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Background: The unfolded protein response (UPR) has been implicated in retinal cell death but the mechanism is

unknown.

Results: Cigarette smoke extract induces RPE cell apoptosis, which is alleviated by enhancing the UPR function.
Conclusion: UPR activation is required for RPE survival through up-regulation of Nrf2.
Significance: Enhancing Nrf2 and adaptive UPR protects the RPE against oxidative injury and apoptosis.

Recent studies have revealed a role of endoplasmic reticu-
lum (ER) stress-induced unfolded protein response (UPR) in
the regulation of RPE cell activity and survival. Herein, we
examined the mechanisms by which the UPR modulates apo-
ptotic signaling in human RPE cells challenged with cigarette
smoking extract (CSE). Our results show that CSE exposure
induced a dose- and time-dependent increase in ER stress
markers, enhanced reactive oxygen species (ROS), mitochon-
drial fragmentation, and apoptosis of RPE cells. These
changes were prevented by the anti-oxidant NAC or chemical
chaperone TMAO, suggesting a close interaction between
oxidative and ER stress in CSE-induced apoptosis. To deci-
pher the role of the UPR, overexpression or down-regulation
of XBP1 and CHOP genes was manipulated by adenovirus or
siRNA. Overexpressing XBP1 protected against CSE-induced
apoptosis by reducing CHOP, p-p38, and caspase-3 activa-
tion. In contrast, XBP1 knockdown sensitized the cells to
CSE-induced apoptosis, which is likely through a CHOP-in-
dependent pathway. Surprisingly, knockdown of CHOP
reduced p-elF2a« and Nrf2 resulting in a marked increase in
caspase-3 activation and apoptosis. Furthermore, Nrf2 inhi-
bition increased ER stress and exacerbated cell apoptosis,
while Nrf2 overexpression reduced CHOP and protected RPE
cells. Our data suggest that although CHOP may function as a
pro-apoptotic gene during ER stress, it is also required for
Nrf2 up-regulation and RPE cell survival. In addition,
enhancing Nrf2 and XBP1 activity may help reduce oxidative
and ER stress and protect RPE cells from cigarette smoke-
induced damage.
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Age-related macular degeneration (AMD)? is a leading cause
of blindness in elderly people (1, 2). The early pathological
changes of AMD include focal pigmentary irregularities of the
posterior retina, increased lipofuscin in the retinal pigment epi-
thelium (RPE), basal deposits, thickening of Bruch’s membrane,
and drusen formation (3). The disease can slowly progress to
geographic atrophy or advanced “dry” AMD characterized by
RPE atrophy accompanied by degeneration and loss of photo-
receptors, or “wet” AMD characterized by abnormal new vessel
formation from the choroid, both resulting in irreversible and
severe vision loss (4). Studies to date have identified a number
of risk factors, including genetic factors such as Y402H poly-
morphism of the complement factor H (CFH) gene (5, 6), and
environmental factors. These factors impose significant influ-
ence on the development and progression of AMD. Cigarette
smoking is considered the most important environmental risk
factor for AMD (7-10). Cigarette smoke preferentially targets
the RPE resulting in apoptosis of RPE cells, basement mem-
brane thickening and subretinal deposits (11, 12). The mecha-
nisms by which cigarette smoking enhances the RPE cell injury
remain poorly understood.

The endoplasmic reticulum (ER) is a central hub for protein
folding and maturation. Dysfunction of the ER results in ER
stress, which activates the unfolded protein response (UPR), a
sophisticated stress response program, to modulate cell activity
and survival through regulation of protein synthesis, folding,
and degradation (13). There are three key pathways of the UPR:
1) PERK-elF2a-ATF4-CHOP pathway, 2) IRE1-XBP1 pathway,

2 The abbreviations used are: AMD, age-related macular degeneration; ATF,
activating transcription factor; CHOP, C/EBP homologous protein; CSE, cig-
arette smoke extract; elF2q, eukaryotic translation initiation factor 2¢; ER,
endoplasmic reticulum; IRE1, inositol-requiring trans-membrane kinase/
endonuclease 1; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide; Nrf2, NF-E2-related factor 2; p-elF2a, phospho-elF2«; p-p38,
phospho-P38; PERK, protein kinase RNA-like endoplasmic reticulum
kinase; gPCR, quantitative real-time reverse-transcriptase polymerase
chain reaction; RPE, retinal pigment epithelium; siRNA, small interfering
RNA; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end label-
ing; UPR, unfolded protein response; XBP1, x-box-binding protein 1.
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and 3) ATF6-chaporene pathway (14, 15). The latter two path-
ways primarily regulate ER chaperones, such as GRP78 and
p58IPK, thereby increasing the capacity of protein folding (15—
19). The early activation of PERK increasing the elF2« phos-
phorylation reduces protein translation rate, which enables the
ER to recover from its stressed condition. However, persistent
ER stress activates the pro-apoptotic gene C/EBP homologous
protein (CHOP), a downstream factor of the PERK pathway,
resulting in apoptosis and cell death (14, 20, 21).

