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Abstract

The vast majority of drugs entering human trials fail. This
problem (called “attrition”) is widely recognized as a public
health crisis, and has been discussed openly for the last two
decades. Multiple recent reviews argue that animals may be
just too different physiologically, anatomically, and psycho-
logically from humans to be able to predict human outcomes,
essentially questioning the justification of basic biomedical
research in animals.

This review argues instead that the philosophy and practice
of experimental design and analysis is so different in basic
animal work and human clinical trials that an animal experi-
ment (as currently conducted) cannot reasonably predict the
outcome of a human trial. Thus, attrition does reflect a lack of
predictive validity of animal experiments, but it would be a
tragic mistake to conclude that animal models cannot show
predictive validity.

A variety of contributing factors to poor validity are
reviewed. The need to adopt methods and models that are
highly specific (i.e., which can identify true negative results)
in order to complement the current preponderance of highly
sensitive methods (which are prone to false positive results) is
emphasized. Concepts in biomarker-based medicine are
offered as a potential solution, and changes in the use of
animal models required to embrace a translational bio-
marker-based approach are outlined. In essence, this review
advocates a fundamental shift, where we treat every aspect
of an animal experiment that we can as if it was a clinical trial
in a human population.

However, it is unrealistic to expect researchers to adopt a
new methodology that cannot be empirically justified until
a successful human trial. “Validation with known failures”
is proposed as a solution. Thus new methods or models
can be compared against existing ones using a drug that has
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translated (a known positive) and one that has failed (a known
negative). Current methods should incorrectly identify both
as effective, but a more specific method should identify the
negative compound correctly. By using a library of known
failures we can thereby empirically test the impact of suggest-
ed solutions such as enrichment, controlled heterogenization,
biomarker-based models, or reverse-translated measures.

Key Words: animal biology; biomarker based; heterogeniza-
tion; reverse-translated

Setting the Stage—Are Animal Researchers
Creating a Future Without Animal
Research?

iomedical research at its core is ethically, societally, and
scientifically justified by its ability to deliver real-
world benefits to human health (Rollin 2006). Indeed,
as researchers we assume that our work is meaningful, but the
simple fact that roughly 90% of compounds entering human
trials will fail should be a harsh reminder that, as Ioannidis
bluntly pointed out, “most published research findings are
false” (2005). While industry in general, and some academics
in particular, have openly discussed the shockingly poor
translation of basic animal work into human outcomes for
some time (e.g., Cummings et al. 2014; Kola and Landis
2004; Paul et al. 2010; Tricklebank and Garner 2012), basic
research in academia doggedly claims real meaning for hu-
man outcomes with almost every published result. However,
as will be discussed, not all results are created equal(ly mean-
ingful), and the creation of more or less meaningful results
(i.e., the validity of the experiment) is entirely within the
power of the experimenter. Yet few basic research articles
will critically discuss limitations on the validity of the study,
the likelihood that a result will translate to humans, or the
steps taken in experimental design to maximize validity
(how many mouse experiments, for instance, discuss whether
an “anxiety-like” measure is actually clinically relevant,
or how it was chosen over others to best match human
symptoms?).
As a result, biomedical research is close to a tipping point
with potentially dire consequences for the future, scope, and
funding of basic animal research. Pharma has aggressively
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disinvested in animal research in the last few years (Hunter
2011), and the value of animal research for advancing human
health is being questioned at the highest federal levels—for
instance, the previous head of the NIH, Elias Zerhouni, has
since argued that the NIH should shift emphasis to favor
human work: “We all drank the Kool-Aid on that one, me in-
cluded... The problem is that it [animal research] hasn't
worked, and it’s time we stopped dancing around the prob-
lem... We need to refocus and adapt new methodologies for
use in humans to understand disease biology in humans”
(McManus 2013). This should come as no surprise: the
NIMH’s 2008 strategic plan (National Institute of Mental
Health 2008) mentions animal work a paltry two times in
38 pages; instead emphasizing the use of imaging, genomic,
and other next-generation approaches to answer questions
traditionally pursued in animals. Indeed, the NIMH’s imple-
mentation and emphasis on Research Domain Criteria
(RDoC) represent a clear implementation of this strategy,
and a general example of the coming paradigm shift in bio-
medical research, from a reductionist animal-based “genomic
and phenotyping” era to a human-based “biomarker and per-
sonalized medicine” era. Yet academic institutions continue
to invest in increasingly elaborate and expensive infrastruc-
ture for animal studies (e.g., individually ventilated caging
systems). These infrastructure investments are justified in
terms of both need, and economic viability, by projections
that an institution’s research animal population census will
grow, fuelled by increased funding support. While this may
be reasonable in top-tier academic institutions, a systemic
shortfall in funding for animal research would be catastrophic
for most research universities. Pharma provides a cautionary
tale: Kola and Landis pointed out in 2004 that Pharma’s
investment model was unrealistically unsustainable over the
coming 5 to 10 years (Kola and Landis 2004), and, sure
enough, Pharma has been forced to disinvest in animal re-
search (Hunter 2011). Indeed a key strategy has been to shift
the expense and risk of basic discovery into academia (Hunter
2011). Now that essentially the same forces come to bear on
academic research, what can be done to prevent a similar
contraction in the academic sector?

