
SNF5 Reexpression in Malignant Rhabdoid Tumors Regulates 
Transcription of Target Genes by Recruitment of SWI/SNF 
Complexes and RNAPII to the Transcription Start Site of Their 
Promoters

Yasumichi Kuwahara1,5, Darmood Wei1,2, Joel Durand1,3, and Bernard E. Weissman1,2,3,4

1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel 
Hill, North Carolina

2Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

3Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 
Chapel Hill, North Carolina

4Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 
Chapel Hill, North Carolina

5Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan

Abstract

Malignant rhabdoid tumor (MRT), a highly aggressive cancer of young children, displays 

inactivation or loss of the hSNF5/INI1/SMARCB1 gene, a core subunit of the SWI/SNF chromatin-

remodeling complex, in primary tumors and cell lines. We have previously reported that 

reexpression of hSNF5 in some MRT cell lines causes a G1 arrest via p21CIP1/WAF1 (p21) mRNA 

induction in a p53-independent manner. However, the mechanism(s) by which hSNF5 

reexpression activates gene transcription remains unclear. We initially searched for other hSNF5 

target genes by asking whether hSNF5 loss altered regulation of other consensus p53 target genes. 

Our studies show that hSNF5 regulates only a subset of p53 target genes, including p21 and 

NOXA, in MRT cell lines. We also show that hSNF5 reexpression modulates SWI/SNF complex 
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levels at the transcription start site (TSS) at both loci and leads to activation of transcription 

initiation through recruitment of RNA polymerase II (RNAPII) accompanied by H3K4 and 

H3K36 modifications. Furthermore, our results show lower NOXA expression in MRT cell lines 

compared with other human tumor cell lines, suggesting that hSNF5 loss may alter the expression 

of this important apoptotic gene. Thus, one mechanism for MRT development after hSNF5 loss 

may rely on reduced chromatin-remodeling activity of the SWI/SNF complex at the TSS of 

critical gene promoters. Furthermore, because we observe growth inhibition after NOXA 

expression in MRT cells, the NOXA pathway may provide a novel target with clinical relevancy 

for treatment of this aggressive disease.

Introduction

Malignant rhabdoid tumor (MRT) is a rare and extremely aggressive childhood cancer, 

originally described as an unfavorable histologic variant of the pediatric renal Wilms’ tumor 

(1). The most common locations are in the kidney and central nervous system, although 

MRTs may arise in almost any site (2, 3). Despite significant advances in treatment, for 

MRTs diagnosed before the age of 6 months, patient survival at 4 years drops to 

approximately 8.8% (4). Therefore, improved patient outcome requires a better 

understanding of MRT and the development of novel therapeutic strategies. The common 

genetic alteration in MRTs is inactivation of hSNF5 (also known as SMARCB1, INI1, and 

BAF47), located in chromosome band 22q11.2 (5), which implicates the loss of hSNF5 

function as the primary cause of these tumors (6). Therefore, the elucidation of hSNF5 

function should lead to the identification of the key molecular steps necessary for MRT 

tumorigenesis.

hSNF5 is a component of the SWI/SNF chromatin-remodeling complex. SWI/SNF 

complexes are ATP-dependent chromatin-remodeling complexes that regulate gene 

transcription by causing conformational changes in chromatin structure (7). SWI/SNF 

subunits can be subclassified into 3 categories: (i) ATPase subunit (either BRG1 or BRM), 

(ii) core subunits (hSNF5, BAF155, and BAF170), and (iii) accessory subunits (BAF53, 

BAF57, BAF180, and others; ref. 8). How loss of the core SNF5 subunit leads to the 

development of a rare pediatric cancer remains one of the most challenging questions in the 

cancer epigenetic field.

Our previous study has shown that while hSNF5 reexpression in MRT cells increases both 

p21CIP1/WAF1 and p16INK4A expression during the induction of G1 cell-cycle arrest, 

p21CIP1/WAF1 upregulation precedes p16INK4A. Furthermore, we have showed that 

p21CIP1/WAF1 transcription shows both p53-dependent and -independent mechanisms of 

induction after hSNF5 reexpression. hSNF5 was confirmed to bind to the p21CIP1/WAF1 

promoter by chromatin immunoprecipitation (ChIP) analysis (9). However, little is known 

about how hSNF5 activates transcription at its target promoters.

