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Abstract

Background and Purpose—Despite moderate heritability, the phenotypic heterogeneity of 

ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with 

reduced sample sizes. We assessed evidence for shared genetic etiology among the three major 

subtypes: large artery atherosclerosis (LAA), cardioembolism (CE) and small vessel disease 

(SVD), to inform potential cross-subtype analyses.

Methods—Analyses used genome-wide summary data for 12,389 ischemic stroke cases 

(including 2,167 LAA, 2,405 CE and 1,854 SVD) and 62,004 controls from the Metastroke 

consortium. For 4,561 cases and 7,094 controls, individual-level genotype data were also 

available. Genetic correlations between subtypes were estimated using linear mixed models 

(LMM) and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4,021 

cases, 51,976 controls) was performed to identify shared risk alleles.

Results—High genetic correlation was identified between LAA and SVD using LMM (rg=0.96, 

SE=0.47, P=9×10−4) and profile scores (rg=0.72; 95% CI: 0.52 – 0.93). Between LAA and CE, 

and SVD and CE, correlation was moderate using LMM but not significantly different from zero 

for profile scoring. Joint meta-analysis of LAA and SVD identified strong association (P=1×10−7) 

for SNPs near the opioid receptor μ1 (OPRM1) gene.

Conclusions—Our results suggest that LAA and SVD, which have been hitherto treated as 

genetically distinct, may share a substantial genetic component. Combined analyses of LAA and 

SVD may increase power to identify small-effect alleles influencing shared pathophysiological 

processes.
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Introduction

Ischemic stroke (IS) is a complex disease influenced by numerous clinical, genetic and 

lifestyle risk factors. While conventional factors such as hypertension, dyslipidaemia, 

diabetes and smoking are well-established, genetic factors contribute up to 30-40% of risk 1 

and are poorly understood. Despite recent advances in high throughput genotyping, gene 

discovery for IS has progressed slowly due to the technical nature of case ascertainment and 

etiological heterogeneity of the IS diagnosis. The latter produces pathophysiological 

differences and implies genetic differences between patients, complicating efforts to identify 

susceptibility genes.

To assist diagnosis and clinical management, schemes have been developed to categorise IS 

into diagnostic subtypes 2, 3. The major types are large artery atherosclerosis (LAA), 

cardioembolism (CE) and small vessel (lacunar) disease (SVD). By exploiting these 

phenotypically more homogeneous categorisations, genome-wide association studies 

(GWAS) have identified a number of genetic associations specific to individual subtypes 4-7. 

In contrast, only two genome-wide significant associations have been identified for broadly 

defined IS 8, 9, in spite of its ~5-fold larger sample sizes. Power of association studies is a 

balance between sample size and the (unknown) effect sizes of risk loci, with estimable 

effect size depending on genetic homogeneity. To date, GWAS of IS have focussed on 

individual subtypes which reduces sample size and may reduce power at some loci if there is 

a shared genetic basis between subtypes 10.

This study aimed to estimate genetic correlation between the three major IS subtypes using 

individual-level GWAS data and meta-analysis summary statistics from the International 

Stroke Genetics Consortium (ISGC) 6, 7 and Metastroke 5. Genetic correlations were 

estimated using two different methods: linear mixed models 11 and polygenic profile 

scoring 12.

Methods

Data Sources

The Metastroke study included 15 individual studies contributing 12,389 total ischemic 

stroke cases and 62,004 controls of European ancestry (Data Supplement, Table I). Details 

of these 15 studies, including genotyping, phenotyping and participants’ demographic 

details have been previously described in detail 5. Cases and controls did not overlap 

between studies and were confirmed as unrelated using genotypic data. Stroke subtyping 

was performed using the TOAST system 2, identifying 2,167 cases with large artery 

atherosclerosis (LAA), 2,405 with cardioembolism (CE) and 1,854 cases with small vessel 

disease (SVD); the remainder had other, undetermined, or cryptogenic etiology. Each study 

conducted genotype imputation using either HapMap Phase 2 or 1000 Genomes reference 

panels, fitted additive logistic regression models for all SNPs and provided regression 

summary statistics for IS and its subtypes (if available). Individual-level GWAS data was 

also available for three of the largest Metastroke cohorts: two from the Wellcome Trust Case 

Control Consortium 2 Study (WTCCC2-UK and WTCCC2-Munich) 6 and the Australian 

Stroke Genetics Collaborative (ASGC) 7, which were genotyped using Illumina arrays with 
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similar content. All studies were approved by appropriate ethics committees and participants 

provided written informed consent.