In theory, the answer is simple—we need to do a better job
of producing animal results that translate to human outcomes.
Similarly, the changes required are relatively simple, and this
article outlines some of the systemic issues and potential
solutions available to animal researchers. The real challenge,
however, is changing the culture of biomedical research
so that even small simple changes are adopted. The potential
rewards are worth the effort. At the end of the day, the
failure of animal results to translate is arguably the greatest
laboratory animal welfare issue of our day and a source of
many societal ills. Furthermore, real advances in personalized
and biomarker-based research (the supposed panacea to
the problems in animal research) will in truth be very hard
to attain without animal models of disease development.
It is hard to think of a better example where good-welfare-
is-good-science, or good-welfare-is-good-business. If this
problem can be solved, then the rewards for animal welfare,
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biomedical research, patient populations, return-on-the-
funding-dollar, and society in general will be immeasurable.

Thus, this article is not intended primarily for researchers.
The research community by and large has been unable or
unwilling to heed the calls for changes in culture and practice
in the literature (e.g., Andreatini and Bacellar 2000; Andrews
and File 1993; Begley 2013; Begley and Ellis 2012; Brown
and Wong 2007; Chesler et al. 2002; Crusio 2004; Crusio
et al. 2009; Cummings et al. 2014; Geerts 2009; Gerlai
1996; Gerlai and Clayton 1999; Hay et al. 2014; loannidis
2005; Kola and Landis 2004; Mak et al. 2014; Nieuwenhuis
et al. 2011; Paul et al. 2010; Peers et al. 2012; Prinz et al.
2011; Richter et al. 2009, 2010; Sena et al. 2010; Tricklebank
and Garner 2012; van der Worp et al. 2010; Wolfer et al.
2002; Wiirbel 2000, 2001, 2002; Wiirbel and Garner 2007;
Zahs and Ashe 2010). In particular, peer review can be a sti-
fling force of inertia—innovative methods are less likely to be
funded than established (but weaker) methods. Meanwhile,
reviews or methods papers that challenge the status quo or
point out that the Emperor has no clothes can be almost im-
possible to publish. In both cases, the risk and costs for young
scientists are particular high, just at the time when they are
most open to new ideas and at their most creative. Similarly,
differential funding opportunities and success rates for grants
proposing new work versus renewal of an existing program
are a powerful disincentive to established researchers to adopt
new methods or challenge the status quo (ironically at the
time when they can be most influential). Researchers need
to be given both the safe space in their careers to adopt new
approaches, and the incentives to do so (Pusztai et al. 2013).
For instance, multiple reviews of the systemic issues with
knockout mice did nothing to change the culture (Crusio
2004; Wolfer et al. 2002), finally leading the premier publica-
tion for mouse behavioral genetics to enforce standards
through editorial policy (Crusio et al. 2009). Similarly the
Animal Research: Reporting of In Vivo Experiments (ARRIVE)
guidelines seek to encourage standards (Kilkenny et al. 2010)
incentivized by both institutions and journals. Thus, this re-
view is targeted at other stakeholders with a vested interest in
increasing the translational value of animal research (from pa-
tients, to funding bodies, to animal advocates, to university
administrators, to Institutional Animal Care and Use Commit-
tee [[ACUC] members, to journal editors, and beyond) in the
hope of creating similar opportunities for a change in culture
and practice.

Attrition—What Is It? What Causes It?
And Why Should We Care?

