohort

Model Fit:

Link function: logit

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2107912 0.1131642 -10.699416 1.024216e-26

trt -0.5169008 0.1863643 -2.773604 5.543912e-03

marker 0.5779172 0.1148643 5.031305 4.871514e-07

trt:marker -2.0455033 0.2064547 -9.907756 3.851994e-23

Derived Data: (first ten rows)

event trt marker fittedrisk.t0 fittedrisk.t1 trt.effect marker.neg

1 1 1 -0.8535 0.1539379 0.38340813 -0.229470242 1

2 0 1 0.2905 0.2605896 0.10395563 0.156633982 0
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3 0 1 0.0800 0.2378401 0.13644937 0.101390712 0

4 0 0 1.1925 0.3724723 0.02995087 0.342521474 0

5 0 0 -0.2070 0.2090899 0.19405065 0.015039232 0

6 0 0 -0.0880 0.2206903 0.16818515 0.052505186 0

7 0 1 0.1670 0.2470740 0.12209072 0.124983277 0

8 1 1 -1.0485 0.1398258 0.45290799 -0.313082172 1

9 0 0 -0.2435 0.2056229 0.20256576 0.003057187 0

10 0 0 0.2030 0.2509647 0.11653995 0.134424710 0

The descriptives shown in Figure 1 are produced using

> plot.trtsel(trtsel.Y1, main = “Y1: Oncotype-DX-like marker”,

bootstraps = 500,

trt.names=c(“chemo.”,”no chemo.”

))

> plot.trtsel(trtsel.Y2, main = “Y2: Strong marker”,

bootstraps = 500,

trt.names=c(“chemo.”,”no chemo.”

))

Calibration is assessed and displayed as shown in Figure 3 using

> cali.Y1 <- calibrate.trtsel(trtsel.Y1)

> cali.Y1

Hosmer - Lemeshow test for model calibration

---------------------------------------------------------

No Treatment (trt = 0):

Test Statistic = 4.496, DF = 8, p value = 0.8098813

Treated (trt = 1):

Test Statistic = 4.986, DF = 8, p value = 0.7591213

> cali.Y2 <- calibrate.trtsel(trtsel.Y2)

> cali.Y2

Hosmer - Lemeshow test for model calibration

----------------------------------------------------------

No Treatment (trt = 0):

Test Statistic = 8.896, DF = 8, p value = 0.3511235

Treated (trt = 1):

Test Statistic = 2.868, DF = 8, p value = 0.9423597

calibrate.trtsel(trtsel.Y1, plot.type = “risk.t0”)

calibrate.trtsel(trtsel.Y2, plot.type = “risk.t0”)

calibrate.trtsel(trtsel.Y1, plot.type = “risk.t1”)

calibrate.trtsel(trtsel.Y2, plot.type = “risk.t1’)
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calibrate.trtsel(trtsel.Y1, plot.type = “treatment effect’)

calibrate.trtsel(trtsel.Y2, plot.type = “treatment effect”)

The summary measure estimates and confidence intervals shown in Table 1 are obtained by

> eval.Y1 <- eval.trtsel(trtsel.Y1, bootstraps = 500)

> eval.Y1

Hypothesis test:

----------------------

H0: No marker-by-treatment interaction

P value = 0.00534

Z statistic = -2.786

Summary Measure Estimates (with 95% confidence intervals)

-----------------------------------------------------------------------------

Decrease in event rate under marker-based treatment (Theta)

Empirical: 0.013 (-0.01,0.044)

Model Based: 0.01 (0,0.038)

Proportion marker negative:

0.461 (0,0.717)

Proportion marker positive:

0.539 (0.283,1)

Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.029 (-0.07,0.075)

Model Based: 0.023 (0,0.059)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.089 (0.014,0.15)

Model Based: 0.098 (0.04,0.146)

Variance in estimated treatment effect:

0.007 (0.001,0.017)

Total Gain:

0.066 (0.026,0.1)

Marker positivity threshold: 21.082

Event Rates:

-----------------------

Treat all Treat None Marker-based Treatment

Empirical: 0.251 0.217 0.204

(0.210,0.291) (0.182,0.251) (0.171,0.241)

Model Based: 0.257 0.214 0.204

(0.217,0.295) (0.179,0.248) (0.169,0.232)

> eval.Y2 <- eval.trtsel(trtsel.Y2, bootstraps = 500)

> eval.Y2

Hypothesis test:

-----------------------

H0: No marker-by-treatment interaction
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P value = 0

Z statistic = -9.908

Summary Measure Estimates (with 95% confidence intervals)