Linear mixed modelling

Genotype data for the three samples with individual-level data were combined to yield a 

single dataset using PLINK 13. Stringent quality control removed SNPs not directly 

genotyped in all samples, with >0.5% missing data, Hardy-Weinberg P-value <0.05, minor 

allele frequency <1%, or differential missingness (P<0.05) between samples. We excluded 

samples with >1% data missingness and one from each pair with an absolute value of 

genome-wide similarity >0.05 14. Principal components of ancestry were calculated in the 

pooled sample following three iterations of principal components analysis with outlier 

removal (>5 standard deviations from the mean on PC1-5) 15.

Heritability within and genetic correlations (rg) between subtypes were estimated using 

linear mixed models 14, adjusting for 20 principal components. Likelihood ratio statistics 

were used to test whether estimates were significantly different to zero. Heritability 

estimates were transformed to the liability scale assuming 2% lifetime prevalence for IS, to 

which the three major subtypes each contribute approximately 20% (total 60%), equating to 

0.4% prevalence (20% ×2%) for each subtype 5, 16. The remaining 0.8% prevalence (40% × 

2%) was assumed to reflect other stroke types.

Polygenic profile scoring

The profile scoring approach uses SNP association statistics from a given phenotype to build 

a linear predictor, and tests this for association with the same or a different phenotype in 

independent data. To facilitate interpretation of cross-subtype analyses, we first assessed 

association of profile scores within IS and its three subtypes. For each, this was performed 

using “leave-one-out” validation for the three “target” datasets with individual-level data. In 

turn, each of the three was set aside and a GWAS “discovery” meta-analysis was performed 

using all other Metastroke datasets. SNPs with data from at least five Metastroke studies 

were retained and pruned for linkage disequilibrium (LD: r2>0.2 within 1Mb) using 

PLINK's --clump algorithm 13, which preferentially retains the most associated SNP in an 

LD region. From the pruned set we extracted subsets passing ten graded significance 

thresholds (PT =1×10−4, 1×10−3 , 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1). For subsets passing 

each threshold, PLINK's --score function was used to calculate profile scores for individuals 

in the “left-out” dataset. These scores represent an average risk allele burden across all SNPs 

in the score, with weights assigned as the log odds ratio from the discovery meta-analysis.

Associations of profile scores with stroke subtypes were assessed by logistic regression 

adjusted for three ancestry principal components. Variance explained by the score was 

computed as the difference in Nagelkerke's pseudo-R2 between the model including the 

profile score and principal components, and that including only principal components. 

Results for the three target datasets were combined via random-effects meta-analysis to 

estimate overall significance. Overall variance explained was estimated as the sample-size 

weighted mean of target dataset-specific pseudo-R2 estimates.

Holliday et al. Page 4

Stroke. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To assess polygenic sharing between subtypes we used the same approach, with different 

subtypes alternately specified as “discovery” and “target” traits. There was no sample 

overlap between discovery and target analyses. Using profile score results, genetic 

correlations (rg) were estimated using a quantitative genetics framework 12. At α=0.05, we 

had 98% power to detect polygenic scores explaining ≥0.2% of variance in case/control 

status for any target subtype, 81-83% power to detect scores explaining ≥0.1% of variance 

(varying by subtype) and 52-54% power for scores explaining ≥0.05% of variance 12.

Joint meta-analysis of LAA and SVD

Joint, fixed-effects meta-analysis of allelic effects for LAA and SVD was performed using 

Metal 17, for 2,167 LAA cases, 1,854 SVD cases (4,021 total cases) and 51,976 controls 

from 12 studies (Data Supplement, Table I). To control type 1 error due to overlapping 

controls for LAA and SVD within cohorts, a covariance correction was applied 18. Power to 

detect associated SNPs was calculated 19 assuming an additive model, perfect LD between 

risk and marker alleles and a significance level of α=5×10−8. For a genetic risk ratio of 1.2, 

we had 37%, 89% and 98-99% power to identify risk alleles with frequency 0.1, 0.2 and 

0.3-0.5 respectively. For a true risk ratio of 1.1, power was low, ranging from 0.2% to 10% 

across allele frequencies.

Results

Linear mixed models

After stringent quality control, individual-level genotype data was available for 4,561 IS 

cases and 7,094 controls (Table 1) at 345,336 directly genotyped SNPs. Using linear mixed 

models (LMM), the estimated proportion of variance in case-control status explained by the 

SNPs (h2
SNP) was significant for all stroke traits (Data Supplement, Table II). Higher and 

more significant values were estimated for IS (h2
SNP =0.18; P=1×10−14), LAA (h2

SNP=0.19; 

P=2×10−5) and CE (h2
SNP=0.24; P=2×10−6), while the estimate for SVD was lower 

(h2
SNP=0.10; P=0.04).