Aqueous whole-phase cigarette smoke extract (CSE) has
been widely used to study the effects of cigarette smoke in cul-
tured cells and disease models, such as chronic obstructive pul-
monary disease, cancer, and cardiovascular diseases (22—28).
The extract comprises water-soluble components of both the
particulate and gas phases of cigarette smoke, which were
believed to be present in the bloodstream of smokers (29).
Importantly, it contains high levels of pro-oxidant compounds
and free radicals that induce oxidative injury of various cells
and tissues including RPE cells (30). In human bronchial epi-
thelial and lung cells, CSE elicits ER stress likely through ROS
resulting in CHOP-dependent apoptosis (31-33). In agreement
with this finding, recent studies show that cigarette smoke
induces ER stress in the RPE (34—36). In cultured RPE cells,
hydroquinone, a potent oxidant in cigarette smoke, differen-
tially regulates the UPR pathways by up-regulating CHOP
expression but suppressing XBP1-mediated adaptive UPR sig-
naling (36). Overexpressing XBP1 or decreasing CHOP level by
reducing ER stress or inhibition of its upstream regulator,
elF-2a phosphorylation, protects cells from hydroquinone-in-
duced apoptosis (36), suggesting a role of the UPR in regulating
the RPE cell survival during oxidative injury.

In the present study, we examined the role of the UPR factors
in RPE cells challenged with CSE and intended to understand
the interactions between oxidative stress and ER stress and sig-
naling pathways of Nrf2, XBP1s, and CHOP in CSE-induced
apoptosis of RPE cells.

EXPERIMENTAL PROCEDURES

Preparation of CSE—Cigarette smoke extract (dissolved in
DMSO, 40 mg/ml total particular matter, nicotine content =
6%) was purchased from Murty Pharmaceuticals (Lexington,
KY) and was kept at —20 °C. Before each treatment, CSE was
freshly prepared into working solutions and diluted with
HEPES buffer as previously described (37).

Cell Culture—Human RPE (ARPE-19) cells (American Type
Culture Collection, ATCC, Manassas, VA) were cultured with
DMEM/F12 medium containing 10% fetal bovine serum (FBS)
and 1% antibiotic/antimycotic. While growing to 70% conflu-
ence, cells were starved overnight with low-serum (1% FBS)
DMEM/F12 medium to reduce antioxidant pool in the medium
and make the cells quiescent and then subjected to desired
treatment.

Construction and Transduction of Adenoviruses—Recombi-
nant adenovirus expressing human Nrf2 was constructed using
the AdEasy system ((Agilent Technologies) according to the
manufacturer’s instructions. Briefly, full-length human Nrf2
gene was cloned using primers: forward primer ACCGCCAC-
CATGGATTTGATTGACATACG; and reverse primer CTC-

5368 JOURNAL OF BIOLOGICAL CHEMISTRY

GAGCTAGTTTTTCTTAACATCTGGCT, and inserted into
the KpnI-Xhol sites of the vector pShuttle-CMV. The resultant
plasmid was co-transformed with pAdEasy-1 adenoviral vector
into BJ5183 Escherichia coli-competent cells by electropora-
tion. The recombinant adenoviral plasmids were then trans-
fected into the packing cell line 293AD to generate recombi-
nant adenoviruses. Construction of adenoviruses expressing
human spliced XBP1 was described elsewhere (38). Large-scale
preparation of adenoviruses was completed using 293AD cells.
Harvested adenoviruses were tittered and purified using
Adeno-X Maxi Purification kit (Clontech Laboratories, Moun-
tain View, CA). ARPE-19 cells were transduced with adenovi-
ruses as described previously (38). Adenovirus expressing LacZ
was used as the control. After 24 h of transduction, cells were
starved with 1% FBS DMEM/F12 medium followed by CSE
treatment.

Small-interfering RNAs—Cells were transfected with siRNAs
against human Nrf2, XBP1 or CHOP (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA) using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA) following the manufacturer’s instruction and
previously described (39). Lipofectamine 2000 or a nonsilenc-
ing scrambled siRNA with oligonucleotide sequence that does
not recognize any known homology to mammalian genes was
used as a negative control. The knockdown efficiency was
determined by target protein levels using Western blotting.

