GUEST COMMENTARY

Update of the Standard Numbering Scheme for Class B β-Lactamases

Gianpiero Garau,¹ Isabel García-Sáez,¹ Carine Bebrone,² Christine Anne,² Paola Mercuri,² Moreno Galleni,² Jean-Marie Frère,² and Otto Dideberg¹*

Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale "Jean-Pierre Ebel," CEA-CNRS-UJF, F-38027 Grenoble, France,¹ and Centre d'Ingénierie des Protéines, Laboratoire d'Enzymologie, Institut de Chimie, Université de Liège, B6 Sart-Tilman, B-4000 Liège, Belgium²

β-Lactamases represent the major cause of bacterial resistance against β-lactam antibiotics, and they have been divided into four classes (A to D) on the basis of their amino acid sequences (21). The class B enzymes have no sequence or structural similarity to the active-site serine enzymes of classes A, C, and D (6); require a bivalent metal ion (Zn^{2+}) for activity; and constitute group 3 in the Bush-Jacoby-Medeiros functional classification (2). The identification of Zn-β-lactamase-producing pathogenic strains of Aeromonas, Bacteroides, Flavobacterium, Legionella, Serratia, and Stenotrophomonas has greatly increased interest in this class of enzymes (2). The fact that they hydrolyze almost all β-lactam antibiotics, including carbapenems, underlines their clinical relevance. In consequence, the potential spreading of these enzymes among pathogenic bacteria is a frightening possibility, which emphasizes the importance of understanding their properties.

On the basis of the sequences, three subclasses of class B β-lactamases (B1 to B3) were identified, and a standard numbering scheme (BBL numbering) was proposed (13) by analogy to the ABL numbering scheme which has been widely used for class A B-lactamases. Due to the general low degree of identity between subclass sequences (<20%), classical alignment programs produce unreliable results. The proposed alignment (13) was facilitated by the availability of X-ray structures for B1 and B3 enzymes. Crystallographic structures have been described for several B1 enzymes: Bacillus cereus BcII (4, 11), Bacteroides fragilis CcrA (5, 8), Pseudomonas aeruginosa IMP-1 (7) and VIM-2 (unpublished data), and Chryseobacterium meningosepticum BlaB (14). Structural data are also available for two B3 enzymes: Stenotroptromonas maltophilia L1 (28) and Legionella gormanii FEZ-1 (15). Recently, we solved the first X-ray structure of a subclass B2 enzyme (CphA) produced by various species of Aeromonas (G. Garau, C. Bebrone, C. Anne, M. Galleni, J.-M. Frère, and O. Dideberg, unpublished data). Using all available three-dimensional structures, it is now possible to propose a bonafide structural alignment of the class B β-lactamases, and accordingly, to update the first proposed BBL scheme (Fig. 1).

For the three-dimensional structure comparison of the eight

available structures, we used the program TOP (18) with the new option MAPS, allowing multiple alignments of protein structures. In addition, the program produces two ranking scores: the sequence identities of aligned residues and the structural diversity. The structural-diversity score was defined as RMS/ $(N_{\text{match}}/N_0)^{3/2}$, where RMS is the root mean square deviation of the distances between matched C α atoms, N_{match} is the number of matching residues, and (N_{match}/N_0) is the matching fraction of two compared structures. $N_0 = (N_1 + N_2/2)$, where N_1 and N_2 are the numbers of amino acids in the two compared proteins. This score estimates the evolutionary distance between proteins. These two scores are shown in Table 1 for all known X-ray structures.

Figure 1 displays the proposed alignment and numbering. Interestingly, the numbering of the important class B residues is conserved between old and new alignments. Improvements in the alignment concern mainly N and C termini and small shifts along the sequences. The main result of the new alignment is the identification of 14 sequence fragments of structurally conserved positions, which cover the entirety of all sequences (Fig. 1); they belong mainly to secondary-structure elements (α helices or β sheets). Notably, all Zn ligands are structurally aligned.