-----------------------------------------------------------------------------

-

Decrease in event rate under marker-based treatment (Theta)

Empirical: 0.09 (0.064,0.122)

Model Based: 0.099 (0.074,0.128)

Proportion marker negative:

0.377 (0.306,0.467)

Proportion marker positive:

0.623 (0.533,0.694)

Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.238 (0.173,0.304)

Model Based: 0.262 (0.211,0.315)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.203 (0.157,0.266)

Model Based: 0.211 (0.171,0.259)

Variance in estimated treatment effect:

0.08 (0.057,0.108)

Total Gain:

0.224 (0.187,0.262)

Marker positivity threshold: -0.258

Event Rates:

--------------------------

Treat all Treat None Marker-based Treatment

Empirical: 0.251 0.217 0.128

(0.215,0.290) (0.186,0.252) (0.096,0.155)

Model Based: 0.245 0.212 0.113

(0.210,0.282) (0.180,0.245) (0.090,0.135)

The markers are compared based on summary measures, and visually (as in Figure 2) using

> mycompare <- compare.trtsel(trtsel1 = trtsel.Y1,

trtsel2 = trtsel.Y2,

bootstraps = 500,

plot = TRUE,

main=””,

marker.names=c(“Y1”,”Y2”))

> mycompare

Summary Measure Estimates

(with 95% confidence intervals)

marker 1 | marker 2 | difference (p-value)

-----------------------------------------------------------------------------
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----------------

Decrease in event rate under marker-based treatment (Theta)

Empirical: 0.013 | 0.090 | -0.076 (< 0.002)

(-0.007,0.049) | (0.062,0.124) | (-0.111,-0.043)

Model Based: 0.010 | 0.099 | -0.088 (< 0.002)

(0.000,0.039) | (0.070,0.130) | (-0.112,-0.058)

Proportion marker negative:

0.461 | 0.377 | 0.084 (0.664)

(0.000,0.707) | (0.305,0.471) | (-0.360,0.258)

Average benefit of no treatment among marker-negatives (B.neg)

Empirical: 0.029 | 0.238 | -0.209 (< 0.002)

(-0.071,0.082) | (0.176,0.307) | (-0.331,-0.132)

Model Based: 0.023 | 0.262 | -0.239 (< 0.002)

(0.000,0.061) | (0.205,0.308) | (-0.288,-0.169)

Average benefit of treatment among marker-positives (B.pos)

Empirical: 0.089 | 0.203 | -0.114 (0.002)

(0.007,0.161) | (0.162,0.266) | (-0.201,-0.035)

Model Based: 0.098 | 0.211 | -0.113 (< 0.002)

(0.042,0.162) | (0.175,0.259) | (-0.177,-0.038)

Variance in estimated treatment effect:

0.007 | 0.080 | -0.073 (< 0.002)

(0.001,0.021) | (0.054,0.110) | (-0.103,-0.043)

Total Gain:

0.066 | 0.224 | -0.158 (< 0.002)

(0.027,0.111) | (0.181,0.266) | (-0.214,-0.091)

If instead the dataset with D, Y1, and T measurements consisted of a case-control sample 

from within an RCT, given estimates of P(T = 1) and P(D = 1) from the trial cohort (call 

these “Rand.frac” and “Risk.cohort”) and the size of the trial cohort, N, the only 

modification would be in creating the treatment selection object:

cctrtsel.Y1 <- trtsel(event = “event”, treatment = “trt”, marker = “Y1”,

data = tsdata, cohort.attributes = c(N, Rand.frac, Risk.cohort

),

study.design=”nested case-control”)
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Table A.1

Mean parameter estimates for the strong marker. For Θ, Bneg, and Bpos, results are shown for 

both empirical and model-based estimators. The probability of rejecting H0 : Θ = 0 is shown 

along with marginal and conditional means of parameter estimates. Marginal means include 

all parameter estimates, regardless of H0 rejection. Conditional means are only computed 

among trials for which H0 was rejected. True parameter values are shown in parentheses.

N

Prob. Reject H0 Θ (0.110) Pneg (0.379) Bneg (0.291) Bpos (0.228) VΔ (0.094) TG (0.245)

Mod. Emp. Mod. Emp. Mod. Emp.