Western Blot Analysis—Cells were lysed using lysis buffer
containing 150 mm NaCl, 1% Igepal, 50 mm Tris, 1 mm EDTA,
and 10% protease inhibitor mixture. Protein quantification was
performed with the bicinchoninic acid (BCA) method (Thermo
Scientific, Rockford, IL). Ten micrograms of total cellular pro-
tein was fractionated on 10% SDS-PAGE gels, electroblotted
onto an Immun-blot polyvinylidene difluoride membrane (Bio-
Rad), and blocked with 5% nonfat dry milk in TBST buffer for
1 h. After blocking, membranes were blotted overnight at 4 °C
with following primary antibodies: anti-GRP78 (1:1000,
Abcam), anti-p-elF2a (1:1000, Cell Signaling), anti-ATF4
(CREB2, 1:1000, Santa Cruz), anti-CHOP (1:1000, Cell Signal-
ing), anti-XBP1 (1:1000, Santa Cruz), anti-Nrf2 (1:1000, Santa
Cruz), anti-p58IPK(1:1000, Cell Signaling), anti-ATF6 (1:1000,
ABCAM), anti-cleaved-caspase-3 (1:500, Cell Signaling), anti-
p-p38(1:1000, Cell Signaling), and anti-eIF2« (1:1000, Novus
Biologicals, Littleton, CO). After incubation with HRP-conju-
gated secondary antibodies, membranes were developed with
chemiluminescence substrate (Thermo Fisher Scientific, Rock-
ford, IL. 34076) using Vision Works LS image acquisition and
analysis software (UVP, Upland, CA). Membranes were reblot-
ted with anti-B-actin (1:20,000, Abcam) for normalization. The
bands were semi-quantified by densitometry using the same
software.

MTT (3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium
Bromide) Assay—MTT assay was performed to assess the via-
bility of ARPE-19 cells as described previously (38). Cells were
seeded into a 96-well plate for each assay. Culture medium was
refreshed, and 10 ul of MTT reagent was added to 100 ul of
medium in each well. Cells were incubated at 37 °C for 2 h. The
precipitation was then dissolved by adding 100 ul of detergent
reagent into each well and incubated at room temperature for
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FIGURE 1. Cigarette smoking extract induced ER stress and apoptosis in ARPE-19 cells. ARPE-19 cells were exposed to CSE (0.004 pg/ml-320 ug/ml) for up
to 24 h. A, protein levels of ER markers or pro-apoptosis markers were determined by Western blotting in cells treated with CSE for 6 h ( p-elF2q, elF2a and
GRP78) or 12 h (ATF4 and CHOP). B, expression of p-elF2a (normalized with elF2«), GRP78, ATF4 and CHOP were quantified by densitometry of Western blots.
C, protein levels of ER stress markers, Nrf2, p-p38, and cleaved caspase-3 were determined by Western blotting in cells treated with 320 ng/ml of CSE for 6-24
h. D, expression of p-elF2«a (normalized with elF2«), GRP78, ATF4, CHOP, ATF6, Nrf2, p-p38, and cleaved caspase-3 were quantified by densitometry. E,
apoptosis of ARPE-19 cells was examined by TUNEL assay after CSE treatment for 24 h. Scale Bar: 50 wm. F, quantification of TUNEL-positive cells. G, cell viability
of ARPE-19 cells with or without 320 wg/ml of CSE treatment for 24 h. All data were expressed as mean = S.D., from three independent experiments. *, p < 0.05;

** p < 0.01 versus control.

4 h. The absorbance was measured at 570 nm with a microplate
reader (Perkin Elmer, Waltham, MA), and data were analyzed.

TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick
End Labeling) Assay—TUNEL assay was performed to detect
apoptosis using the In Situ Cell Death Detection Kit, TMR red
(Roche Diagnostics Corp., Indianapolis, IN) following the man-
ufacturer’s protocol (40). Briefly, cells on coverslips were fixed
with 4% paraformaldehyde (PFA) for 1 h, permeabilized in 0.1%
citrate buffer containing 0.1% Triton X-100 for 2 min on ice,
then incubated in TUNEL reaction mix containing nucleotides
and terminal deoxynucleotidyl transferase (TdT) at 37 °C for
1 h. Incubation without the TdT enzyme was conducted as
negative control. After incubation, the coverslip was mounted
onto a slice using mounting medium containing 4'-6-di-
amidino-2-phenylindole (DAPI; Vector Laboratories, Burlin-

SASBMB

FEBRUARY 27,2015+VOLUME 290-NUMBER 9

game, CA) and observed under an Olympus AX70 microscope
(Olympus, Japan).

In Situ Trypan Blue Staining—After treatment, ARPE-19
cells were stained in situ with 0.04% Trypan Blue in DMEM/F12
medium for 15 min (41). Trypan Blue-stained cells and total
cells were counted per 10X field under an invert microscope
(Zeiss, Germany). At least 5 fields were counted and averaged
for each replicate, and results were obtained from three inde-
pendent experiments.