The failure of drugs during the pipeline is termed “attrition”
(Kola and Landis 2004) and can be subdivided into discovery
or preclinical attrition (prior to human trials), and develop-
ment or clinical attrition (during human trials) (Paul et al.
2010). Recent reviews of large-scale Food and Drug
Administration (Kola and Landis 2004), international indus-
try (Paul et al. 2010), and public (Hay et al. 2014) data sets
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indicate that clinical attrition rates range from approximately
80% to 97%, depending on the therapeutic area, with an
average of approximately 90%.

Traditionally, attrition has been viewed as an issue with
clinical trials, simply because this is when it is most visible
and most costly. The most detailed economic data are pro-
vided by Paul and colleagues (2010) and provide an instruc-
tive window on the problem. Preclinical attrition rates are
approximately 35% (i.e., one in three potential compounds
will eventually enter human trials). However, these failures
occur during relatively inexpensive phases of drug develop-
ment and thus account for only 2% of the total cost of bring-
ing a drug to market. By contrast, clinical attrition rates are
approximately 90% (i.e., roughly one in nine compounds
entering human trials will make it to market), but, because
these phases of the pipeline are much more expensive, these
failures account for 73% of the cost of bringing a drug to
market (which totals approximately $1.8 billion in 2010
U.S. dollars) (Paul et al. 2010). These numbers underscore
the huge societal impact of clinical attrition in particular—
these costs can be diluted in a large patient population that
will need the drug for a long time. Drugs for rare diseases, or
for diseases with which patients are unlikely to seek help,
and drugs that cure rather than manage diseases will be
more expensive to the patient, and potentially too expensive
to be worth development.

However, digging deeper into these data sets reveals that
attrition is fundamentally an animal issue, not a human one.
To understand why, we need to consider two sides of a coin:
What are the identifiable reasons for failure in human trials?
And what is the structure of decision making in the drug
discovery pipeline itself? The drug discovery pipeline is tra-
ditionally divided into preclinical and clinical phases (which
correspond to animal and human phases), but it can also be
subdivided by the type of questions being asked. Early pre-
clinical stages focus on potential efficacy (both in silico and
in animals), followed by safety (in the last and most intensive
and invasive use of animals and in the first “Phase I” human
trials), followed by proof of efficacy (in Phase II and Phase 111
trials). This allows an estimate to be made of the reasons for
clinical attrition—success during Phase I is roughly 50%, but
the cumulative success from Phase II through to launch (i.e.,
when the efficacy of the drug is being assessed) is 20%.
Accordingly, even small improvements in Phase II and
Phase III success reduce the total cost of bringing a drug to
market by 35% (Paul et al. 2010). Of course, efficacy is not
an all-or-nothing phenomenon and drugs fail in these stages
for other reasons. For example, bioavailability of the drug at
the target may be very different in humans, limiting efficacy
or narrowing the therapeutic window to the point where side
effects become unmanageable; or drug—drug interactions
may interfere with the study or preclude widespread use in
a human population. Thus, the real issue is whether a new
drug is efficacious enough given its cost of manufacture,
the patient population, and the cost and efficacy of competing
products. Nevertheless, taking very different approaches, Kola
and Landis (2004) and Hay and colleagues (2014) identify lack
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of efficacy as the single largest reason for why a drug fails in
human trials.

The other side of the coin is to think of the pipeline in terms
of decision making. Thus the pipeline makes early go deci-
sions on the basis of animal results, then turns its attention
to making no-go decisions on the basis of safety, before
finally assessing the predictive validity of an animal result
(i.e., making a no-go decision) in the final and most expensive
stages of the pipeline. From a statistical point of view, the
initial stages of the pipeline emphasize sensitivity (making
sure all hits are identified, at the cost of false positives), before
emphasizing specificity (making sure that false positives are
weeded out). (See Figure 1A for definitions.) From this per-
spective, attrition has a deceptively simple cure—moving the
no-go decision making as early as possible in the pipeline.
While this point has been made with respect to economics
(Paul et al. 2010), it is just as important in terms of animal
welfare. The scale and invasiveness of animal use in the pipe-
line peaks in preclinical toxicology. Thus every failure for
lack of efficacy is a prima facie welfare issue through the
needless use of animals in preclinical toxicology. If a highly
specific no-go decision on the basis of efficacy could be
inserted prior to this stage, then good-welfare-is-good-
business: invasive animal use is massively reduced, as is
attrition at the most costly stages of the pipeline.