Therefore, in this study, we initially sought additional hSNF5-regulated genes to 

characterize the effects of hSNF5 reexpression of its target genes. We focused on hSNF5 

regulation of other p53 target genes because mutations that inactivate the p53 pathway rarely 

appear in MRTs (10, 11). We assessed whether hSNF5 regulates the transcription of 
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representative p53 target genes by real-time quantitative reverse transcription PCR (qRT-

PCR) and Western blotting. We then clarified how hSNF5 regulates its target genes by 

conducting ChIP assays for hSNF5, histone modifications, and SWI/SNF complexes. Our 

results show that hSNF5 can regulate its target genes either through its modulation of 

SWI/SNF complex activity or recruitment of complementary transcriptional factors. We also 

establish the NOXA/PMAIP1 gene as a downstream target of hSNF5 that may provide a new 

therapeutic target for treatment of MRTs.

Materials and Methods

Cell culture and adenovirus infection

MCF7, A204.1, G401.6, TTC642, TM87-16, and TTC549 cells were cultured in 

RPMI-1640 containing 10% FBS. The MCF7, A204, and G401 cell lines came from the 

American Type Tissue Collection and were used within 6 months of receipt or from frozen 

stocks within a similar time frame. The remaining 3 cell lines came directly from their 

originator, Dr. Timothy Triche (Children’s Hospital Los Angeles, Los Angeles, CA). 

Similar time limitations were also used to maintain the identities of these cell lines. The 

TTC642pLKO.1 and TTC642p53KD cell lines were culture in RPMI-1640 containing 10% 

FBS and 1 μg/mL puromycin (Cellgro) (9). The Ad/pAdEasyGFPINI-SV+ adenoviral 

vectors expressing hSNF5 and coexpressing the GFP (designated Ad-hSNF5) and the Ad/

pAdEasyGFP-expressing GFP (designated Ad-GFP) were previously published (9, 12, 13). 

To achieve infection of more than 90% cells, we infected at a multiplicity of infection 

(MOI) of 10 for the G401.6TG cell line, 20 for the A204.1 and TTC549 cell line, 80 for the 

TM87-16 cell line, and 200 for the TTC642 cell line.

Colony-forming assay

Approximately, 1 × 106 TTC642 cells were then transfected with 6 μg plasmid DNA 

(pcDNA3, pcDNA3-fSNF5, and pcDNA-wt-hNOXA) using Fugene 6 Reagent (Promega). 

At 24 hours posttransfection, each 10-cm plate was split into 8 cm × 10 cm plates and placed 

on selective media containing 300 μg/mL neomycin (Gibco). Two weeks after transfection, 

the plates were fixed with 95% ethanol and stained with Coomassie blue (50% methanol, 

10% glacial acetic acid, and 1 g/L Coomasie blue). Colonies with greater than 1,000 cells 

were counted by visual inspection.

Protein extracts and Western blotting

Western blotting was carried out as described previously(13). Western blot analyses of 

proteins were conducted by using anti-NOXA (OP180; Calbiochem), anti-hSNF5 (612110, 

BD-Transduction Laboratories), anti-actin (A2066; Sigma), and horseradish peroxidase–

conjugated anti-rabbit or anti-mouse immunoglobulin G (IgG; GE Healthcare).

RNA extraction and qRT-PCR analysis

RNA was extracted using the RNeasy Mini Kit (Qiagen) and 1 μg was used for cDNA 

synthesis primed with Random Primers (Invitrogen). cDNA was analyzed using TaqMan 

(Applied Biosystems) real-time qRT-PCR analysis with β-actin as the reference gene in each 

reaction. Reactions were carried out on an ABI 7900 HT sequence detection system 
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(Applied Biosystems) and relative quantification was determined using the 2−ΔΔCt method 

(14, 15). The primers used the TaqMan gene expression assay primer/probe set in this study, 

which is described in Table 1.