Reverse Transcription Polymerase Chain Reaction (RT-PCR)—
Total RNA from ARPE-19 cells was extracted using the
E.ZN.A. Total RNA Kit I (Omega Bio-Tek, Norcross, GA)
according to the manufacturer’s protocol. cDNA synthesis was
performed using the Maxima First Strand cDNA Synthesis Kit
(Fermentas, Glen Burnie, MD). PCR was performed using PCR
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FIGURE 2. Antioxidant attenuated the CSE-induced ER stress and protected RPE cells from apoptosis. ARPE-19 cells were pretreated with T mm of NAC for
6 h and then incubated with 320 wg/ml of CSE for 6-24 h. A, representative Western blots of p-elF2aand elF2« in cells treated with CSE for 6 h, ATF4 and CHOP
(CSE-treated for 12 h), and cleaved-caspase-3 (CSE-treated for 24 h). B, densitometry analysis of p-elF2a (normalized with elF2a), ATF4, CHOP, and cleaved-
caspase-3 (normalized with B-actin). C, Nrf2 levels were examined by Western blotting. D, apoptosis was examined by TUNEL assay after CSE treatment for 24 h.
Scale Bar: 50 um. E, quantification of TUNEL-positive cells. F, cell viability result of ARPE-19 cells after CSE 24 h treatment with or without NAC pretreatment. G,
cell death was detected using in situ Trypan Blue staining after CSE treatment for 24 h. All data were expressed as mean =+ S.D., from three independent

experiments. *, p < 0.05; **, p < 0.01 versus control; t, p < 0.05; F, p < 0.01 vs. CSE.

Master Mix (Fermentas) as described (40). The primers for
human XBP1 were 5'-TTA CGA GAG AAA ACT CAT
GGC-3' and 5'-GGG TCC AAG TTG TCC AGA ATG C-3".
PCR products were resolved and run on a 2.5% agarose/1X
TAE gel (40, 42).

Intracellular ROS and Mitochondrial Morphology Analysis—
Levels of intracellular reactive oxygen species (ROS) were
assessed using CellROX (Fluorescence Probes, Invitrogen).
Briefly, cells were incubated with CellROX Deep Red Reagent
(5 um) for 30 min (43) and then incubated with MitoTracker®
Green FM (Invitrogen) at 500 nm for another 30 min to deter-
mine morphologic changes of the mitochondria and the distri-
bution of ROS (44). After three washes with PBS, cells were
observed and imaged under a Zeiss LSM confocal microscope.
ROS levels were measured fluorescence density and quantified
using Image-J software.

Statistical Analysis—All quantitative data are presented as
mean * S.D. Statistical analyses were performed using
unpaired Student’s ¢ test for two group data and one-way anal-
ysis of variance (ANOVA) with Bonferroni’s multiple compar-
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ison test for three groups or more. Differences were considered
statistically significant at p < 0.05.

RESULTS

CSE Induces ER Stress and Apoptosis in ARPE-19 Cells—To
determine if CSE is sufficient to induce ER stress, ARPE-19 cells
were exposed to a broad range of doses (0.004—-320 ug/ml) of
CSE for 24 h. This dose range overlaps with the plasma levels of
water-soluble components of cigarette smoke in smokers (37),
and moreover, the concentrations of nicotine in the CSE solu-
tions (0.24 ng/ml-19.2 pug/ml) overlap with plasma levels of nic-
otine found in smokers (45). Results showed that 80 ug/ml-320
pg/ml of CSE significantly increased expression of GRP78 and
phosphorylation of elF2«, while CSE increased ATF4 and
CHOP expression only at 320 ug/ml (Fig. 1, A and B). To deter-
mine the time course of CSE’s effects on ER stress, cells were
exposed to 320 ug/ml of CSE for 648 h. Results showed that
level of GRP78 and phosphorylation of elF2«a increased at 6 h
and continued to increase until 24 h. The levels of ATF4 and
CHOP increased from 6 h, peaked at 12 h, and slightly declined
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FIGURE 3. Chemical chaperone decreased CHOP expression and mitigated CSE-induced apoptosis. ARPE-19 cells were pretreated with TMAO for 6 h,
followed by CSE (320 wg/ml) treatment for 6-24 h. A, representative Western blots of p-elF2a and elF2« (CSE- treated for 6 h), ATF4 and CHOP (CSE-treated for
12 h), and cleaved-caspase-3 (CSE-treated for 24 h). B, densitometry analysis of p-elF2a (normalized with elF2«), ATF4, CHOP, and cleaved-caspase-3 (normal-
ized with B-actin). C, apoptosis of ARPE-19 cells was examined by TUNEL assay after CSE 320 wg/ml 24 h treatment with or without TMAO (200 mwm, 6 h)
pretreatment. Scale Bar: 50 um. D, quantification of TUNEL-positive cells. All data were expressed as mean = S.D., from three independent experiments. *, p <

0.05; **, p < 0.01 versus Ctrl; T, p < 0.05; , p < 0.01 versus CSE.

at 24 h. In addition, the level of activated ATF6, another major
ER stress marker, was increased from 6 to 24 h. Similar changes
were observed in Nrf2, a major transcription factor that up-reg-
ulates antioxidant genes, which may reflect increased oxidative
stress upon CSE exposure (Fig. 1, C and D).

