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Abstract 
Elevated iron stores as indicated by hyperferritinemia 

with normal or mildly elevated transferrin saturation 
and mostly mild hepatic iron deposition are a 
characteristic finding in subjects with non-alcoholic 
fatty liver disease (NAFLD). Excess iron is observed 
in approximately one third of NAFLD patients and 
is commonly referred to as the “dysmetabolic iron 
overload syndrome”. Clinical evidence suggests that 
elevated body iron stores aggravate the clinical course 
of NAFLD with regard to liver-related and extrahepatic 
disease complications which relates to the fact that 
excess iron catalyses the formation of toxic hydroxyl-
radicals subsequently resulting in cellular damage. Iron 
removal improves insulin sensitivity, delays the onset 
of type 2 diabetes mellitus, improves pathologic liver 
function tests and likewise ameliorates NAFLD histology. 
Several mechanisms contribute to pathologic iron 
accumulation in NAFLD. These include impaired iron 
export from hepatocytes and mesenchymal Kupffer cells 
as a consequence of imbalances in the concentrations 
of iron regulatory factors, such as hepcidin, cytokines, 
copper or other dietary factors. This review summarizes 
the knowledge about iron homeostasis in NAFLD and 
the rationale for its therapeutic implications.
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Core tip: Hyperferritinemia with normal transferrin 
saturation and mostly mild hepatic iron deposition is a 
frequent finding in subjects with non-alcoholic fatty liver 
disease. Excess iron in non-alcoholic fatty liver disease 
(NAFLD) patients is referred to as the “dysmetabolic 
iron overload syndrome”. Clinical evidence suggests that 
elevated body iron stores aggravate the clinical course 
of NAFLD with regard to liver-related and extrahepatic 
disease complications. Iron removal improves insulin 
sensitivity, delays the onset of type 2 diabetes mellitus, 
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improves pathologic liver function tests and ameliorates 
NAFLD histology The mechanisms contributing to iron 
excess in fatty liver include impaired iron export from 
hepatocytes and mesenchymal Kupffer.
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INTRODUCTION
Physiological regulation of iron homeostasis
Iron is essential for life of mammalian organisms 
due to its paradigmatic role in oxygen transport and 
also in being a central component of many enzymes 
and proteins involved in mitochondrial respiration, 
DNA biosynthesis and the citric acid cycle, among 
others. However, excess iron is detrimental and may 
lead to severe organ damage as it facilitates the 
formation of reactive oxygen species (ROS) via the 
Fenton reaction. On the other hand, iron deficiency 
can lead to anemia and fatigue which are among 
the most common disorders in the world. In order 
to provide enough iron for biological function and at 
the same time avoid iron overload and toxicity, iron 
trafficking and storage are diligently balanced by a 
mechanisms involving bone marrow, intestine, liver 
and the reticuloendothelial system (RES)[1,2].

Many aspects of iron metabolism have been 
unravelled in recent years. Dietary iron is taken up 
as Fe2+ in the duodenum by the cation transporter div­
alent metal transporter 1[3,4]. After transfer through 
the duodenal baso-lateral membrane via the iron 
exporter ferroportin (FPN)[5,6], iron is oxidized by the 
copper containing ferroxidase hephaestin and loaded 
onto transferrin for systemic distribution[7]. Most cells 
facilitae iron uptake by transferrin bound Fe3+ via 
the transferrin-receptor (TfR1). Most iron is required 
for erythropoiesis and the biosynthesis of other 
heme enzymes like cytochromes, and excess iron is 
stored in hepatocytes[5,8]. Most iron for physiological 
requirements, mainly erythropoiesis, is obtained 
from re-utilisation of senescent erythrocytes which 
are taken up and degraded in splenic macrophages. 
Only approximately 1-2 mg of daily body iron 
requirements which are used for compensation of 
iron losses via bleeding, enteric and cutaneous cell 
desquamation are replenished via duodenal iron 
absorption. Iron export is facilitated by FPN from 
hepatocytes, macrophages and all other cells[9].