The remainder of this review addresses the question of
what this highly specific decision might look like in the
absence of human trials. We will cover three topics: evidence
that animal studies are the ultimate source of false positives
and poor efficacy; reasons for the poor predictive validity of
animal studies; and a new approach to animal models that
resolves these problems, provides specificity, and supports
the move to personalized medicine.

Animal Studies as the Ultimate Source
of Attrition

The logic tying failures in clinical trials to basic research in
animals is seductively straightforward. Every drug entering
human trials, by definition, “worked” in an animal model in
terms of both safety and efficacy, and efficacy is the primary
reason why drugs fail in human trials. Thus, the primary
reason for these failures can be traced back directly to false
positives in animal models committing the pipeline to
develop a drug that will ultimately fail. Straightforward
data can be used to make this case. For instance, as reviewed
by Zahs and Ashe (2010), over 200 different interventions
have been reported to be effective in the APP mouse model
of Alzheimer’s disease, yet none has proven effective in
human trials. Indeed the attrition rate for Alzheimer’s drugs
from 2002 to 2012 was 96.4% (Cummings et al. 2014). Sim-
ilarly, approximately 500 compounds have been reported as
effective in reducing the effects of acute ischemic stroke in
animal models, yet only 2 have proven effective in humans
(van der Worp et al. 2010).

However, both of these reviews (van der Worp et al. 2010;
Zahs and Ashe 2010) offer a more nuanced view, questioning
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Figure 1 AVenn diagram representation of the effects of specificity and sensitivity on validity and false discovery. The figure illustrates an
imaginary space of all the deficits we might want to detect. Within this space, deficits detected by the test and deficits actually relevant to
the human disorder are shown as two separate areas. (A) Basic definitions. Deficits detected by the test are either: FP = False Positive (irrelevant
to the disorder) or TP = True Positive (relevant to the disorder). Deficits relevant to the disorder but undetected by the test are FN = False Neg-
ative. Deficits irrelevant to the disorder and undetected by the test are TN = True Negative. Thus we are primarily concerned with the region of
overlap (TP). (B) Representing validity. The reality of a behavioral test is that it will measure multiple behavioral domains, represented by the
different lobes of the area representing the test. While a test may contain a lobe relevant to the disorder (TP), it will also contain lobes irrelevant to
the disorder (FP). Thus FDR (False Discovery Rate) =FP / (FP + TP) is a useful proxy to validity—high false discovery rates indicate low va-
lidity (Richter et al. 2009). These FP domains, however, may be relevant to a different disorder, in which case the test may detect deficits relevant
to both but cannot distinguish between them (i.e., it lacks discriminant validity). (C) Sensitivity and FDR. The immediate temptation is to in-
crease the sensitivity of the test, but sensitivity is the proportion of all meaningful deficits detected =TP / (TP + FN) (i.e., it does not consider
FP). Thus an indiscriminant expansion of the deficits detected by the test will increase sensitivity but at the expense of also increasing FDR and
decreasing validity. This is one of the many problems with using multiple phenotyping tasks to test the same hypothesis (as illustrated by the
expansion and addition of FP “lobes”). (D) Specificity is the proportion of all nonmeaningful deficits correctly identified = TN/ (TN + FP). Thus
specific tests minimize FP, and minimize FDR, but at the risk of increasing FN (i.e., though every result is much more believable, the cost is that
we not be able to detect all relevant deficits). As argued in the text, the best strategy is to follow our existing overly sensitive phenotyping tests,
with a round of highly specific tests, maximizing the chance of detecting all TP, but then quickly weeding out most FP.