To estimate the genetic correlation (rg) between subtype cases, controls were randomly 

allocated to one of the two subtype groups in each analysis. This allocation and estimation 

process was repeated ten times and the mean and standard deviation of parameter estimates, 

and mean standard errors (SE) derived (Data Supplement, Table III). The rg value was 

highest and significantly different from zero between LAA and SVD at 0.96 (SD=0.059; 

P=9×10−4), although the large standard error (0.47) indicates low precision. Reduced, but 

nominally significant correlation was observed between LAA and CE (rg=0.39, SE=0.21, 

P=0.024) and between CE and SVD (rg=0.64, SE=0.40, P=0.017).

Polygenic profile scoring

While LMM analyses were restricted to samples with individual-level data, profile scoring 

could utilise Metastroke samples with summary statistics for “discovery” meta-analyses. In 

analyses within traits, profile scores for IS, LAA and CE showed strong association with the 

same trait in independent target cohorts (Data Supplement, Tables IV-VI, Figure I). For IS, 

strong association was observed across most of the discovery P-value distribution with 
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maximum association observed for PT<1 (Pscore =1.1×10−8), typical of relatively small 

discovery samples 20. There was little effect size heterogeneity across target cohorts. For 

LAA, maximum association (Pscore =1.7×10−8) was observed for PT<0.05 with no 

heterogeneity. For CE, maximum association (Pscore=2×10−4) was observed for predictors 

including SNPs reaching PT<0.001 and PT<0.01, with no heterogeneity. For all three 

subtypes, profile scores explained a small proportion of observed case-control variance, 

being highest for LAA (pseudo-R2=0.45%) and lowest for SVD (pseudo-R2=0.05%). We 

also note that SVD-based scores did not associate with SVD in target cohorts and many 

showed effect heterogeneity between studies (Data Supplement, Table VII).

Analyses between stroke subtypes detected significant polygenic sharing between LAA and 

SVD (Data Supplement Tables VIII, IX, Figure II). The majority of SVD-based scores 

associated with LAA, with no heterogeneity. The highest association was observed for a 

score including ~36,000 SNPs reaching discovery PT<0.1 (Pscore =2×10−4) which explained 

an estimated 0.19% of observed LAA case/control variance. In the reverse analysis, three 

LAA-based profile scores associated with SVD at P<0.05, e.g., the score including ~20,000 

SNPs reaching PT <0.05 (Pscore=0.032, R2 =0.08%). In analyses of the other two subtype 

pairs (LAA and CE, CE and SVD), no co-association of profile scores was observed (Data 

Supplement Tables X-XIII, Figures III-IV).

Using profile score results within LAA, the estimated proportion of LAA variance in 

liability explained by the score most strongly associated with LAA and SVD (PT=0.05) was 

12.8% (Data Supplement, Table V). SVD-based scores did not associate with SVD in target 

samples, but the score most significantly associated with LAA (PT=0.1) explained 0.8% of 

SVD liability variance (Data Supplement, Table VII). Using these estimates and the 

observed cross-trait association results, the estimated genetic correlation 12 between LAA 

and SVD was rg=0.72, which was significantly different from zero (95% CI: 0.52, 0.92). 

The SNP-based correlation was not significantly different from zero for LAA and CE 

(rg=0.13, 95% CI: 0, 0.56), or CE and SVD (rg=0.64, 95% CI: 0, 0.92).

Quantitative bias analysis – subtype misclassification

Bias analysis was performed to assess the extent to which the genetic correlation (rg) 

between LAA and SVD could result from subtype misclassification 21 (see Data 

Supplement, Methods and Table XIV). Allowing for rates of subtype misclassification 

consistent with reported values of inter-rater reliability 22, rg was still significantly different 

from zero. Assuming all misclassified LAA cases were truly SVD and vice versa, the 

estimate was rg=0.63 (95% CI: 0.34, 0.74). Assuming all misclassified cases were neither 

LAA nor SVD the estimate was rg=0.75 (95% CI: 0.43, 0.98). This suggests robustness of 

the observed genetic correlation to likely levels of subtype misclassification.

GWAS meta-analysis of LAA and SVD

Given evidence for shared common variants between LAA and SVD, joint meta-analysis of 

LAA and SVD was performed (Data Supplement, Figures V, VI). While no SNPs reached 

genome-wide significance (P<5×10−8), suggestive association (P=1×10−7, at rs17084671; 

P=2×10−7 at rs6938958 and rs7763080) was observed for a cluster of SNPs at chromosome 
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6q25.2 (Data Supplement, Table XV), ~100kb upstream of the opioid receptor μ1 (OPRM1) 

gene.