Systemic iron homeostasis is equilibrated by 
the peptide hepcidin (hepatic bactericidal protein) 
mainly derived from hepatocytes and regulated by 
iron status, hypoxia, anemia and inflammation[10-12]. 

Hepcidin impacts on iron trafficking by attaching 
to FPN which leads to the degradation of FPN and 
thereby to down-regulation of iron export inducing a 
decline in serum iron concentrations[13]. Quantitatively 
hepatocytes are the most important source for 
hepcidin, however, expression has also been reported 
in adipose tissue, pancreatic islets, macrophages, 
and even cardiac myocytes. Hence, iron homeostasis 
via FPN mediated iron export may be regulated in an 
autocrine fashion in these cells[14-16].

Perturbations of iron homeostasis are frequently 
observed in patients suffering from non-alcoholic 
fatty liver disease (NAFLD)[17,18]. As the prevalence 
of obesity rises, NAFLD with or without associated 
metabolic syndrome (MetS), has become the most 
frequent cause of hyperferritinemia. The first report 
of non-hemochromatotic iron overload linked to 
metabolic characteristics such as insulin resistance 
and overweight in a French study subsequently 
stimulated extensive research on the potential mech­
anisms underlying iron accumulation in NAFLD[19]. 
The dysmetabolic iron overload syndrome (DIOS) 
commonly refers to the characteristic association of 
fatty liver with moderate histological iron deposition 
(hemosiderosis) and increased serum ferritin[17,20].

WHAT IS THE IRON PHENOTYPE OF 
NAFLD?
An increase in ferritin concentrations is the key 
feature of iron dysregulation in subjects with NAFLD. 
It is found in one third to half of patients with 
NAFLD and ranges from mild elevations to rarely 
1000-1500 ng/mL[17]. Serum ferritin concentrations 
increase with the number of features of the MetS[21]. 
Transferrin saturation (TfS) is typically in the upper 
range of normal or mildly elevated (45%-50%) 
which is distinct from hereditary hemochromatosis, 
where hyperferritinemia is accompanied by markedly 
elevated TfS and usually TfS is elevated before the 
development of hyperferritinemia in early stages of 
hemochromatosis[22].

Iron deposits in NAFLD are found in Kupffer cells 
which are the resident liver macrophages as well as 
in hepatocytes[20]. Mesenchymal iron deposition is 
more frequent than hepatocellular iron accumulation 
but mostly both compartments are affected[23]. This 
is different from tissue iron deposition in primary 
genetic iron overload, hemochromatosis, where the 
metal is almost exclusively found in the hepatocellular 
compartment (with the exception of ferroportin 
disease) and macrophages are iron deficient as a 
result of uninhibited iron export from these cells[24,25]. 
The extent of hyperferritinemia in subjects with 
NAFLD and/or the MetS overestimates the degree 
of iron overload compared to hemochromatosis. 
Phlebotomy studies demonstrated that in DIOS 
patients the amount of iron need to be removed 
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for normalisation of circulating iron parameters is 
usually significantly less than in hemochromatosis, 
indicating only mild body iron excess[26,27]. Few 
studies have performed liver iron quantification in 
NAFLD subjects and these results confirm the mild 
degree of tissue iron excess compared to genetic iron 
overload disorders[19,28]. The mild degree of body iron 
excess compared to markedly raised serum ferritin 
concentrations suggests that iron overload in NAFLD 
subjects results from a combination of alimentary and 
inflammatory driven iron loading and retention[20,29,30]. 
This is in line with the current evidence that NAFLD is 
both a metabolic and an inflammatory disease[31].