what the model(s) are actually modeling and whether this is
truly relevant to human outcomes. In fact, a similar theme can
be seen regardless of the particular focus of papers in the
recent literature: from publication bias (Ioannidis 2005; Prinz
etal. 2011; Sena et al. 2010); to adopting human clinical prac-
tices such as blinding (Kilkenny et al. 2009; Macleod et al.
2008; Muhlhausler et al. 2013) or matching (Hénell and
Marklund 2014; Muhlhausler et al. 2013; Richter et al.
2009; Wiirbel and Garner 2007); to exposing problems in
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phenotyping and arguing for refined behavioral measures
(Andreatini and Bacellar 2000; Arguello and Gogos 2006;
Brown and Wong 2007; Gerlai and Clayton 1999; Insel 2007;
Tricklebank and Garner 2012) including reverse translation
(Garner et al. 2006, 2011; Harding et al. 2004); to discussing
methodological and interpretational issues in genetically en-
gineered mice (Crusio 2004; Crusio et al. 2009; Wolfer et al.
2002); to observations that unenriched animals are function-
ally immune suppressed enough to influence the model (Ader
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etal. 1991; Cao et al. 2010), or more generally that phenotyp-
ic plasticity in response to the environment might change
experimental outcomes (Chesler et al. 2002), and that testing
across diverse environments and biological backgrounds
better matches human trials (Festing 2014; Mak et al. 2014;
Richter et al. 2009, 2010, 2011; Wurbel 2002); to criticizing
the inappropriate use of low-power naive statistical approach-
es (Festing 2014; Peers et al. 2012; Prinz et al. 2011; Wiirbel
and Garner 2007; Wurbel et al. 2013) particularly in basic re-
search (Nieuwenhuis et al. 2011); to arguing that the model
usefully recapitulates physiology without capturing predic-
tive outcomes (Cummings et al. 2014; Zahs and Ashe
2010); even to fundamental biological issues with the models
themselves (Begley and Ellis 2012; Geerts 2009; Mak
et al. 2014).

Modeling the Disease, or Modeling the Model?

Thus all of these papers reach a general consensus—that when
models fail to predict human outcomes, perhaps we are not re-
ally modeling the human disease, but just modeling the model.
To illustrate this concept, consider four thought-experiments:

(1) Is a knockout mouse based on a rare allele in humans
a model of the disease, or a model of the subpopula-
tion? For instance, Tourette syndrome and trichotilloma-
nia are generally considered to be a polygenic disorders
where most risk alleles confer small, low-penetrance risk.
However, a rare mutation in the SLITRKI gene found in
only a few individuals confers extremely high risk for
both disorders (Abelson et al. 2005; Zuchner et al.
2006). Are the knockout mice inspired by these findings
(Shmelkov et al. 2010), even though they show repetitive
behavior, plausibly a general model of either disorder, or
just a model of these rare human families?

(2) Is a chemical lesion modeling terminal disease going
to tell us about early disease processes? For instance,
recent advances in Parkinson’s disease show that at the
point of diagnosis most patients have already lost over
50% of dopaminergic projections. In fact, we now recog-
nize that there is an early, non-dopaminergic “pre-motor”
phase to Parkinson’s disease (Tolosa et al. 2007). Clearly
we would like to be able to screen for these early stages
and potentially slow or prevent progression of dopami-
nergic cell death. However, as our models are constrained
to dopaminergic lesions, while they may model the termi-
nal stages of Parkinson’s disease, can they realistically
help us understand, detect, or prevent the pre-motor onset
of the disease in humans?

(3) Can we realistically expect phenotyping to tell us
about a specific human symptom? In humans, there
is an entire discipline—neuropsychology—that de-
scribes the subtle differences in cognition that distinguish
different disorders. Indeed, neuropsychology is a major
driver of the new RDoC approach from the NIMH, and
neuropsychology provides some of the best biomarkers
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in psychiatry (Garner et al. 2011; Holliday et al. 2005).
For instance, the nature of memory deficits in
Alzheimer’s, versus normal aging, versus schizophrenia,
versus traumatic brain injury, are fundamentally different
—so is it really plausible that the Morris water maze
(MWM) can meaningfully model, let alone distinguish,
all of these human phenomena?

(4) Is our animal population a realistic representation
of human variability? Humans are variable. Indeed it
is our variability in risk for illness and response to treat-
ment that is the focus of modern medicine (Feinberg
2007; National Institute of Mental Health 2008). We
would never perform a human drug trial in 42-year-old
white males with identical educational levels, identical
socioeconomic statuses, identical jobs, identical houses
with identical (locked) thermostats, identical wives, iden-
tical diets, identical exercise regimes, in the same small
town in Wisconsin, who all incidentally had the same
grandfather. So can we realistically expect mice in exact-
ly this kind of Stepford experiment to tell us anything
about humans in general, or variability in risk or response
in particular?