To determine whether CSE exposure induces apoptosis in
RPE cells, activation of caspase-3, a key mediator of apoptosis,
was examined by Western blot analysis of cleaved caspase-3.
Results show that the level of cleaved caspase-3 significantly
increased only after CSE (320 ug/ml) treatment for 24 h (Fig. 1,
C and D). Activation of p38 MAPK (P38), another potential
signaling molecule involved in apoptosis, was observed CSE-
challenged cells. TUNEL assay showed that the number of apo-
ptotic cells was significantly increased after CSE treatment (Fig.
1, Eand F). Cell viability measured by MTT assay was markedly
decreased by CSE exposure (Fig. 1G).

Antioxidant or Chemical Chaperone Ameliorates CSE-in-
duced ER Stress and Apoptosis—N-Acetyl-cysteine (NAC) is an
antioxidant that reduces oxidative stress induced by CSE (30).
To determine whether ER stress induced by CSE is mediated by
oxidative stress, we pre-treated ARPE-19 cells with 1 mm NAC
and then exposed the cells with 320 pg/ml of CSE for 6-24 h.
Activation of the UPR and apoptosis was determined by West-
ern blot analysis. Results show that NAC reduced the expres-
sion of p-elF2a, ATF4, CHOP, and alleviated activation of
caspase-3 compared with CSE treatment only (Fig. 2, A and B),
suggesting a potential role of oxidative stress in CSE-induction
of ER stress. As expected, NAC also reduced the induction of
Nrf2 by CSE (Fig. 2C). TUNEL assay and MTT demonstrated
that pre-treatment with NAC protected ARPE-19 cells from
apoptosis (Fig. 2, D and E) and alleviated the reduction of cell
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viability and mitigated cell death caused by CSE (Fig. 2, F
and G).

To decipher the importance of ER stress in CSE-induced
apoptosis, TMAO, a chemical chaperone that facilitates protein
folding thereby reducing ER stress, was applied in our study.
ARPE-19 cells were pre-treated with TMAO and then chal-
lenged with CSE. In TMAO-pretreated cells, CSE induced
much lower expression of ATF4, CHOP, and cleaved caspase-3
(Fig. 3, A and B). TUNEL assay confirmed the anti-apoptotic
effect of TMAO (Fig. 3, Cand D). These results indicate that ER
stress plays a role in CSE-induced apoptosis in RPE cells.

Chemical Chaperone Decreases ROS Levels and Attenuates
Mitochondrial Changes Caused by CSE—Evidence shows that
CSE, which contains potent oxidants, leads to depletion of GSH
and subsequent mitochondrial damage in ARPE-19 cells (30).
To determine reducing ER stress by chemical chaperone affects
ROS generation and mitochondria, ROS levels and mitochon-
drial morphology were measured in ARPE-19 cells after CSE
treatment for 6 h, with or without pretreatment of NAC or
TMAO. After 6 h of CSE treatment, APRE-19 cells showed
significantly increased ROS, most of which co-localized with
mitochondria, suggesting that mitochondria is a major source
of ROS generation in CSE-treated cells (Fig. 4A4). Significant
lower levels of ROS were observed in cells pre-treated with
TMAO or NAC, which indicates an inhibitory effect of chemi-
cal chaperone on oxidative stress (Fig. 4B). Additionally, using
MitoTracker® staining of live cells, we observed changes in
mitochondrial morphology after CSE treatment. As shown in
Fig. 4A, mitochondria became fragmented and more dif-
fusely distributed in CSE-treated cells. These changes were
reduced in cells with NAC or TMAO treatment, indicating
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FIGURE 4. Antioxidant and chemical chaperone reduced ROS level and alleviated mitochondrial changes induced by CSE. ARPE-19 cells were exposed
to CSE (320 g/ml) for 6 h, with or without NAC (1 mm) or TMAO (100 mm) pretreatment for 6 h. Increased ROS level and morphological changes of mitochondria
in ARPE-19 cells was induced by CSE and attenuated by antioxidant NAC or chemical chaperone TMAO. A, representative images of ROS and mitochondrial
changes under confocal microscope. Red: ROS. Green: MitoTracker®. Scale Bar: 20 um. B, quantification of intracellular ROS level by measuring florescence
density. All data were expressed as mean = S.D., from three independent experiments. **, p < 0.01 versus Ctrl; , p < 0.01 versus CSE.

that inhibiting ER stress may protect mitochondria and alle-
viate ROS generation.