WHAT IS THE CLINICAL RELEVANCE OF 
ELEVATED IRON STORES?
IR and associated metabolic conditions 
In 1981 Sullivan[32] suggested that the postponed 
occurrence of cardiovascular diseases in women 
compared to men and the subsequent postmen­
opausal increase could be caused by low premen­
opausal iron stores. This report likely is the first report 
of an impact of iron stores in non-hemochromatotic 
metabolic disorders. An association of iron stores 
with type 2 diabetes mellitus (T2DM) and various 
manifestations of IR has been repeatedly confirmed 
and a detailed discussion thereof is beyond the scope 
of this review[33]. However, glucose metabolism and 
iron homeostasis appear to be functionally inter­
connected, due to the fact that gluconeogenetic 
signals regulate iron homeostasis via hepcidin[34] while 
iron loading or deficiency directly affect circulating 
glucose concentrations in mammals most likely via 
its effects on citric acid cycle enzyme activities[35,36], 
thereby also affecting lipid profiles[37]. Ferritin 
concentrations were associated with an increased 
rate of diabetes and gestational diabetes[38-43], with 
BMI[44], visceral fat mass[45], serum glucose levels 
and insulin sensitivity[46], blood pressure[47], the 
MetS[21,48], the polycystic ovary syndrome (PCOS)[49] 
and cholesterol[50]. Higher parameters of iron storage 
clustered with metabolic risk markers in a study 
of obese[51] and healthy lean adolescents[52]. These 
observations are epidemiologically important as 
patients with IR have a higher risk of developing 
cerebrovascular or cardiovascular disease[53,54]. 
However, the most convincing argument for causative 
involvement of iron in obesity-related conditions is 
derived from iron removal studies mentioned in detail 
below. In summary, available studies convincingly 
suggest a direct impact of body iron on manifestations 
of IR or the MetS. 

NAFLD
NAFLD has been firmly established as the hepatic 
manifestation of the MetS/IR[55]. The disease 
spectrum of NAFLD ranges from simple steatosis 

which is generally considered benign to steatosis 
with various stages of inflammation, hepatocellular 
ballooning and fibrosis called non-alcoholic steato­
hepatitis (NASH). NASH is the potentially progressive 
manifestation leading to cirrhosis, end-stage liver 
disease and hepatocellular carcinoma in a minority 
of patients[56]. To our knowledge, there is no data 
available suggesting that excess iron is linked to 
the extent of hepatic steatosis. Although multiple 
associations between iron homeostasis and lipid 
metabolism have been reported[57], no characteristic 
lipid phenotype has been documented to distinguish 
NAFLD with iron overload from NAFLD without iron. 
Underlying NAFLD may explain the link between 
MetS features and ferritin on the population level[58].

Several studies provide evidence that iron may 
contribute to more advanced fibrosis and thus to 
progression of NAFLD[18,59-63], however, this asso­
ciation was not confirmed in all studies[64-66]. The to 
date largest study reported that iron in NAFLD liver 
biopsies, particularly in Kupffer cells, was linked to 
more fibrosis and disease severity[67]. Iron deposition 
particularly in the Kupffer cell compartment was 
associated with higher markers of hepatocellular 
apoptosis and oxidative stress[68]. Some studies also 
suggested that an increased rate of HFE mutations 
could account for more progressed stages of NAFLD, 
but this was not reported in all studies[65,69-72]. 
Additionally the beta-globin trait[73], TMPRSS6[74], 
and the alpha-1-antitrypsin genotype[75] may modify 
the iron phenotype of NAFLD. It appears reasonable 
to conclude that the contribution of the genetic 
background may vary according to the geographic 
region. Data evaluating causality of iron in disease 
progression is limited by the feasibility of a 
prospective study with serial liver biopsies in enough 
patients to adjust for known co-factors of disease 
progression[64,76]. Retrospective studies demonstrated 
that, hyperferritinemia was linked to mortality of 
patients on the transplantation waiting list and it 
also had an impact on post-transplant mortality[77,78]. 
It is important to note that particularly sinusoidal 
iron deposition may be linked to the development of 
HCC in NASH[79].

In summary, the prevailing body of evidence 
suggests that excess iron is a contributing factor for 
the progression of steatosis to NASH, liver cirrhosis 
and also hepatocellular carcinoma. It remains to be 
established to what extent different patterns of iron 
deposition affect outcomes such as cirrhosis, HCC or 
cardiovascular diseases. The data mentioned above 
suggest that the pattern of iron deposition may have 
distinct effects.