Chromatin immunoprecipitation

ChIP was carried out as described by Donner and colleagues (15). Immunoprecipitation was 

conducted with an antibody specific to hSNF (Dr. Tony Imbalzano, University of 

Massachusetts School of Medicine, Amherst, MA), histone H3 trimethylation of lysine 4 

(H3K4 me3; 39159; Active Motif), BRG-1 (J1; Dr. Weidong Wang, National Institute of 

Aging, Baltimore, MD), BAF155 (sc-10756; Santa Cruz Biotechnology), RNA polymerase 

II (RNAPII; 8WG16; Covance), histone H3 trimethylation of lysine 4 (H3K36 me3; ab9050; 

Abcam), normal rabbit IgG (sc-2027; Santa Cruz Biotechnology), normal mouse IgG 

(sc-2025; Santa Cruz Biotechnology), histone H3 C-terminal (39163; Active Motif), or p53 

(DO-1; Calbiochem). DNA present in each immunoprecipitation was quantified by real-time 

qRT-PCR using gene-specific primers on an ABI 7000 sequence detection system. All 

expression values were normalized against input DNA or histone H3. PCR primer sequences 

are shown in Table 2 (15).

Results

The effects of reexpression of hSNF5 on p53 target genes in MRT cell lines

To determine whether hSNF5 regulates additional p53 target genes, we analyzed the change 

of mRNA levels using real-time qRT-PCR in 3 MRT cell lines, A204.1, TTC642, and 

TTC549, at 24 hours after infection with Ad-hSNF5 and Ad-GFP (negative control) 

adenoviruses [Kuwahara and colleagues (9)]. Reexpression of hSNF5 differentially 

modified expression of subsets of p53 target genes among the MRT cell lines (Fig. 1). All 3 

cell lines showed modest to robust induction of p21CIP1/WAF1 expression and decreased 

expression of 14-3-3σ. However, expression of proapoptotic genes varied. While the A204.1 

cell line showed induction of both PUMA and BAX expression, the other 2 cell lines 

showed only NOXA expression (Fig. 1). The expression of the remainder of the genes also 

diverged among the lines with increased MDM2 expression in A204.1 and higher 

GADD45b expression in TTC642. These results suggest that inactivation of hSNF5 does not 

recapitulate p53 loss in MRT cell lines.

hSNF5-induced NOXA mRNA and protein expression in MRT cell lines

Intriguingly, our real-time qRT-PCR analysis showed that hSNF5 reexpression caused an 

increase in NOXA mRNA in the TTC642 and TTC549 cell lines. This result suggested that 

NOXA might be a common downstream target of the hSNF5 protein in MRT cell lines. To 

test this notion, we examined NOXA mRNA levels by real-time qRT-PCR in 2 additional 

MRT cell lines (TM87-16 and G401.6TG) after hSNF5 reexpression. We found the level of 

NOXA mRNA increased 24 hours after Ad-hSNF5 infection in comparison with Ad-GFP 

infection in the TM87-16 MRT cell line followed by a marked increase at 48 hours after 

infection. In the G401.6TG cell line, although basal expression on NOXA mRNA is not 

detected, reexpression of hSNF5 induced NOXA mRNA within 24 hours (Fig. 2A). We next 

evaluated the basal NOXA mRNA expression level in all MRT cell lines by real-time qRT-
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PCR. We used 6 MRT cell lines as well as the MCF7 human breast carcinoma cell line. We 

found significantly lower levels of NOXA mRNA in the MRT cell lines compared with 

MCF7 except for the TM87-16 cell line with no NOXA mRNA expression in the A204.1 

and G401.6TG cell lines (Fig. 2B). Furthermore, we tested whether NOXA protein levels 

increased after Ad-hSNF5 infection in comparison with Ad-GFP infection. We observed 

that the level of NOXA protein increased at 24 hours after Ad-hSNF5 infection in 

comparison with Ad-GFP infection in 2 MRT cell lines (TTC642 and TTC549), followed by 

a marked increase at 48 hours after infection (Fig. 3A). Finally, we asked whether NOXA 

expression might contribute to the potent growth arrest induced by hSNF5. Using a colony-

forming assay, we found that both hSNF5 and NOXA expression in the TTC642 cell line 

gave similar levels of growth inhibition (Fig. 3B).