The following comments can be made. (i) Only sequences of proteins of known structures are shown. (ii) For residues in lightface, the fact that they have the same number does not imply that they are structurally equivalent. (iii) For newly discovered enzymes, any insertion departing from the present

 TABLE 1. Sequence identities of aligned residues and structure diversity among proteins

Protein	Sequence identity/structural diversity ^a									
	CphA	BCII	CcrA	IMP-1	VIM-2	BlaB	L1	FEZ-1		
CphA		0.32	0.30	0.24	0.28	0.29	0.20	0.15		
BCII	1.19		0.37	0.39	0.39	0.37	0.22	0.15		
CcrA	1.17	1.02		0.36	0.33	0.30	0.16	0.12		
IMP-1	1.20	1.20	1.13		0.35	0.33	0.17	0.15		
VIM-2	1.11	1.08	1.13	1.23		0.28	0.18	0.13		
BlaB	1.26	1.19	1.17	1.38	1.19		0.18	0.18		
L1	1.72	1.60	1.58	1.79	1.62	1.68		0.33		
FEZ-1	1.78	1.61	1.57	1.67	1.72	1.70	1.31			

^{*a*} In the upper right triangle (sequence diversity), the largest values characterize the most similar proteins; the opposite is true for the lower left triangle (structural diversity).

^{*} Corresponding author. Mailing address: Institut de Biologie Structurale "Jean-Pierre Ebel," CEA-CNRS-UJF, Laboratoire de Cristallographie Macromoléculaire, 41 rue Jules Horowitz, F-38027 Grenoble, France. Phone: 33 438 78 56 09. Fax: 33 438 78 54 94. E-mail: otto @ibs.fr.