HOW DOES IRON LEAD TO DISEASE 
PROGRESSION IN NAFLD? 
It has been well recognized that iron overload leads 
to diabetes in patients with hemochromatosis where 

179 February 27, 2015|Volume 7|Issue 2|WJH|www.wjgnet.com

Aigner E et al . Iron in NAFLD



180 February 27, 2015|Volume 7|Issue 2|WJH|www.wjgnet.com

inversely associated with adiponectin concentrations in 
insulin resistant and sensitive patients[98,99]. Knockout 
of FPN1 in adipocytes increased intracellular iron and 
subsequently reduced adiponectin biosynthesis, thus 
establishing a molecular link between adipocyte iron 
concentration and insulin resistance[100]. Furthermore, 
excess iron the diet may be routed to visceral adipose 
tissue and change the expression of adipokines, as 
demonstrated for resistin[101] Adipokines represent 
a diverse group of hormones which mediate the 
metabolic effects of diseased adipose tissue to organs 
and tissues. Associations have been observed bet­
ween retinol-binding protein 4 (RBP4) and visfatin 
serum concentrations and parameters of iron meta­
bolism[102,103]. However, these reports may reflect the 
co-incidence of elevated iron stores with surrogate 
markers of IR and do not prove causality[93]. 

Liver macrophages named Kupffer cells, which are 
an important site of iron storage in NAFLD, are tightly 
involved in the initiation of the hepatic inflammatory 
cascade in response to the uptake of oxidized 
lipoproteins[104] or oxidized phosphatidylcholines[105]. 
It is well known that macrophage iron status affects 
their inflammatory response pattern and polarization 
towards a pro-inflammatory phenotype[106], however, 
the particular role of these potential interactions have 
to our knowledge not been investigated in NAFLD.

Thus, the potential mechanisms of iron-induced 
NAFLD disease progression are complex and involve 
protean effects of iron in extrahepatic tissues as well 
direct liver damage.

WHAT ARE THE MECHANISMS 
UNDERLYING IRON ACCUMULATION IN 
NAFLD? 
Hepcidin is the key regulator of systemic iron 
homeostasis and plays a role for the hemochromatotic 
and the inflammatory driven misdistribution of iron. 
Whereas the lack of hepcidin in hemochromatosis 
leads to uncoordinated duodenal iron absorption and 
iron accumulation in parenchymal tissues such as 
the liver[107]. the inflammation driven iron retention 
occurs mainly in monocytes/macrophages as a 
consequence of increased iron accumulation and 
reduced FPN mediated iron export from these cells, 
the latter being due to increased circulating hepcidin 
levels along with negative effects of certain cytokines 
on FPN expression[108]. The histological hallmarks 
of hemochromatosis, i.e., hepatocellular iron, and 
also the inflammatory phenotype iron deposition 
in macrophages are both observed concurrently, 
suggesting that iron dysregulation is multifaceted 
in NAFLD. Several stimuli of hepcidin regulation 
have been reported which may be of particular 
relevance in NAFLD and also be related to different 
iron phenotypes. These stimuli and their relation 

IR increases and insulin secretion decreases with 
the rise of body iron stores[25,80-82]. Hepatic insulin 
sensitivity and insulin secretion are re-established 
in the majority once iron is removed[83,84]. However, 
the prediabetic stage in hemochromatotic mice and 
humans displays impaired β-cell function along with 
increased insulin sensitivity, whereas dietary iron 
overload similar to the prediabetic state in humans 
are characterized by peripheral IR[85]. Hence, lessons 
drawn from hemochromatosis models are likely not 
fully applicable to the role of iron in human IR and 
NAFLD.