Discussion

Genome-wide association studies of ischemic stroke (IS) have revealed the importance of 

diagnostic subtype classifications. However, exclusive reliance on discrete subtypes reduces 

sample size and assumes an absence of risk alleles influencing multiple subtypes. Using 

some of the largest extant GWAS collections and two different analytic approaches, this 

study suggests the presence of extensive genetic overlap between large artery atherosclerotic 

and small vessel ischemic stroke. We estimated the genetic correlation between these 

subtypes exceeds 0.7, but larger samples will increase the accuracy of this estimate.

We were careful to eliminate potential sources of bias in our analyses. In individual-level 

data, European ancestry was strictly defined and principal components of ancestry included 

as covariates. We also checked that positive score effects were present in multiple target 

studies and not driven by a single study. Misclassification of TOAST subtypes was 

considered an important potential source of error since MRI, which increases diagnostic 

accuracy particularly for SVD, was only used for subtyping approximately 50% of all 

cases 5. However, sensitivity analyses suggested that typical rates of misclassification would 

have minimal effects on the estimated correlation.

Although SVD-based profile scores did not show significant association with SVD, they 

associated with LAA in the cross-trait analysis. In the complementary analysis, which used 

the more powerful LAA discovery sample, LAA-based profile scores showed significant 

association with both LAA and SVD. This does not imply lack of consistency or polygenic 

architecture for SVD. Indeed, our and a previous LMM analysis 1 detected significant SNP-

based heritability for SVD. Profile score analyses are influenced both by sample size and 

phenotypic homogeneity of discovery and target traits. SVD had the lowest case numbers 

and is also phenotypically heterogeneous. In profile analyses conducted exclusively within 

SVD, these factors will reduce both the accuracy of polygenic predictors, and statistical 

power in target samples.

The proportion of observed LAA and SVD variance explained by SVD-based and LAA-

based profile scores (pseudo-R2) was 0.2% and 0.08%, respectively. Although these values 

are low, this does not mean the true genetic overlap is small. By combining sampling errors 

in effect estimates across all SNPs in the score, profile scoring produces estimates of 

explained variance typically lower than true values 20, 23, but which will increase as sample 

size increases. Pseudo-R2 measures for binary traits can be difficult to interpret because they 

can depend on ascertainment, i.e., the proportion of cases in the sample 24. Profile scoring 

results were used to estimate liability-scale variance explained and genetic correlations using 

theory that accounts for sample size and ascertainment. For example, within LAA, the 

pseudo-R2 for the maximum profile score was 0.48%, but the estimated LAA variance 

explained by the score, adjusted for sample size and ascertainment, was 12.8%. Thus, while 

estimates of observed cross-trait variance explained are small, they can signify a higher 

genetic correlation. When genetic correlation has been estimated from the same dataset the 
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results from the profile score and LMM agree well 25. Here, the use of the profile score 

method allowed the use of a larger sample via datasets for which only association summary 

statistics were available.

The SNPs most strongly associated with the joint LAA-SVD trait were near the OPRM1 

gene, alleles within which have previously shown suggestive association with coronary heart 

disease (CHD: P=5×10−6), 26 which has an atherosclerotic etiology. Estimated genetic 

correlation between LAA and SVD is also consistent with an atherosclerotic etiology in the 

majority of LAA and a subset of SVD cases. The primary pathophysiological mechanism for 

LAA is presumed to be atherosclerosis of the large cerebral arteries 2. For SVD, 

pathological and imaging studies suggest the presence of significant disease heterogeneity, 

with two major underlying vascular pathologies being hypothesised 27, 28. The first involves 

localised atherosclerosis of the larger perforating arteries, typically resulting in a larger, 

isolated lacunar infarct. The second involves diffuse, nonatherosclerotic arteriopathy of the 

smaller perforating arteries, associated with multiple, smaller infarcts and often co-existent 

radiological leukoaraiosis 28. Earlier risk factor analyses suggested conventional 

“atherosclerotic” factors were more common in the isolated lacunar infarct subtype. This 

subgroup could thus account for the genetic overlap between the broader SVD category and 

LAA.

Summary

Our analyses strongly suggest that LAA and SVD – which have been hitherto considered 

genetically distinct – may have a shared genetic etiology. Further investigation of the 

genetic relationship between ischemic stroke subtypes is merited. Although recent GWAS 

have identified several subtype-specific genetic associations, the pace of discovery has been 

constrained by small numbers for individual subtypes. If there exist small-effect variants 

influencing multiple subtypes, joint subtype analyses will offer higher power to identify 

these and may also identify biological mechanisms shared by these traditionally distinct 

clinical diagnoses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Ischaemic stroke samples used for testing polygenic scores

Study IS LAA CE SVD Controls

ASGC 1,071 375 226 287 1,212

WTCCC2-Munich 1,140 338 322 104 775

WTCCC2-UK 2,350 494 450 471 5,107

Total 4,561 1,207 998 862 7,094
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