		1				50					100	110
						S1	S2	L1	S3	S4	Hl	
	BeII			SQF	K VEKTVIKNET	GTIS ISQLN K	NVWVHTELGS	FNG.EAVPSN	GLVLNTSKGL	VLVDSSWDDK	LTKELIEMVE	KKFQ.KRVT
	IMP-1				AESL	PDLK IEKLD E	GVYV HTSFEE	VNGWGVVP KH	GLVVL VNA EA	YLID TPFTAK	DTEKLVTWFV	ERGYKIK
B 1	CcrA				AQKSVKIS	DDIS ITQLS D	KVYTYVSLAE	IEGWGMVP SN	GMIVI NNHQA	ALLD TPINDA	QTEMLVNWVT	DSLHAKVT
	VIM-2				EYPTVSEIPV	GEVR LYQIA D	GVWSHIATQS	FDG.AVYP SN	GLIVRDGDEL	LLIDTAWGAK	NTAALLAEIE	KQIGLP VT
	BlaB				QEN	PDVK IEKLK D	NLYVYTTYNT	FNG.TKYA AN	AVYLV TDK GV	VVID CPWGED	KFKSFTDEIY	KKHGKK VI
B2	CphA					AGMSLTOVSG	PVYVVEDNYY	VOEN	SMUYFGAKGV	TVVGATWTPD	TAREL.HKI.IK	RVS RKPVT.
	L1			EVPLPQI	L RAYTVDASWL	QPMA PLQIA D	HTWQIGT	ED LT	ALLVQTPDGA	VLLDGGM.PQ	MASHLLDNMK	ARGVTPRD LR
B3	FEZ-1				AYPMP	NPFP PFRIA G	NLYYVGT	DD la	SYLIVTPRGN	I LIN SDL.EA	NVPMIKASIK	KLGFKFSD TK
		111			150	abcd	1	70		196		218
		S5	H2	S6	нЗ	L2			S7 S8		S9	S10
	BcII	DVIITHAHAD	RIGGIKTLKE	.RGIKAHSTA	LTAELA KKNG	Ý		EP LGDLQTVT	L KFGNMKVET	F YPGKGHTEL	N IVVWLPQY.	N ILV
	IMP-1	GSISSHFHSD	STGGIEWLNS	.RSIPTYASE	LTNELL KKDG	к	vQ	AT NSFSGVNY	NL VKNKIEV	F YPGPGHTPL	N VVVWLPER.	KILF
	CcrA	TFIPNHWHGE	CIGGLGYLQR	. KG VQSYANQ	MTIDLAKEKG	L	P	VP EHGFTDSL	V SLDGMPLQC	Y YLGGGHATI	N IVVWLPTE.	NILF
	VIM-2	RAVSTHFHDD	RVGGVDVLRA	. AG VATYASP	STRRLAEVEG	Ν	EIPTHSL	EG LSSSGDAVI	RF GPVEL	F YPGAAHSTI	N LVVYVPSA.	SVLY
	BlaB	MNIATHSHDD	RAGGLEYFGK	. IGAKTYSTK	MTDSILAKEN	К	P	RA QYTFDNNK	SF KVGKSEFQV	Y YP GKGHTAL	N VVVWFPKE.	K VLV
	CphA	EVINTNYHTD	RAGGNAYWKS	. IGAKVVSTR	QTRDLM KSDW	AEIVAFTRKGL	PEYPDLPL.,V	LP NVVHDGDF	L OEGKVR	F YA GPAHTPL	G IFVYFPDE.	OVLY
	-	8 b C								· e		
	L1	LILLSHAHAD	HAGPVAELKR	RTG AKVAANA	ESAVLL ARGG	SDDLHFG	GDGITYPP.A	NA DRIVMDGE	VI TVGGIVFT/	H F.MAGHTPO	S TAWTWTDTH	RN GKPVR IAY
	FEZ-1	IFVISHAHFE	HAAGSELIKQ	QTK AKYMVMD	EDVSVI LSGG	KSDFHYA	NDSSTYFTQ.S	TV DKVLHDGE	RV ELGGTVLTA	H L.TPGHTRO	C TTWTMKLKI	DH GKQYQ AVI
		·zz	: +							Z		
		21.0			054-1	260			200			
		219	т.3	1	204а <i>DC</i> 0 нл	260 S11		T.A	300	45 145		
	BOTT	GG CLVKSTS	AKD LGNVADA	VNEWSTSI	IEN VIKE	VENTNAVV PC	HCEV	- 24	GDKGT.	THTLDLLK		
	IMP-1	GG CFIKP.Y	G., LGNLGDA	N TEAWPKS	AKL LKSK	YGKAKLVV PS	HSEV		GDASLI	KLTLEOAVKO	LNESKKPSK	SN
	CcrA	GG CMLKDNC	ATS IGNISDA	D VTAWPK TI	LDK VKAK	FPSARYVV PG	HGDY		GGTEL	EHTKOIVNO	IESTSKP	
	VIM-2	GG CAIYELS	RTS AGNVADA	D LAEWPTSI	IER IQQH	YPEAQEVI PG	HG LP		GGLD LI	KHTTNVVKAH	TNRSVAE	
	BlaB	GG ÇIIKSAD	SKD LGYIGEA	Y VNDWTQ S V	VHN IQQK	FSGAQYVV AG	HDDW		KDQR SI	QHTLDLINE Y	QQKQKASN	
	CobA	GN ÓTLÆFK	LONISTA		FD TKAM	KIDIKTVI CC	Ungpi		NCDEL	DUVENTEN?	ROS	
	~ r	en erbient.	LONDOFA		and another	INDE INTE OF				. onionution	. 1.20	
	L1	AD SLSAP	GYQ LQGNPRY	PHL IEDYRR SI	FAT VRAL	PCDVLL TP	HPGASNWD YA	AGAR	G AKALTCKAY	DAAEQKFDG	LAKETAGAR	
	FEZ-1	IG SI.GVNF	GYK LVDNITY	PKI AEDYKH SI	IKV L ESM	RCDIFL GS	HAGMFDLK NK	YVLLQKGQNNPI	F VDPTGCKN YI	EQKANDFYTE	LKKQETA	
		6					7					

FIG. 1. Structural alignment of eight class B β -lactamases with known X-ray structures. The sequences are referred to by their familiar names. BCII, *B. cereus* 569H (16); IMP-1, *P. aeruginosa* 101/477 (17); CcrA, *B. fragilis* TAL3636 (25); VIM-2, *P. aeruginosa* species (24); BlaB, *C. meningosepticum* NCTC10585 (26); CphA, *Aeromonas hydrophila* AE036 (20); L1, *S. maltophilia* IID1275 (29); FEZ-1, *L. gormanii* ATCC33297^T (1). The BBL numbering is defined. Conserved secondary-structure elements for the three subclasses are indicated above the sequences: S, β -strand; H, helix; L, loop. Amino acid insertions in newly sequenced enzymes are represented by lowercase letters. The zinc ligands in at least one subclass are shaded and labeled as follows: Z, residues conserved in the three subclasses; \bullet , residues conserved in subclass B1 and some enzymes of subclass B3; +, residue conserved in subclass B3; §, residues conserved in subclasses B1 and B2. *L2* and *L4* represent largely variable regions. The 14 sequence fragments of structurally conserved positions, which cover the entirety of all sequences, are shown in boldface.

numbering can be characterized by lowercase letters following the number of the last residue of the consensus sequence.