Iron is well-recognized as a catalyst for the 
production of reactive oxygen intermediates via 
the Fenton reaction, and it is generally held that an 
increase of oxidative stress is a central mechanism 
for IR although direct proof for this hypothesis has 
not been obtained so far. Oxidative stress is a central 
pathogenic factor in NAFLD, T2DM and obesity[86-88] 
and markers of oxidative stress were increased in 
NAFLD with iron loading as compared to NAFLD 
without iron excess[68,89,90]. Generation of ROS 
may induce lipid peroxidation and cellular damage 
which may contribute to the progression of NAFLD. 
Importantly, oxidative stress induced molecules 
such as malonyldialdehyd and 4-hydroxynonenal 
may induce the formation of de-novo antigens 
with subsequent activation of T-lymphocytes and 
development of immunoglobulin G reactive against 
these antigens. This response was further enhanced 
by previous immunization against these antigens with 
a stimulated M1 macrophage response[91]. Although 
no studies have been performed, iron may contribute 
to this process by further augmentation of oxidative 
stress.

 In cell culture, iron chelation re-established 
insulin receptor signalling and iron inhibited insulin 
receptor activity[92]. Desferoxamine increased the 
phosphorylation of Akt/protein kinase B (Akt/PKB), 
forkhead transcription factor O1 (FoxO1) and 
glycogen synthase kinase 3β (GSK3β) reflecting 
insulin effects on gluconeogenesis and glycogen 
synthesis. Likewise, genes playing a role in glucose 
utilization such as GLUT1 or hypoxia-inducible 
factor 1a (HIF1a) were up-regulated in hepatoma 
cells resulting in enhanced glucose removal[92]. In 
summary, these molecular observations indicate 
that iron affects IR by modulating insulin receptor 
signalling as has been recently reviewed[93].

Importantly, dietary iron intake may impact on 
glucose metabolism by affecting circadian rhythm 
via heme mediated effects on RevErb-a. Disruption 
of circadian rhythms, e.g., through night-shift 
work is an established risk factor for metabolic and 
cardiovascular diseases[94,95].

In cultured fat cells, iron favored an IR, chara­
cterised by impaired glucose uptake and suppression 
of lipolysis in response to insulin[96,97]. Ferritin was 
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to NAFLD iron accumulation are summarized in 
Figure 1. For several of these, like sex hormones, 
growth factors and hypoxia-induced circulating 
factors, the contribution to the dys-regulation of 
iron homeostasis in NAFLD has not been directly 
demonstrated but is physiologically plausible and 
these have therefore been included in the summary 
figure[109-112]. Additionally, alcohol consumption may 
decrease hepcidin expression and thus modify iron 
accumulation in NAFLD subjects[113], and although 
relevant alcohol consumption should be excluded in 
NAFLD subjects both conditions frequently co-exist. 
Thus, in NAFLD multiple, potentially counteracting 
signals impacting on hepcidin expression may be 
present at the same time. It is likely that the net 
balance of these signals finally determines the pattern 
of iron accumulation in the fatty liver of the individual 
patient. 

Hepcidin levels in urin, serum and liver were 
elevated in NAFLD patients with iron excess compared 
to healthy subjects, hemochromatosis patients 
and NAFLD subjects without excess iron[28,114-116]. 
Hepcidin expression correlated directly with liver iron 
indicating an intact physiological response of hepcidin 
biosynthesis to iron in the liver[28,114]. Additionally, 
hepcidin is expressed in adipocytes of morbidly obese 
subjects[15]. Moreover, obesity is characterised by 
a chronic subclinical inflammation and in humans 
hepcidin concentrations and TNF-a were directly 
related, suggesting that both iron and inflammation 
contribute to hepcidin biosynthesis in NAFLD[28]. 
Furthermore, hepcidin and cytokines may be derived 
from both, the inflamed adipose and the liver[117,118]. 