Activation of XBPI Is Important for Cell Survival after CSE
Treatment—As a master coordinator of the adaptive UPR,
XBP1 plays a vital role in maintaining the ER function by induc-
ing ER chaperone and ERAD protein expression. RT-PCR and
Western blotting results showed that 320 ug/ml or 400 wg/ml
of CSE treatment for 24 h stimulated XBP1 mRNA splicing (Fig.
5A) and increased its protein expression (Fig. 5B). To deter-
mine the role of XBP1 in CSE-induced cell apoptosis, ARPE-19
cells were transduced with adenovirus expressing spliced
(active form) XBP1 (Ad-XBP1) or LacZ (Ad-LacZ) as control.
Adenoviral transduced cells were then treated with 320 ug/ml
of CSE for 24 h. Western blotting showed that overexpressing
XBP1 reduced the expression of CHOP, p-p38, and cleaved
caspase-3 (Fig. 5, Cand D). TUNEL assay (Fig. 5, E and F) and in
situ Trypan Blue staining (Fig. 5, G and H) showed that CSE
induced less apoptosis and cell death in Ad-XBP1-treated cells
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than in control cells. These results indicate that XBP1 overex-
pression attenuates ER stress and protects cells from apoptosis.

To elucidate the role of endogenous XBP1, siRNA was used
to knock down XBP1 gene in ARPE-19 cells and the knockdown
efficiency was examined by Western blotting. Due to the short
half-life of XBP1 proteins (22 min for XBP1s and 11 min for
XBP1u), MG132, a proteasome inhibitor, was used to inhibit
protein degradation. Specifically, cells were treated with XBP1
siRNA or control, then exposed to CSE for 24 h. During the last
4 h of the treatment, 10 um of MG132 was added to culture
medium. Our results show that protein level of XBP1s was
reduced by 60% (Fig. 6, A and B). In XBP1 siRNA-treated cells,
CSE induced less elF2a phosphorylation, more p-p38 expres-
sion, and strongly increased caspase-3 activation (Fig. 6, C and
D). However, down-regulation of XBP1 did not affect CSE-in-
duced CHOP expression (Fig. 6, C and D). CSE also induced
more morphologic changes and shrunken cells (Fig. 6E), and
more reduction in cell viability in the group of XBP1-knock-
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p < 0.01 versus control. C-H, ARPE-19 cells were transduced with Ad-XBP1s or Ad-LacZ for 24 h, followed by CSE treatment for additional 24 h. C, protein level
of XBP1s, CHOP, p-p38, and cleaved-caspase-3 were determined by Western blotting. D, densitometry analysis of Western blots for XBP1s, CHOP, p-p38, and
cleaved-caspase-3 (normalized with B-actin). £, apoptosis of ARPE-19 cells was examined by TUNEL assay. Scale Bar: 100 um; F, quantification of apoptotic cells
number (TUNEL-positive cells) from E. G, dead cell number was detected using in situ Trypan Blue staining after CSE treatment for 24 h. Arrows show Trypan
Blue-stained cells. Scale Bar: 100 um. H, quantification of dead cells (Trypan Blue-stained cells). All data were expressed as mean * S.D., from three independent
experiments. *, p < 0.05; **, p < 0.01 versus Ad-LacZ; #, p < 0.05; ##, p < 0.01 versus Ad-LacZ+ CSE.

down (Fig. 6F). TUNEL assay (Fig. 6, G and H) and Trypan Blue
staining (Fig. 6, I and /) showed that CSE induced more apopto-
sis and cell death in the cells treated with XBP1 siRNA, suggest-
ing endogenous XBP1 has a protective role in RPE cells chal-
lenged with CSE.

CHOP Down-regulation Reduced Nrf2 Level and Exacerbated
CSE-induced Cell Death—Compelling evidence shows that
activation of CHOP is a key step in the execution of ER stress-
associated apoptosis (14). Our study found that CSE induced

S
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CHOP expression in APRE-19 cells. To determine the role of
CHOP in CSE-induced apoptosis, siRNA was applied to knock
down CHOP expression. In CHOP siRNA-treated cells, CSE-
induced CHOP expression was dramatically decreased com-
pared with control cells (Fig. 7, A and B), and the expressions of
CSE-induced Nrf2, p-elF2a, and p-p38 were also reduced (Fig.
7, A and B). Although we had expected that CHOP inhibition
protects ARPE-19 cells form CSE induced cell apoptosis and
cell death, in contrast to our expectation, CSE induced more
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caspase-3 activation (Fig. 7, A and B), more morphologic
changes and shrunken cells (Fig. 7C), more reduction of cell
viability (Fig. 8D), more apoptosis (Fig. 7, E and F), and more
cell death (Fig. 7, G and H) in CHOP-deficient cells compared
with controls. These data indicate that although CHOP was
generally considered to be a transcription factor involved in
apoptosis, knockdown of CHOP may have an aggravating effect
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rather than a protective effect on CSE-induced apoptosis in
RPE cells.