Table 2 shows the numbering of the putative zinc ligands. Not all proteins of known sequence are shown. Only enzymes with <50% sequence identity compared to the first reported sequence are included in the table.

In 1997, Neuwald et al. (23) detected a few proteins that have sequence similarities to (and may have given rise to) Zn-β-lactamases. They include enzymes with large variations in function (sulfatase; DNA cross-link repair enzyme) and which are encoded by yeast, plant, or bacterial open reading frames. Human glyoxalase II was also shown to belong to the superfamily. More recently, 17 groups with known functions were identified (9). In order to evaluate the structural diversity of the Zn- β -lactamase superfamily, human glyoxalase II (3) and rubredoxin oxygen-oxidoreductase from Desulfovibrio gigas (12) were also aligned using TOP, along with one member of each subclass. Table 3 shows the sequence identities and structural diversity of the two proteins and BCII, CphA, and FEZ-1. As expected, low sequence identity corresponds to a high structural-diversity score. The structural-diversity scores for proteins belonging to a superfamily range from 1.4 to 2, in contrast to 3.5 to 4 for proteins with different folds (18). In-

TABLE 2. Numbering of important class B residues	3
--	---

Protein	Zr	1 ligand	Zn2 ligand			
Consensus BBL B1	His116	His118	His196	Asp120	Cys221	His263
BcII	His86	His88	His149	Asp90	Cys168	His210
IMP-1	His77	His79	His139	Asp81	Cys158	His197
CcrA	His99	His101	His162	Asp103	Cys181	His223
VIM-2	His88	His90	His153	Asp92	Cys172	His214
BlaB	His76	His78	His139	Asp80	Cys158	His200
IND-1	His96	His98	His159	Asp100	Cys178	His220
SPM-1 ^a	His76	His78	His165	Asp80	Cys184	His221
JOHN-1 ^a	His76	His78	His159	Asp80	Cys178	His220
TUS-1 ^a	His94	His96	His157	Asp98	Cys176	His217
Consensus BBL B2	Asn116	His118	His196	Asp120	Cys221	His263
CphA	Asn69	His71	His148	Asp73	Cys167	His205
Sfh-I	Asn72	His74	His151	Asp76	Cys170	His212
Consensus BBL B3	His/Gln116	His118	His196	Asp120	His121	His263
L1	His84	His86	His160	Asp88	His89	His225
FEZ-1	His71	His73	His149	Asp75	His76	His215
GOB-1 ^a	Gln80	His82	His157	Asp84	His85	His213
THIN-B ^a	His105	His107	His185	Asp109	His110	His253
CAU-1 ^a	His96	His98	His172	Asp100	His101	His237

^{*a*} For SPM-1, JOHN-1, TUS-1, THIN-B, and CAU-1, sequences are reported in references 27, 22, 19, 26, and 10, respectively.

 TABLE 3. Sequence identities of aligned residues and structural diversity among proteins

Duratain	Sequence identy/structural diversity ^a								
Protein	CphA	BCII	FEZ-1	ROO	GOX				
CphA		0.32	0.15	0.20	0.23				
BCII	1.19		0.15	0.17	0.24				
FEZ-1	1.78	1.61		0.16	0.21				
ROO	1.78	1.64	1.47		0.21				
GOX	1.61	1.62	1.40	1.47					

^{*a*} Sequency identities, upper right triangle; structural diversity, lower left triangle. ROO, rubredoxin oxygen-oxidoruductase; GOX, human glyoxylase II.

terestingly and surprisingly, FEZ-1 is closer to glyoxalase II and rubredoxin oxygen-oxidoreductase than to BcII or CphA.