Activation of gluconeogenesis via starvation, namely 
activation of peroxisome proliferator activated receptor 
gamma co-activator-1 a (PGC1a) increased hepcidin 
expression in a mouse model[34]. Likewise, iron 
fortification decreased gluconeogenesis via PGC1α in 
a murine model[119]. Hence, although PGC1α offers 
an intriguing cellular link between glucose and iron 
homeostasis, its relevance to human NAFLD remains 
to be elucidated. Leptin, was demonstrated to up-
regulate hepcidin in hepatocytes in vitro by activation 
of the JAK2/STAT3 pathway. Hence, hyperleptinemia 
may directly contribute to higher hepcidin and 
thereby to iron deposition in NAFLD[120,121].

In NAFLD with iron overload the iron exporter 
FPN is lower than in controls and hemochromatosis 
patients in the liver and in the duodenum[28,114,122,123]. 
In NAFLD without liver iron accumulation, FPN levels 
were comparable to control subjects, but were 
significantly lower in NAFLD with hepatic iron on 
histology[28]. Along the same line of the observations, 
duodenal iron absorption was decreased in DIOS 
patients[124]. Obesity also represents a risk factor for 
an inadequate dietary iron fortification, linked to high 
hepcidin and low FPN expression[125]. Along this line 
mice feed a high fat diet presented with significantly 
reduced iron absorption which could be traced back 
diminished intestinal iron uptake. Mechanistically, 
the impaired iron absorption was independent of 
hepcidin but resulted from reduced metal uptake into 
the mucosa and transfer of iron across enterocyte 
membranes as a consequence of dietary induced 
discordant membrane-bound oxidoreductase expr­
ession[126].

Modifying factors Effect on iron phenotype Disease relevance

Iron deposition
liver inflammation
adipose tissue inflammation 
(IL-6, TNF-α)
intestinal LPS
hyperleptinemia
ER-stress (A1AT-mutation?)
gluconeogenic signals
(PPARGC1A)

Oxidative stress
genetic mutations: HFE, beta-
globin, TMPRSS6 
liver cirrhosis/ESLD
hypoxia
sex hormones
growth factors, EGF, PDGF-BB

Macrophage iron 
accumulation

Hepatocellular iron 
accumulation

Increase

Decrease

Hepcidin

Cytokine production and activity
immunomodulation
pathogen response
inflammatory response
hepatocellular carcinoma

Increased 
  Oxidative stress
  Lipid peroxidation
  Hepatocellular necrosis
  Fibrogenesis

Figure 1  Summary of the potential stimuli that may affect iron homeostasis in non-alcoholic fatty liver disease. Both, increasing and decreasing stimuli 
have been reported in non-alcoholic fatty liver disease and it appears likely that the net balance of these frequently counteracting forces finally determines the iron 
phenotype in the individual. Patterns of iron deposition may also be linked to distinct clinical consequences. IL-6: Interleukin 6; TNF-α: Tumor necrosis factor-α; LPS: 
Lipopolysaccharide; ER: Endoplasmatic reticulum; A1AT: α-1-antitrypsin; PPARGC1A: Peroxisome proliferator-activated receptor gamma coactivator 1-α; TMPRSS6: 
Transmembrane protease, serine 6; ESLD: End-stage liver disease; EGF: Epidermal growth factor; PDGF-BB: Platelet derived growth factor BB.
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An additional mechanism may be the phag­
ocytosis of fragile erythrocytes by liver Kupffer cells. 
This was documented in rabbits on a high-fat diet 
and the phagocytosis of fragile erythrocytes was 
observed in vitro. Accumulation of erythrocytes 
was microscopically detected in inflamed regions in 
human NAFLD[127] suggesting that uptake of heme-
iron via erythrophagocytosis may contribute to 
NAFLD iron accumulation, then promoting oxidative 
stress and inflammation. 

Although cellular iron uptake via TfR1 is the most 
important route of iron uptake under physiological 
circumstances TfR1 appears not to be involved in 
excess iron uptake in NAFLD[128,129]. Hepatic TfR1 
expression in NAFLD patients with low iron was 
increased compared to NAFLD and iron accumulation 
or patients with hemochromatosis suggesting 
physiologically intact TfR1 expression in response to 
iron stimuli[28] (Figure 2).

