Skip to main content
. 2015 Feb 26;10(2):e0117988. doi: 10.1371/journal.pone.0117988

Table 5. Actual classification performance for miRNA dataset using KNN classifier.

Sensitivity Specificity GMean PPV F1-measure
DWFS 71.79% (±6.3) 98.65% (±0.39) 84.09% (±3.68) 81.07% (±3.64) 76.02% (±4.1)
MRMR+DWFS 69.77% (±6.93) 98.03% (±0.18) 82.62% (±4.11) 74.07% (±2.71) 71.74% (±4.38)
JMI+DWFS 68.49% (±5.81) 97.99% (±0.1) 81.86% (±3.41) 73.25% (±2.26) 70.69% (±3.37)
MRMR 68.27% (±7.79) 98.88% (±0.32) 82.06% (±4.64) 83.34% (±2.88) 74.91% (±5.32)
JMI 57.49% (±6.82) 99.2% (±0.24) 75.41% (±4.47) 85.31% (±4.29) 68.53% (±5.51)
WEKA 67.01% (±16.86) 99.22% (±0.34) 81.03% (±10.46) 86.56% (±8.08) 75.12% (±13.62)
FST3 78.24% (±6.73) 99.41% (±0.16) 88.13% (±3.79) 91.58% (±1.67) 84.25% (±3.96)
ALL Features 59.78% (±7.61) 99.52% (±0.26) 77.01% (±4.77) 91.32% (±3.73) 71.98% (±5.18)
Correlation-baseline 70.12% (±7.14) 98.56% (±0.3) 83.05% (±4.23) 79.7% (±4.37) 74.46% (±4.96)