Marginal 250 1 0.113 0.112 0.380 0.295 0.293 0.230 0.229 0.097 0.246

500 1 0.112 0.112 0.380 0.293 0.293 0.230 0.230 0.096 0.246

1000 1 0.111 0.111 0.379 0.292 0.292 0.229 0.229 0.095 0.246

5000 1 0.110 0.110 0.379 0.291 0.291 0.228 0.228 0.094 0.246

Conditional 250 1 0.113 0.112 0.380 0.295 0.293 0.230 0.229 0.097 0.246

500 1 0.112 0.112 0.380 0.293 0.293 0.230 0.230 0.096 0.246

1000 1 0.111 0.111 0.379 0.292 0.292 0.229 0.229 0.095 0.246

5000 1 0.110 0.110 0.379 0.291 0.291 0.228 0.228 0.094 0.246

Table A.2

False coverage results for the strong marker. For Θ, Bneg, and Bpos, results are shown for 

both empirical and model-based estimators. Percentile bootstrap confidence intervals (CIs) 

are evaluated using: Marginal false coverage, the proportion of CIs that do not cover the true 

value regardless of H0 rejection; conditional false coverage, the proportion of CIs that do not 

cover the true value among datasets where H0 is rejected; and false conclusion probability, 

the proportion of datasets where H0 is rejected and the CI does not cover the true value. The 

probability of rejecting H0 : Θ = 0 is also shown.

N

Prob. Reject H0 Θ Pneg Bneg Bpos VΔ TG

Mod. Emp. Mod. Emp. Mod. Emp.

Marg. false cov. 250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056

500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055

5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056

Cond. false cov. 250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056

500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055

5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056

False concl. 250 1 0.059 0.045 0.052 0.056 0.030 0.051 0.034 0.056 0.056

500 1 0.054 0.043 0.053 0.050 0.031 0.050 0.038 0.054 0.053

1000 1 0.056 0.055 0.051 0.049 0.044 0.047 0.044 0.055 0.055

5000 1 0.055 0.051 0.055 0.056 0.048 0.052 0.049 0.053 0.056
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Table A.3

Empirical standard deviations of parameter estimates for the strong marker. For Θ, Bneg, and 

Bpos, results are shown for both empirical and model-based estimators. Calculations are 

done marginally; all parameter estimates are included regardless of H0 rejection. True 

parameter values are shown in parentheses.

N

Θ (0.110) Pneg (0.379) Bneg (0.291) Bpos (0.228) VΔ (0.094) TG (0.245)

Mod. Emp. Mod. Emp. Mod. Emp.

250 0.031 0.035 0.072 0.057 0.072 0.045 0.05 0.03 0.042

500 0.022 0.024 0.051 0.039 0.048 0.031 0.036 0.021 0.029

1000 0.016 0.018 0.036 0.028 0.035 0.022 0.025 0.015 0.021

5000 0.007 0.008 0.016 0.012 0.015 0.01 0.011 0.007 0.009

Table A.4

Mean parameter estimates for the weak marker. For Θ, Bneg, and Bpos, results are shown for 

both empirical and model-based estimators. The probability of rejecting H0 : Θ = 0 is shown 

along with marginal and conditional means of parameter estimates. Marginal means include 

all parameter estimates, regardless of H0 rejection. Conditional means are only computed 

among trials for which H0 was rejected. True parameter values are shown in parentheses.

N

Prob. Reject H0 Θ (0.0095) Pneg (0.439) Bneg (0.022) Bpos (0.073) VΔ (0.005) TG (0.050)

Mod. Emp. Mod. Emp. Mod. Emp.

Marginal 250 0.217 0.022 0.022 0.423 0.036 0.036 0.090 0.090 0.009 0.060

500 0.364 0.016 0.015 0.410 0.027 0.026 0.080 0.080 0.007 0.055

1000 0.63 0.013 0.013 0.405 0.024 0.024 0.076 0.076 0.006 0.054

5000 0.999 0.010 0.010 0.426 0.022 0.022 0.073 0.073 0.005 0.053

Conditional 250 0.217 0.042 0.041 0.547 0.071 0.069 0.159 0.154 0.022 0.112

500 0.364 0.026 0.025 0.509 0.046 0.044 0.117 0.117 0.013 0.084

1000 0.630 0.017 0.017 0.473 0.032 0.032 0.091 0.090 0.008 0.066

5000 0.999 0.010 0.010 0.426 0.022 0.022 0.073 0.073 0.005 0.053
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Table A.5

False coverage results for the weak marker. For Θ, Bneg, and Bpos, results are shown for both 

empirical and model-based estimators. Percentile bootstrap confidence intervals (CIs) are 

evaluated using: Marginal false coverage, the proportion of CIs that do not cover the true 

value regardless of H0 rejection; conditional false coverage, the proportion of CIs that do not 

cover the true value among datasets where H0 is rejected; and false conclusion probability, 

the proportion of datasets where H0 is rejected and the CI does not cover the true value. The 

probability of rejecting H0 : Θ = 0 is also shown.