WHAT IS THE ROLE OF COPPER IN 
NAFLD?
Similar to iron, an adequate supply of copper is ess­
ential for proper biological function. Chronic copper 
deficiency can elicit anemia, leucopenia, myelopathy 
or skin abnormalities and excess copper may also 
facilitate the formation of ROS. 

Copper affects lipid and glucose metabolism
There are several ways in which inadequate copper 
supply may be involved in the pathogenesis of NAFLD. 
Epidemiological studies found that copper deficiency 
is linked to atherogenic dyslipidemia and dietary 
copper supplementation improved cardiovascular risk 
markers in healthy adults[130] Investigations in rodent 
models demonstrated that dietary copper restriction 
induces hypertension or cardiac dysfunction, hypertrig­
lyceridemia, hypercholesterolemia and modifies LDL 
and VLDL composition[131,132]. We recently reported 
low intrahepatic copper concentrations in human 
NAFLD compared to other liver diseases and that 
rats on a copper depleted diet developed IR and 
liver steatosis[133]. Increased oxidative stress is consi­
dered a key trigger in the pathogenesis of human 
NAFLD and one of the enzymes counteracting 
oxidative stress, Cu/Zn superoxide dismutase (SOD) 
depends on adequate copper availability, suggesting 
a potential link between copper availability and 
impaired antioxidant defense in NAFLD[134]. Sprague-
Dawley rats exhibited an increased activity of the 
pro-inflammatory protein cyclo-oxygenase-2, when 
fed a diet with a low copper content[135]. Systemic 
copper deficiency causes mitochondrial dysfunction 
in mice and similar morphological and functional 
alterations have also been described in human 
NAFLD[136]. Recently, a detailed examination revealed 
an interaction of a high-fructose diet (which is also a 

culprit in the rise of obesity-related conditions) with 
low copper intake in triggering liver steatosis and 
damage as well as iron overload. Fructose acts as 
an inhibitor of duodenal copper absorption thereby 
leading to impaired oxidant defense and augmented 
lipid peroxidation[137]. As dietary copper content of the 
Western diet is rather low whereas iron and fructose 
are consumed in excess, this model offers attractive 
data to speculate that a dysbalance in micronutrient 
intake may have a significant role in NAFLD beyond 
calorie excess. Hence, animal and human data 
suggest that the therapeutic effect of dietary copper 
supplementation should be investigated as a subset 
of patients may potentially benefit.

Copper affects NAFLD iron homeostasis
Copper modulates iron homeostasis and is also 
linked to the iron perturbations of NAFLD. Hephaestin 
ferroxidase activity in duodenal enterocytes is critically 
dependent on copper as it oxidizes ferrous to ferric 
iron which is subsequently loaded onto Tf[7]. Similarly, 
copper is necessary for ceruloplasmin function to 
export iron from the liver or the RES and also for FPN 
expression[138]. Expression of a membrane-bound 
form of ceruloplasmin is mandatory for stable FPN 
expression[139,140]. Accordingly, a lack of ceruloplasmin 
as found in the heritable disease aceruloplasminemia 
leads to tissue iron accumulation and damage most 
notably in the brain[141].

Low liver and serum copper concentrations were 
reported in iron overloaded NAFLD and were linked 
to decreased ferroxidase activity of ceruloplasmin[122]. 
The expression of FPN was found to be decreased 
in livers of rats on a copper deficient diet. These 
observations provide evidence that in addition to 
decreased FPN expression due to low-grade systemic 
inflammation, low copper bioavailability contributes 
to iron retention in NAFLD.