Recruitment of hSNF5 on NOXA locus correlates with NOXA transcription in MRT cell lines

We analyzed the chromatin status at NOXA promoter in both TTC642 and TTC549 cell at 24 

hours after Ad-hSNF5 infection to clarify the mechanism of NOXA activation by hSNF5. To 

analyze the recruitment of hSNF5 and other factors associated with gene transcription, we 

made sets of primers for the NOXA promoter regions from −4,758 to +2,573 (Fig. 4A). Our 

ChIP data confirmed that hSNF5 bound within 1 kb of the transcription start site (TSS) with 

maximal enrichment at the TSS in both cell lines (Fig. 4B). Furthermore, a modest increase 

of BRG1 and BAF155 (~2×) also appeared across the promoter region after hSNF5 

induction of NOXA expression in the TTC642 cell line (Fig. 4C). We next determined the 

effect of hSNF5 reexpression on the H3K4me3, a chromatin mark associated with gene 

activation. H3K4me3 increased after hSNF5 reexpression at TSS with the maximal peak 

near the TSS in both the TTC642 (Fig. 4C). These results showed that lower levels of 

NOXA mRNA expression in MRT cell lines correlates with the absence of hSNF5 

expression. This finding suggests that loss of hSNF5 expression might lead to an epigenetic 

modification at the NOXA promoter altering transcriptional activity.

Reexpression of hSNF5 induces p21CIP1/WAF1 and NOXA transcription accompanied with 
SWI/SNF complex recruitment

In our previous report, we showed that hSNF5 directly controlled p21CIP1/WAF1 

transcription activity. However, the mechanism of p21CIP1/WAF1 and NOXA transcription 

activity induced by hSNF5 has not yet been clarified. To investigate the occupancy of 

reexpressed hSNF5 on the p21CIP1/WAF1 locus, we first conducted a ChIP assay for hSNF5, 

BAF155, and BRG-1 at 24 hours after infection of Ad-hSNF5 compared with Ad-GFP 

infection. We made sets of primers for the p21CIP1/WAF1 promoter regions from −3,000 to 

+4,001 as previously described (ref. 15; Fig. 5A). We found that reexpressed hSNF5 binds 

within 1 kb of TSS with maximal enrichment site at TSS in both A204.1 and TTC642 cell 

lines (Fig. 5B). In contrast, BRG-1 and BAF155 levels increased on p21CIP1/WAF1 locus 

throughout the whole region (Fig. 5B). These results obtained from p21CIP1/WAF1 locus 

were congruent with those obtained from the NOXA locus (Fig. 4). These observations 

suggest that hSNF5 might bind near the TSS and either recruit other SWI/SNF complex 

contents such as BRG-1 and BAF155 to the target gene locus or re-activate an existing 

SWI/SNF complex to initiate gene transcription.
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Reexpression of hSNF5 induces p21CIP1/WAF1 and NOXA transcription accompanied with 
RNAPII recruitment and histone modification

To assess the effects of reexpressed hSNF5 on known steps of transcriptional activation, we 

conducted ChIP assays for RNAPII, H3K4me3, and H3K36me3 on the p21CIP1/WAF1 and 

NOXA loci at 24 hours after infection of Ad-hSNF5 compared with Ad-GFP infection. Our 

ChIP results for RNAPII showed an increase at the TSS on both p21CIP1/WAF1 and NOXA 

locus after hSNF5 reexpression with maximal enrichment site at TSS (Figs. 4D and 5C). 

The RNAPII occupancy pattern was similar to the hSNF5 occupancy pattern. Moreover, the 

H3K4me3-binding pattern on p21CIP1/WAF1 locus after hSNF5 reexpression showed an 

increase in binding at the TSS with a maximal peak near the TSS (Fig. 5C). These results 

support the H3K4me3 ChIP results of obtained from the NOXA experiments (Fig. 4C). 

Because increased H3K4me3 binding correlate with promoter activation (16), our results 

strongly suggest that hSNF5 reexpression leads to the transcriptional activation by inducing 

the initiation step with recruitment of RNAPII. Furthermore, H3K36me3 levels also 

increased downstream of the TSS in the p21CIP1/WAF1 and NOXA promoters (Figs. 4C and 

5C). These results imply that reexpression of hSNF5 presumably precedes the transcription 

elongation step (17).

p53 is not required for hSNF5-induced transcriptional activity on the NOXA and 
p21CIP1/WAF1 promoters

We next determined whether hSNF5 recruitment to the NOXA promoter affected p53 

binding. We conducted a ChIP assay for p53 binding at these promoters in the TTC642 and 

TTC549 cell lines. We assessed p53-binding site on the NOXA promoter at −158 bp, the 

consensus p53-binding site (18), and did not observe binding after hSNF5 reexpression (Fig. 