N

Prob. Reject H0 Θ Pneg Bneg Bpos VΔ TG

Mod. Emp. Mod. Emp. Mod. Emp.

Marg. false cov. 250 0.217 0.054 0.030 0.059 0.053 0.023 0.063 0.026 0.034 0.035

500 0.364 0.043 0.021 0.052 0.034 0.014 0.048 0.022 0.029 0.030

1000 0.630 0.050 0.026 0.055 0.034 0.015 0.047 0.018 0.052 0.051

5000 0.999 0.057 0.037 0.058 0.058 0.020 0.058 0.036 0.060 0.058

Cond. false cov. 250 0.217 0.162 0.089 0.102 0.190 0.074 0.248 0.088 0.158 0.161

500 0.364 0.083 0.043 0.065 0.086 0.032 0.121 0.057 0.081 0.083

1000 0.630 0.045 0.028 0.043 0.047 0.023 0.061 0.028 0.046 0.044

5000 0.999 0.056 0.037 0.058 0.057 0.020 0.057 0.035 0.058 0.057

Marg. false concl. 250 0.217 0.035 0.019 0.022 0.041 0.016 0.054 0.019 0.034 0.035

500 0.364 0.030 0.016 0.024 0.031 0.012 0.044 0.021 0.029 0.030

1000 0.630 0.028 0.018 0.027 0.030 0.014 0.038 0.018 0.029 0.028

5000 0.999 0.056 0.037 0.058 0.057 0.020 0.057 0.035 0.058 0.057

Table A.6

Empirical standard deviations of parameter estimates for the weak marker. For Θ, Bneg, and 

Bpos, results are shown for both empirical and model-based estimators. Calculations are 

done marginally; all parameter estimates are included regardless of H0 rejection. True 

parameter values are shown in parentheses.

N

Θ (0.0095) Pneg (0.439) Bneg (0.022) Bpos (0.073) VΔ (0.005) TG (0.050)

Mod. Emp. Mod. Emp. Mod. Emp.

250 0.025 0.029 0.309 0.032 0.09 0.051 0.083 0.009 0.037

500 0.017 0.02 0.27 0.023 0.061 0.037 0.065 0.006 0.028

1000 0.012 0.014 0.22 0.017 0.045 0.027 0.033 0.004 0.021

5000 0.005 0.007 0.106 0.008 0.013 0.013 0.015 0.002 0.01
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Figure 1. 
Risk of 5-year breast cancer recurrence or death as a function of treatment assignment and 

marker percentile, for Y1, the Oncotype-DX-like marker (top), and the strong marker, Y2 

(bottom). Horizontal pointwise 95% confidence intervals are shown. Fourty-six percent of 

women have negative treatment effects according to Y1 vs. 38% with Y2; these women can 

avoid adjuvant chemotherapy.
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Figure 2. 
Distribution of the treatment effect, as measured by the difference in the 5-year breast cancer 

recurrence or death rate without vs. with treatment, Δ(Y) = P(D = 1|T = 0,Y)−P(D = 1|T = 

1,Y), for the Oncotype-DX-like marker (Y1) and the strong marker (Y2). Horizontal 

pointwise 95% confidence intervals are shown.
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Figure 3. 
Plots assessing calibration of the risk and treatment effect models, for the Oncotype-DX-like 

marker (left) and the strong marker (right).

Janes et al. Page 28

Int J Biostat. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Janes et al. Page 29

T
ab

le
 1

E
st

im
at

es
 o

f 
va

ri
ou

s 
m

ea
su

re
s 

of
 m

ar
ke

r 
pe

rf
or

m
an

ce
 f

or
 th

e 
O

nc
ot

yp
e-

D
X

-l
ik

e 
m

ar
ke

r 
(Y

1)
 a

nd
 th

e 
st

ro
ng

 m
ar

ke
r 

(Y
2)

 in
 th

e 
br

ea
st

 c
an

ce
r 

ex
am

pl
e.

M
ar

ke
r 

Y
1

M
ar

ke
r 

Y
2

M
ar

ke
r 

Y
1 

vs
. Y

2

M
ea

su
re

E
st

im
at

or
E

st
im

at
e 

(9
5%

 C
I)

E
st

im
at

e 
(9

5%
 C

I)
E

st
im

at
ed

 D
if

f.
 (

95
%

 C
I)

P
-v

al
ue

 f
or

 d
if

f.

Θ
Θ

ê
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