Nrf2 Regulates CHOP Expression and Apoptosis in RPE
Cells—Nrf2 is a central regulator of the anti-oxidant system,
inducing expression of genes encoding phase II detoxification
enzymes and antioxidant proteins (46). To determine whether
down-regulation of Nrf2 expression by CHOP deletion is
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responsible for enhanced caspase-3 activation and apoptosis,
we used siRNA to knock down the Nrf2 gene in ARPE-19 cells.
We found that in the cells pre-treated with Nrf2 siRNA, CSE
caused more robust CHOP and p-p38 expression and caspase-3
activation compared with mock controls (Fig. 8, A and B). In
line with these changes, TUNEL and Trypan Blue staining
assays showed more apoptotic cells (Fig. 8, C and D) and more
dead cells (Fig. 8, E and F) in Nrf2 siRNA group after CSE treat-
ment. These results suggest that Nrf2 down-regulation may
contribute to aggravated apoptosis caused by CHOP inhibition.

To further validate the role of Nrf2 on CHOP expression and
apoptosis induced by CSE, we overexpressed Nrf2 using adeno-
virus in ARPE-19 cells. Western blotting showed that Nrf2
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overexpression remarkably reduced expression CHOP, p-p38,
cleaved caspase-3 induced by CSE when compared with control
adenovirus (Fig. 9, A and B). TUNEL assay showed that overex-
pression of Nrf2-protected cells from CSE-induced apoptosis
(Fig. 9, Cand D). In situ Trypan Blue staining showed decreased
number of dead cells in Nrf2 overexpression group after CSE
treatment (Fig. 9, E and F). Together, these data revealed a
potent effect of Nrf2 on reducing CHOP expression and apo-
ptosis in CSE-challenged RPE cells.

DISCUSSION

Cigarette smoking is the most important environmental risk
factor for AMD, and has been confirmed to induce damage in
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RPE cells (7-10). Studies have shown that CSE induces ER
stress markers such as phosphorylation of elF2a and the
nuclear form of ATF6 in lung lysates from mice (47), GRP78
and CHOP in human bronchial epithelial cells (hBEC) and in
the lungs of mice exposed to cigarette smoke (32). Recent work
by our group and others also suggests induction of ER stress by
cigarette smoke in the RPE (34 —36), however, the mechanisms
by which ER stress regulates signaling pathways implicated in
stress response and apoptosis are not well understood. In the
present study, we found that CSE increased the expression of
GRP78 and p-elF2¢, and induced ATF4 and CHOP expression
in a time- and dose-dependent manner in cultured human RPE
cells. The increased p-elF2a reflects the activation of PERK in
UPR, which indirectly inactivates elF2a and inhibits mRNA
translation (14). At the same time, p-elF2« activates transcrip-
tion factor ATF4. ATF4 induces its downstream transcription
factor CHOP, which is considered to control genes involved in
apoptosis (14). Our study shows that CSE induced apoptosis
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and reduced the cell viability in ARPE-19 cells, indicating that
CSE induces cell apoptosis when persistent ER stress exits. We
also found that CSE induced ATF6 and Nrf2, two protective
factors expressed during ER stress, in ARPE-19 cells at 6 h of
CSE exposure. This result may indicate an auto-protective
mechanism of ARPE-19 cells in early stages of ER stress.

CSE contains a large amount of free radicals that can induce
oxidative stress (29, 48—-51). As described above, oxidative
stress can induce ER stress. However, how oxidative stress
affects CSE-induced ER stress in ARPE-19 cells is not clear. In
our study, antioxidant NAC alleviated CSE-induced ER stress,
protected RPE cells from apoptosis, and increased cell viability
in ARPE-19 cells, suggesting that oxidative stress is involved in
the induction of CSE-induced ER stress. We also found that
chemical chaperone TMAO significantly attenuated CSE-in-
duced ER stress, and protected ARPE-19 cells from CSE-in-
duced apoptosis, indicating that ER stress is important to CSE-
induced cell apoptosis. Previous studies have shown that CSE
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disturbs oxidative balance, including increased lipid peroxida-
tion (4-HNE) and mitochondrial superoxide production, as
well as decreased intracellular glutathione (GSH) in RPE cells
(30). In the present study, we found that CSE increased ROS
accumulation in ARPE-19 cells, confirming the CSE induced
oxidative stress. The accumulated ROS partly co-located with
mitochondria, causing mitochondria shrank and fragmented.
Pre-treatment of cells with the antioxidant NAC or the chem-
ical chaperone TMAO alleviated CSE-induced ER stress and
ROS accumulation, and protected cells from apoptosis. Inter-
estingly, our preliminary study indicates that inducing mito-
chondrial ROS generation was sufficient to activate the UPR
signaling (data not shown). In addition, CSE induced a reduc-
tion in mitochondrial potential, which was partially prevented
by NAC but not TMAO (data not shown). These results indi-
cate that in RPE cells ER stress and mitochondria-associated
oxidative stress are closely associated and interdependently
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regulate each other, both contributing to apoptosis induced by
CSE.