In the structural alignment, a large number of amino acid changes and insertions-deletions are observed. One hypothesis is that an ancient protein gave rise to the different subclasses of Zn- β -lactamases. A few candidates for the ancient protein are those related to essential biological functions within the cell, such as DNA or RNA processing or DNA repair (9). Nature used a limited number of scaffolds to generate a large variety of biological functions. Zn- β -lactamases are good examples of such a selection.

ACKNOWLEDGMENTS

This work was supported by a grant from the European Union (HPRN-CT-2002-00264) and PAI P5/33 from the Belgian government.

REFERENCES

- Boschi, L., P. S. Mercuri, M. L. Riccio, G. Amicosante, M. Galleni, J. M. Frère, and G. M. Rossolini. 2000. The *Legionella (Fluoribacter) gormanii* metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases. Antimicrob. Agents Chemother. 44: 1538–1543.
- Bush, K. 1998. Metallo-beta-lactamases: a class apart. Clin. Infect. Dis. 27:S48–S53.
- Cameron, A. D., M. Ridderstrom, B. Olin, and B. Mannervik. 1999. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Struct. Fold Des. 7:1067–1078.
- Carfi, A., E. Duée, M. Galleni, J. M. Frère, and O. Dideberg. 1998. 1.85 Å resolution structure of the zinc(II) beta-lactamase from *Bacillus cereus*. Acta Crystallogr. D 54:313–323.
- Carfi, A., E. Duée, R. Paul-Soto, M. Galleni, J.-M. Frère, and O. Dideberg. 1998. X-ray structure of the ZnII beta-lactamase from *Bacteroides fragilis* in an orthorhombic crystal form. Acta Crystallogr. D 54:45–57.
- Carfi, A., S. Parès, E. Duée, M. Galleni, C. Duez, J. M. Frère, and O. Dideberg. 1995. The 3-D structure of a zinc metallo-beta-lactamase from *Bacillus cereus* reveals a new type of protein fold. EMBO J. 14:4914–4921.
- Concha, N. O., C. A. Janson, P. Rowling, S. Pearson, C. A. Cheever, B. P. Clarke, C. Lewis, M. Galleni, J. M. Frère, D. J. Payne, J. H. Bateson, and S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo betalactamase from *Pseudomonas aeruginosa* and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:4288–4298.
- Concha, N. O., B. A. Rasmussen, K. Bush, and O. Herzberg. 1996. Crystal structure of the wide-spectrum binuclear zinc β-lactamase from *Bacteroides fragilis*. Structure 4:823–836.
- Daiyasu, H., K. Osaka, Y. Ishino, and H. Toh. 2001. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett. 503:1–6.
- Docquier, J. D., F. Pantanella, F. Giuliani, M. C. Thaller, G. Amicosante, M. Galleni, J.-M. Frère, K. Bush, and G. M. Rossolini. 2002. CAU-1, a subclass B3 metallo-beta-lactamase of low substrate affinity encoded by an ortholog

present in the *Caulobacter crescentus* chromosome. Antimicrob. Agents Chemother. **46**:1823–1830.