4E). In our previous study, we determined that upregulation of p21CIP1/WAF1 transcription 

by hSNF5 operated through a p53-dependent mechanism in A204.1 cells but through a p53-

independent mechanism in TTC642 cells (9). To determine p53 dependency for NOXA 

transcription, we used 2 previously characterized p53 stable knockdown MRT cell lines 

from TTC642 cells and a negative control cell line (pLKO.1; ref. 9). Infection of the pLKO.

1 and p53KD cells with Ad-GFP did not alter levels of NOXA mRNA 24 hours after 

infection compared with the uninfected parental cell lines (Fig. 4F). However, we found an 

increase of NOXA mRNA after hSNF5 reexpression that was not significantly different 

among the TTC642, TTC642 pLKO.1, and TTC642 p53KD cells (Fig. 4F). These 

observations suggest that hSNF5 binding could initiate transcription on the p21CIP1/WAF1 

and NOXA promoters in the TTC642 cell line without additional p53 recruitment.

Discussion

The objective of this study was to identify additional genes, besides p21WAF/CIP1, regulated 

by both hSNF5 and p53 in MRT cells and to determine the mechanism of hSNF5 regulation 

of their transcriptional activity. While hSNF5 could regulate expression of varying p53 

target genes among the MRT cell lines, NOXA was the only common target gene in 5 of 6 

cell lines. We then used ChIP analyses of the promoter regions of the p21WAF/CIP1 and 

NOXA genes to understand how hSNF5 regulates their expression. Our results provide major 
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insights into the control of hSNF5 target genes and how hSNF5 and the SWI/SNF complex 

functions in the regulation of their transcription.

Recently, Lee and colleagues showed hSNF5 is the only gene recurrently mutated at a high 

frequency in MRTs (19). This finding implicates MRTs as true “epigenetically driven” 

cancers and indicates that downstream target genes of hSNF5 must drive tumorigenesis for 

this cancer. Because the patterns of epigenetic changes, especially those associated with 

chromatin landscape, can vary from cell to cell, it does not seem surprising that we observed 

a slightly different pattern of gene expression after restoration of hSNF5 expression in each 

MRT cell line. Our results also indicate that hSNF5 may regulate a subset of p53 target 

genes such as p21CIP1/WAF1 and NOXA in MRT cell lines but generally through a p53-

independent mechanism.

Intriguingly, we observed an increase in NOXA mRNA and protein levels after reexpression 

of hSNF5 in most MRT cell lines. Our ChIP assays also showed that reexpression of hSNF5 

increased NOXA transcriptional activity through the recruitment of BRG1 and RNAPII to 

the NOXA promoter. This is the first report that hSNF5 regulates NOXA transcriptional 

activity and establishes NOXA as a clinically relevant hSNF5 target gene. NOXA was 

initially identified as a phorbol ester-responsive gene (20). The NOXA protein, containing a 

Bcl2 homology domain 3 (BH-3), has been previously implicated in apoptosis associated 

with DNA damage, hypoxia, or exposure to inhibitors of the proteasome (21). Apoptosis-

associated NOXA activation is primarily achieved through transcriptional upregulation 

through a number of transcription factors including p53 and Myc (20). Because NOXA 

binds with high affinity to the antiapoptotic Bcl-2 family members Mcl-1, it seems to act as 

a mediator of apoptosis in cells showing a dependency on Mcl-1 expression (22, 23). 

Furthermore, some reports showed that NOXA and Mcl-1 control sensitivity to some 

chemotherapeutics agents, such as Taxol, vincristine, and platinum-based drugs (24, 25).

MRTs have a chemoresistance character such that chemotherapy does not prove an effective 

treatment for most patients (26). To resolve the chemoresistance character of MRTs, some 

candidate drugs such as EGF receptor (EGFR) kinase inhibitors, HER2 inhibitors, 

fenretinide, histone deacetylase (HDAC) inhibitors, and flavopilidol have been described 

(27–32). However, a promising effective therapy has not yet been established. Nocentini 

reported that perturbation of the p53 pathway and a reduced apoptotic response in MRT cell 

lines might contribute to their resistance to chemotherapies (33). They suggested that the 

lack of positive correlation between an increase in the Bax/Bcl2 ratio and cell death 

constitutes an abnormality in the control of apoptosis. In this study, we showed that NOXA 

expression in MRT cell lines inhibited growth as efficiently as hSNF5 reexpression. 

