Skip to main content
. 2015 Feb 26;10(2):e0117988. doi: 10.1371/journal.pone.0117988

Table 3. Actual classification performance for WDBC dataset using KNN classifier.

Sensitivity Specificity GMean PPV F1-measure
DWFS 96.86% (±2.68) 89.38% (±4.49) 93% (±1.71) 93.7% (±3.57) 95.2% (±1.89)
MRMR+DWFS 91.38% (±5.71) 85.61% (±5.07) 88.32% (±0.98) 91.35% (±3.92) 91.19% (±2.27)
JMI+DWFS 91.38% (±5.71) 85.61% (±5.07) 88.32% (±0.98) 91.35% (±3.92) 91.19% (±2.27)
MRMR 91.66% (±5.21) 85.61% (±5.07) 88.47% (±0.96) 91.37% (±3.93) 91.36% (±2.06)
JMI 95.31% (±3.26) 88.44% (±3.25) 91.8% (±2.61) 93.41% (±1.35) 94.33% (±1.88)
WEKA 92.2% (±3.95) 86.53% (±2.73) 89.29% (±2.12) 91.8% (±3.03) 91.93% (±2.34)
FST3 95.5% (±3.19) 87.92% (±5.9) 91.57% (±3.07) 92.9% (±4.29) 94.11% (±2.49)
ALL Features 96.16% (±3.59) 88.57% (±3.64) 92.27% (±3.06) 93.43% (±1.97) 94.75% (±2.3)
Correlation-baseline 91.3% (±5.48) 84.05% (±5.3) 87.52% (±3.63) 90.19% (±5) 90.61% (±3.86)