- 11. Fabiane, S. M., M. K. Sohi, T. Wan, D. J. Payne, J. H. Bateson, T. Mitchell, and B. J. Sutton. 1998. Crystal structure of the zinc-dependent beta-lactamase from *Bacillus cereus* at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37:12404–12411.
- Frazao, C., G. Silva, C. M. Gomes, P. Matias, R. Coelho, L. Sieker, S. Macedo, M. Y. Liu, S. Oliveira, M. Teixeira, A. V. Xavier, C. Rodrigues-Pousada, M. A. Carrondo, and J. Le Gall. 2000. Structure of a dioxygen reduction enzyme from *Desulfovibrio gigas*. Nat. Struct. Biol. 7:1041–1045.
- Galleni, M., J. Lamotte-Brasseur, G. M. Rossolini, J. Spencer, O. Dideberg, and J. M. Frère. 2001. Standard numbering scheme for class B beta-lactamases. Antimicrob. Agents Chemother. 45:660–663.
- 14. Garcia-Saez, I., J. Hopkins, C. Papamicael, N. Franceschini, G. Amicosante, G. M. Rossolini, M. Galleni, J.-M. Frère, and O. Dideberg. 2003. The 1.5-A structure of *Chryseobacterium meningosepticum* zinc β-lactamase in complex with the inhibitor, D-captopril. J. Biol. Chem. 278:23868–23873.
- Garcia-Sáez, I., P. S. Mercuri, C. Papamicael, R. Kahn, J.-M. Frère, M. Galleni, G. M. Rossolini, and O. Dideberg. 2003. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from *Fluoribacter gormanii*, in native form and in complex with D-captopril. J. Mol. Biol. 325:651–660.
- Hussain, M., A. Carlino, M. J. Madonna, and J. O. Lampen. 1985. Cloning and sequencing of the metallothioprotein β-lactamase II gene of *Bacillus cereus* 569/H in *Escherichia coli*. J. Bacteriol. 164:223–229.
- Laraki, N., M. Galleni, I. Thamm, M. L. Riccio, G. Amicosante, J. M. Frère, and G. M. Rossolini. 1999. Structure of In31, a blaIMP-containing *Pseudomonas aeruginosa* integron phyletically related to In5, which carries an unusual array of gene cassettes. Antimicrob. Agents Chemother. 43:890–901.
- Lu, G. 2000. TOP: a new method for protein structure comparisons and similarity searches. J. Appl. Crystallogr. 33:176–183.
- Mammeri, H., S. Bellais, and P. Nordmann. 2002. Chromosome-encoded beta-lactamases TUS-1 and MUS-1 from *Myroides odoratus* and *Myroides odoratimimus* (formerly *Flavobacterium odoratum*), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob. Agents Chemother. 46:3561–3567.
- Massidda, O., G. M. Rossolini, and G. Satta. 1991. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-β-lactamases. J. Bacteriol. 173:4611–4617.
- Matagne, A., A. Dubus, M. Galleni, and J. M. Frere. 1999. The beta-lactamase cycle: a tale of selective pressure and bacterial ingenuity. Nat. Prod. Rep. 16:1–19.
- Naas, T., S. Bellais, and P. Nordmann. 2003. Molecular and biochemical characterization of a carbapenem-hydrolysing beta-lactamase from *Fla-vobacterium johnsoniae*. J. Antimicrob. Chemother. 51:267–273.
- Neuwald, A. F., J. S. Liu, D. J. Lipman, and C. E. Lawrence. 1997. Extracting protein alignment models from the sequence database. Nucleic Acids Res. 25:1665–1677.
- Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J. D. Cavallo, and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a *Pseudomonas aeruginosa* clinical isolate in France. Antimicrob. Agents Chemother. 44:891–897.
- Rasmussen, B. A., Y. Gluzman, and F. P. Tally. 1990. Cloning and sequencing of the class B β-lactamase gene (*ccrA*) from *Bacteroides fragilis* TAL3636. Antimicrob. Agents Chemother. 34:1590–1592.
- 26. Rossolini, G. M., N. Franceschini, M. L. Riccio, P. S. Mercuri, M. Perilli, M. Galleni, J. M. Frère, and G. Amicosante. 1998. Characterization and sequence of the *Chryseobacterium (Flavobacterium) meningosepticum* carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem. J. 332:145–152.
- Toleman, M. A., A. M. Simm, T. A. Murphy, A. C. Gales, D. J. Biedenbach, R. N. Jones, and T. R. Walsh. 2002. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 50:673–679.
- Ullah, J. H., T. R. Walsh, I. A. Taylor, D. C. Emery, C. S. Verma, S. J. Gamblin, and J. Spencer. 1998. The crystal structure of the L1 metallo-betalactamase from *Stenotrophomonas maltophilia* at 1.7 Å resolution. J. Mol. Biol. 284:125–136.
- Walsh, T. R., L. Hall, S. J. Assinder, W. W. Nichols, S. J. Cartwright, A. P. MacGowan, and P. M. Bennett. 1994. Sequence analysis of the L1 metalloβ-lactamase from *Xanthomonas maltophilia*. Biochim. Biophys. Acta 1218: 199–201.

The views expressed in this Commentary do not necessarily reflect the views of the journal or of ASM.