The early stage of UPR is the predominant adaptive cytopro-
tective response against ER stress. Studies have shown that the
transcription factor XBP1s activates UPR genes, such as chap-
eron p58IPK, to relieve ER stress (18, 19). Although hydroqui-
none, a potent oxidant in cigarette smoke, suppressed XBP1-
mediated adaptive UPR signaling (36), we found that CSE
increased the expression of UPR factor XBP1s. In our study we
found that overexpression of XBP1s reduced the CSE-induced
CHOP and p-p38, protecting ARPE-19 cell from CSE-induced
apoptosis. In contrast, knockdown of XBP1 decreased the base-
line level of p-eIlF2a and CSE induced elF2a phosphorylation,
up-regulated P38 activation, and increased the sensitivity of
ARPE-19 cell to CSE-induced cell apoptosis. However, knock-
down of XBP1 did not induce more CHOP expression. Our
results suggest that knockdown of XBP1 enhances the sensitiv-
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ity of ARPE-19 cells to CSE-induced apoptosis, which may act
through an alternative pathway to CHOP. These results con-
firmed the protective effect of UPR factor XBP1s in cultured
human RPE cells during CSE exposure.

CHOP is considered a major pro-apoptotic gene induced by
ER stress. Evidence demonstrates that activation of CHOP
induces a variety of downstream genes involved in apoptosis,
while deficiency of CHOP protects cells from ER stress-induced
apoptosis (52-56). However, some recent studies have shown
discrepant results. For instance, Esposito et al. showed that
knock-out of CHOP exaggerated LPS-induced inflammation
and kidney injury in mice, suggesting that CHOP inhibits the
inflammatory response in renal cells and at the same time pro-
vides a protective effect against kidney injury (57). Chen et al.
found that CHOP deficiency enhanced apoptosis in hippocam-
pal cells and impaired memory-related behavioral perfor-
mances in mice with tunicamycin treatment (58). Recently,
Nashine et al. observed that CHOP deficiency did not protect
but exacerbate rod photoreceptor death in retina degeneration
mice, with up-regulation of p-elF2a and decreased spliced
XBP1, which indicated that CHOP may be a survival factor for
rod photoreceptors in severe retinitis pigmentosa mice (59).
Furthermore, Cano et al. showed that CHOP knockdown
decreased cell viability in ARPE-19 cells when exposed to 500
pg/ml CSE (35). Likewise, we found that CSE induced more
apoptosis and cell injury in CHOP-deficient cells. These obser-
vations suggest that despite the pro-apoptotic effect of CHOP, a
baseline level of CHOP seems to be required for photoreceptor
and RPE cell survival. However, it remains unclear why loss of
CHOP results in more cell death in stressed retina and RPE.

To address this question, we evaluated the expression of
Nrf2, p-elF2a, and p-p38 in cells treated with siRNA against
CHOP after exposure to CSE. Nrf2 is a central regulator of the
anti-oxidant system, inducing expression of genes encoding
phase II detoxification enzymes and antioxidant proteins to
attenuate oxidative stress and protect cell survival (46).
Recently, Lei Wang et al. found that Nrf2 was altered in human
AMD specimens, and Nrf2 deficiency promoted cellular oxida-
tive damage and a pro-inflammatory environment in CSE
exposed RPE cells (60). In our study, we found that in CHOP
knockdown cells, p-p38, a MAPK factor involved in cell death,
was decreased, which may indicate that knockdown of CHOP
to some extend alleviates cell damage through MAPK pathway;
meanwhile, Nrf2 and p-elF2a were significantly decreased.
Overexpression of Nrf2 significantly reduced CHOP-depen-
dent apoptosis in RPE cells; in contrast, knockdown of Nrf2
exacerbated CSE induced cell apoptosis, suggesting that CHOP
knockdown exacerbated cell death at least partially through the
down-regulation of Nrf2. In addition, the decreased p-elF2«
level may lead to a decreased capacity to slow down protein
formation, which would increase the unfolded protein accumu-
lation, thereby exacerbating ER stress and cell damage.

In summary, our study showed that CSE induces ER stress
associated with oxidative stress and mitochondrial damage,
playing an important role in apoptosis of RPE cells death. The
CSE induced UPR and CHOP activation is essential for induc-
tion of Nrf2, which suppresses ER stress and protects against
apoptosis. Activation of XBP1, the central regulator of the
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adaptive UPR, is also important for RPE survival during ER and
oxidative stress. Thus, harnessing the protective factors such as
XBP1 and Nrf2 may provide novel therapeutic targets to pro-
tect RPE cells from cigarette smoke-associated damage of RPE
cells.
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