WHAT IS THE THERAPEUTIC POTENTIAL 
OF MODULATING IRON STORES IN 
NAFLD?
Elimination of iron may confer a beneficial effect 
on IR-associated conditions. Removal of iron using 
phlebotomies is usually well tolerated, with the 
caution that DIOS patients frequently show a 
fast decline in TfS[142]. These clinical observations 
are expected due to the underlying molecular 
mechanisms of impaired iron export. The incidence of 
diabetes, postprandial serum insulin and pancreatic 
insulin sensitivity, i.e., beta cell function were al 
improved in subjects with previous phlebotomy 
treatment[143]. Iron removal also improved coronary 
vascular dysfunction in patients with T2DM[144] and 
endothelial function in patients with known coronary 
artery disease and in subjects with primary iron 
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overload[145,146]. Blood donations were linked to insulin 
sensitivity even in healthy subjects[46]. Studies on iron 
depletion in NAFLD in humans have demonstrated 
benefits regarding systemic or hepatic insulin resis­
tance and pancreatic insulin sensitivity[142,147,148]. A 
randomized trial demonstrated improved HbA1c, 
insulin sensitivity and secretion subjects who rece­
ived phlebotomy treatment[149]. The effects of iron 
depletion were additive to successful lifestyle modifi
cations[150]. Similar observations were reported the 
effect of iron depletion on other cardiovascular risk 
factors[151] and iron removal may prevent develo­
pment and progression of malignancies[152].

As far as practical treatment of iron excess in 
NAFLD patients with elevated ferritin is concerned, 
available data suggest that iron removal may thus be 
beneficial in addition to weight loss, diet and lifestyle 
modification or antidiabetic medication as indicated in 
an individual patient. We have adopted the practice to 
perform biweekly phlebotomies in these subjects until 
serum ferritin concentrations are between 50 and 100 
ng/L, however, no evidence-based recommendation 
for this is currently available. In contrast to hemoch­
romatosis patients, NAFLD subjects have impaired 

iron mobilisation from storage sites and may there­
fore develop anemia in response to phlebotomy 
treatment. We therefore recommend close monitoring 
of serum ferritin, TfS and hemoglobin at each visit 
for the period of time while these patients are on 
phlebotomy treatment[26,153].

CONCLUSION
Elevated serum ferritin concentrations are a fre­
quent finding in NAFLD. Excess iron is linked to 
IR, accelerated disease progression and adverse 
outcomes. Removing excess iron via phlebotomies 
is safe and has clinical benefits. We suggest that on 
the basis of available evidence it can be offered to 
NAFLD patients as it is linked to improvement of IR 
and inflammation. The mechanisms underlying iron 
accumulation in NAFLD are tightly linked to impaired 
iron export from liver cells as a consequence of low 
expression of the iron export molecule FPN and 
elevated hepcidin concentrations. Inflammation 
of adipose tissue as indicated by TNF-α and IL-6 
and altered adipokine secretion (leptin, resistin) or 
hepcidin represent potent signals from diseased 

Increased food iron intake
Ggenetic factors
Unidentified co-factors of iron 
absorption lead to body iron excess Altered adipokine secretion-

decreased adiponectin

Increased serum lipids and 
FFAs due to increased lipolysis

Iron redistribution to peripheral 
tissues (VAT and muscle)

Mitochondrial dysfunction
Decreased ability to burn 
carbohydrates

Augmented ER and oxidative stress
Inflammation
Decreased antioxidant defense
Fibrogenesis
Carcinogenesis

Hyperinsulinemia
Hyperglycemia
Hepatic insulin resistance

AT insulin resistance 
hyperglycemia

Intestinal lumen

Blood stream

Enterocytes
TNFa↑

Hepatocyte

NAFLD

Kupffer cell

Figure 2  Summary of how iron excess and low copper availability may affect whole body glucose and lipid homeostasis. Iron excess may promote insulin 
resistance in the liver, muscle and adipose tissue. Iron may increase ER and oxidative stress whereas low copper is potentially associated with an impaired antioxidant 
defence. These factors may result in the propagation of inflammation, fibrogenesis and hepatocarcinogenesis. TNF-α: Tumor necrosis factor-α; ER: Endoplasmatic 
reticulum; FFA: Free fatty acid; VAT: Visceral adipose tissue; AT: Adipose tissue.
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adipose tissue to dysregulate iron as well as glucose 
or lipid homeostasis.
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