Although several reports have shown NOXA as a positive growth regulator, taken together, 

these data implicate NOXA expression as a contributor to the strong growth inhibition 

induced by hSNF5 reexpression (34, 35). Alternately, hSNF5 loss may result in a failure to 

regulate NOXA expression in the case of DNA damage by some chemotherapy agents such 

as doxorubicin. Additional studies will help elucidate the function of NOXA in MRT 

development.
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Our results also showed the function of hSNF5 in the context of SWI/SNF complex. Some 

researchers have reported that reexpressed hSNF5 appeared at 1 or multiple sites within the 

promoters of several genes (13, 36–38). In our previous report, we also showed hSNF5 

binds at a point close to the TSS on the p21CIP1/WAF1 and p16 promoters by ChIP assay (9). 

However, the pattern of hSNF5 occupancy of target gene promoters has remained unclear. 

Our results showed hSNF5 appeared on the promoter region with maximal enrichment site 

at the TSS. Kia and colleagues reported that on p16 promoter, reexpressed hSNF5 binds 

more at −0.3 kb and +85 bp site than other upstream and downstream sites (13, 36, 37). Our 

results with the p21CIP1/WAF1 and NOXA promoters provide strong evidence that hSNF5 is 

generally associated with the transcriptional activity at TSS on its target genes. In contrast, 

BRG-1 and BAF155 occupancy increased equally from downstream to upstream on 

p21CIP1/WAF1 and NOXA locus after reexpression of hSNF5. Therefore, our results indicate 

a discrepancy between hSNF5 occupancy and BRG-1 occupancy after hSNF5 reexpression. 

A more detailed analysis using ChIP-seq to identify the binding sites of the hSNF5 and the 

other SWI/SNF complex members will resolve this question.

Does this recruitment of the SWI/SNF complex lead to a change in the histone modification 

in their target genes? In our previous study, we found that H3K4me3 decreased at the p53-

binding sites in the p21CIP1/WAF1 promoter (−2,283 and −1,391 kb) after hSNF5 

reexpression, although p21CIP1/WAF1 transcription increased (9). Previous studies have 

concluded that nucleosomes with H3K4me3 are associated with actively transcribed genes 

in various eukaryotes (39–41). Guenther and colleagues also found H3K4me3 enriched 

within 1 kb of known TSS with maximal enrichment downstream of the TSS (42). Our 

results showed H3K4me3 increased at or near the TSS in the p21CIP1/WAF1 and NOXA 

promoters, similar to the results from Guenther and colleagues’ report. Because the 

transcriptional activity changes reflected the occupancy of H3K4me3, it is unclear whether 

the methylation of H3K4 is primary or secondary effects of hSNF5 reexpression. However, 

Lee and colleagues indicated that the C-terminal SET domain of H3K4 methyltransferase 

(MLL3 and MLL4) directly interacts with hSNF5 (43). The fact that H3K4me3 occupancy 

is likely linked to hSNF5 occupancy suggests that reexpressed hSNF5 potentially interacted 

with a H3K4 methyltransferase. In contrast, our H3K36me3 ChIP data showed that 

H3K36me3 occupancy was detected in transcribed regions of the p21CIP1/WAF1 and NOXA 

genes, peaking toward the 3′-end (39–41, 44). Our results concur with several earlier reports 

showing (39–41, 44) that H3K36me3 occupancy tracks within the body of transcriptionally 

active genes and associates with transcriptional elongation activity. These histone 

modifications after hSNF5 reexpression indicate that hSNF5 can regulate the transcription 

initiation followed by elongation activity in MRT cells.

We also showed that RNAPII occupancy increased after hSNF5 reexpression on 

p21CIP1/WAF1 and NOXA promoter. Guenther and colleagues found that most promoters 

(98%) occupied by RNAPII were also occupied by H3K4me3, whereas RNAPII occupied 

few genes (2%) that lack H3K4me3 (42, 45). Other researchers have shown that components 

of H3K4 methyltransferase complexes interact with the Ser5-phosphorylated form of 

RNAPII, indicating that transcription initiation coincides with H3K4me3 deposition (45). 

Similar studies showed that H3K4me3 modification occurs subsequent to RNAPII 

recruitment and Ser5 phosphorylation of RNAPII C-terminal domain (16, 40, 46). Indeed, 
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we also showed that the occupancy of RNAPII follows a similar pattern for H3K4me3 

occupancy. The increase of H3K4me3 occupancy in the p21CIP1/WAF1 and NOXA 

promoters may result from recruitment of H3K4 methyltransferase and RNAPII by hSNF5 

reexpression.

However, H3K4me3 was still detected at the inactive NOXA promoter in the absence of 

hSNF5 with a low occupancy of RNAPII. Then, after reexpression of hSNF5, both RNAPII 

and H3K4me3 immediately increased on or near the TSS. Vastenhouw and colleagues 

indicated that many nonexpressed genes in embryonic stem cells also carry only H3K4me3 

marks (44). They also showed most of these H3K4me3 domains are not associated with 

detectable levels of RNAPII, and H3K4me3 marks might be established in the absence of 

sequence-specific activators and without the stable association of RNAPII. These H3K4me3 

domains might be paused genes for activation by creating a platform for the transcriptional 

machinery (12). Our data suggest that the inactive NOXA gene in MRT cells might be 

paused by loss of hSNF5 and reexpression of hSNF5 can release the pausing followed by 

recruitment of RNAPII. On the other hand, because transcriptional activity appears at the 

p21CIP1/WAF1 promoter, it has both H3K4me3 and RNAPII occupancy before reexpression 

of hSNF5. Taken together, hSNF5 can activate a transcription initiation step by recruitment 

of RNAPII accompanied with H3K4me3 nucleosome modification.

In conclusion, our results show that hSNF5 reexpression in MRT cells increases both 

p21CIP1/WAF1 and NOXA expression. Reexpression of hSNF5 leads to activation of 

transcription initiation by either recruitment of SWI/SNF complexes or activation of existing 

ones. Increased RNAPII binding at the TSS accompanied with H3K4 and H3K36 

modifications follows. These results raise the exciting possibility that one mechanism for 

epigenetic changes caused by hSNF5 inactivation involves changes in promoter pausing. 

Furthermore, because MRT cells display repressed NOXA transcription activity due to 

hSNF5 loss, reexpression of the NOXA pathway might prove a promising new paradigm to 

treat MRT in the near future.
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Figure 1. 
hSNF5-induced p53 target genes’ expression. RNA was extracted at 24 hours after infection 

with Ad-hSNF5 and Ad-GFP. The mRNA levels were measured for each gene by real-time 

qRT-PCR and normalized for β-actin expression and relative to the Ad-GFP for each genes. 

Values are the mean of 3 independent experiments; bars, ± SD.
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Figure 2. 
hSNF5-induced NOXA mRNA expression. A, RNA was extracted at the indicated times 

after infection with Ad-hSNF5 and Ad-GFP. The mRNA levels were measured for each 

gene by real-time qRT-PCR and normalized for β-actin expression. Values are the mean of 3 

independent experiments; bars, ±SD; un, uninfected control. B, NOXA mRNA expression in 

6 MRT cell lines (A204.1, TTC642, G401.6TG, TTC549, TM87-16, and TTC549) by real-

time qRT-PCR. The MCF7 cell line was used as a control. The NOXA mRNA levels were 

measured for each gene by real-time qRT-PCR and normalized for β-actin expression. 

Values are the mean of 3 independent experiments; bars, ±SD.
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Figure 3. 
hSNF5-induced NOXA protein expression. A, cells were harvested at the indicated times 

after infection with Ad-hSNF5 and Ad-GFP. Total cell protein (30 μg) were separated on a 

4% to 20% SDS-PAGE and probed with either anti-SNF5, anti-β-actin, or anti-NOXA. un; 

uninfected control. B, cells were transfected with the designated plasmids and selected in 

neomycin for 2 weeks. The results represent the colony numbers from 3 independent 

experiments; bars, ±SD.
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Figure 4. 
Recruitment of hSNF5, SWI/SNF complexes, and RNAPII to the NOXA locus and histone 

modification on NOXA locus after hSNF5 reexpression. A, schematic of the NOXA locus 

indicating the 1 p53-binding sites and overall gene structure. Primers used in real-time qRT-

PCR of ChIP-enriched DNA are named according to their relative distance (bp) to the TSS. 

B–E, at 24 hours after infection with Ad-hSNF5 and Ad-GFP, protein was extracted for 

ChIP assays. ChIP assays were conducted using antibodies directed against hSNF5 (B), 

BRG-1 (C), BAF155 (C), H3K4me3 (C), H3K36me3 (C), RNAPII (D), and p53 (E) on 

indicated site of NOXA promoter. Values are the mean of duplicate or triplicate; bars, ±SD. 

F, RNA was extracted at 24 hours after infection with Ad-hSNF5 and Ad-GFP. The mRNA 

levels were measured for each gene by real-time qRT-PCR and normalized for β-actin 

expression. Values are the mean of 3 independent experiments; bars, ±SD; un; uninfected 

control; IP, immunoprecipitation.
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Figure 5. 
Recruitment of hSNF5, SWI/SNF complexes, RNAPII, and p53 to the NOXA locus and 

histone modification on NOXA locus after hSNF5 reexpression. A, schematic of the p21 

locus indicating the 2 p53-binding sites (p53-HABS: high-affinity p53-binding site and p53-

LABS: low-affinity p53-binding site) and overall gene structure. Primers used in real-time 

qRT-PCR of ChIP-enriched DNA are named according to their relative distance (bp) to the 

TSS. B and C, at 24 hours after infection with Ad-hSNF5 and Ad-GFP, protein was 

extracted for ChIP assays. ChIP assays were conducted using antibodies directed against 

hSNF5 (B), BRG-1 (B), BAF155 (B), H3K4me3 (C), H3K36me3 (C), and RNAPII (C) on 

indicated site of p21 promoter. Values are the mean of duplicate or triplicate; bars, ±SD.
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Table 1

TaqMan gene expression assay primer/probes

Gene symbol Gene name Assay ID

ACTB Actin, β Hs99999903_m1

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) Hs00355782_m1

TP53 Tumor protein p53 Hs01034249_m1

BBC3 BCL2-binding component 3 (PUMA) Hs00248075_m1

BAX BCL2-associated X protein Hs00180269_m1

PMAIP1 Phorbol-12-myristate-13-acetate-induced protein 1(NOXA) Hs00560402_m1

SFN Strati3n (14-3-3σ) Hs00968567_s1

MDM2 Mdm2 p53-binding protein homolog Hs01066930_m1

GADD45B Growth arrest and DNA-damage-inducible, β Hs00169587_m1
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Table 2

PCR primer sequences for ChIP Assays

Gene Site Forward primer Reverse primer

NOXA −4,578 bp GGT TGG TGT GAT TGC TTG GCC G AGG GCT GCC TGG GAG AGC AA

−769 bp ACT CAT GGC CTC GCC AAA CAT T AGG GCT GAG CTA CCT GGG AAC G

−158 bp GCG GGT CGG GAG CGT GTC AGA CGG CGT TAT GGG AGC GGA

43 bp CGG GCC GGG CGT CTA GTT TC CGC GCC AGA GAC CAC GCT TT

104 bp CCC TGC CTG CAG GAC TGT TCG CCC GGG AAC CTC AGC CTC CA

874 bp AGT TTT CAG GCC AGC GCC CC GGC CCA CAC AGA CTT CGG GC

2,573 bp AGA GCT GGA AGT CGA GTG TGC T TGC CGG AAG TTC AGT TTG TCT CCA

*p21CIP1/WAF1 −3,000 bp CCGGCCAGTATATATTTTTAATTGAGA AGTGGTTAGTAATTTTCAGTTTGCTCAT

−2,283 bp AGCAGGCTGTGGCTCTGATT CAAAATAGCCACCAGCCTCTTCT

−1,391 bp CTGTCCTCCCCGAGGTCA ACATCTCAGGCTGCTCAGAGTCT

−20 bp TATATCAGGGCCGCGCTG GGCTCCACAAGGAACTGACTTC

182 bp CGTGTTCGCGGGTGTGT CATTCACCTGCCGCAGAAA

507 bp CCAGGAAGGGCGAGGAAA GGGACCGATCCTAGACGAACTT

2,786 bp GCACCATCCTGGACTCAAGTAGT CGGTTACTTGGGAGGCTGAA

4,001 bp AGTCACTCAGCCCTGGAGTCAA GGAGAGTGAGTTTGCCCATGA

NOTE:

*
p21 primers were based on ref. (15).
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