The answer to each of these thought-experiments is clearly
“no,” but it is a qualified “no.” As many authors have argued,
the secret to using animal models is to understand their lim-
itations (e.g., Insel 2007). Thus all the thought-experiments
above are not examples of bad models, but examples of the
need to work within the limitations of a model or measure.
This point is neatly illustrated by the difference between
cardiovascular and cancer drug attrition. Cardiovascular
drugs consistently have the lowest attrition, while cancer
drugs consistently have one of the worst success rates (e.g.,
20% versus 5%: Kola and Landis 2004). Authors in the can-
cer literature often blame a fundamental biological difference
for this high attrition rate (Begley and Ellis 2012; Mak et al.
2014). Yet differences in heart physiology between humans
and other animals are profound (and the impact on models
has been intensively studied) (e.g., Vaidya et al. 1999;
Wakimoto et al. 2001). Thus even major differences in animal
versus human biology do not preclude a model from having
strong predictive validity. Indeed, recognizing those differ-
ences may be key to ensuring translation, particularly in neu-
roscience, where general physiology can be quite different
(e.g., in Alzheimer’s disease: Kokjohn and Roher 2009;
Zahs and Ashe 2010) and where simplistic approaches to be-
havioral phenotypes can be very misleading (see below).
Instead, this review proposes that the real difference
between basic research in animal models and human clinical
trials that ultimately causes attrition is the underlying axiom-
atic differences in the philosophy and methodology of animal
versus human research. These differences are discussed in
two steps. First, the following section emphasizes three
deeply pervasive methodological issues that have received
relatively little attention in the literature. These three issues
can be thought of as logical traps that basic science has
become increasingly blind to, and which should always be
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avoided. Then, a human-inspired approach to animal experi-
ments is proposed, and the contingent changes in perception
of what makes a good animal model are emphasized.

Three Traps That Have Become Business as Usual

Trap Number One: The Word “-like”

The word “-like” (as in “OCD-like” or “anxiety-like”) has
become pervasive in behavioral neuroscience, but it repre-
sents an incredibly dangerous slip in logic. The trap is simple
to understand: calling a measure “-like” does not make it so
(that is an empirical issue of validity). Calling a measure
“-like” is a rhetorical device that gives the measure a sheen
of respectability and scientific caution, while in truth masking
the fact that no attempt has been made to validate the measure
or that it is being used despite being known to be invalid. In
either case, this is simply bad science. The trap is that,
although the initial “-like” may be well intentioned (as a
kind of placeholder for the need to validate), with enough
publications, the measure slips into perception as being
validated. In other words, “-like” takes the place of empirical
validation. This critique leads to two inevitable questions:
why are “-like” measures so pervasive in neuroscience?
And why do we think they have been validated (and is there
evidence that they are invalid)?

Behavioral phenotyping and the pervasiveness of
“-like.” The pervasiveness of the “-like” logical trap is tightly
tied to the widespread use of behavioral phenotyping in
behavioral neuroscience. As before, the argument here is
not that behavioral phenotyping is inherently flawed but
that it is the wrong tool to use if we want to predict human
outcomes. Again the issue is one of sensitivity versus specif-
icity (Figure 1A). Behavioral phenotyping tasks are designed
to be overly sensitive (i.e., they hope to detect any relevant
deficit at the risk of also detecting many false positives)
(Figures 1B and C). This is a fine strategy for early stages
of basic research, especially if the effect of a mutation or
treatment is not known. However, without highly specific
follow-up measures (which are not widely used) these false
positives can never be weeded out, and thus phenotyping
alone is a poor strategy for translational research (Figure 1D).
That being said, why has phenotyping fallen into the
“like” trap?

Given their role in screening, behavioral phenotyping tasks
are also designed to give quick and easy readouts, preferably
using automated off-the-shelf equipment, which can be per-
formed by researchers with no formal training in the behav-
ioral sciences (Wahlsten 2001). The lack of formal training in
ethology or psychology is the first reason why most tasks are
referred to as “-like.” Validation itself is of little interest to us-
ers of phenotyping, instead the assumption is that the measure
is as meaningful as any other assay that may be purchased by
the lab.

While some phenotyping tasks are designed de novo, most
are derived from ethology or experimental psychology. Given
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the emphasis on throughput, these tasks are then stripped of
time-consuming elements, which are often essential controls;
and meaningless but easily automated measures are added.
For example, the open field test typical of phenotyping com-
mits most of the errors warned against in the original literature
(Archer 1973; Walsh and Cummins 1976). An important
consequence of the oversimplification of such measures and
the removal of controls is that phenotyping measures are
extremely nonspecific and are sensitive to a wide range of
confounding variables (Figure 1C). For instance, the single
biggest predictor of performance in the MWM is the degree
of retinal atrophy of the mouse, not memory (Brown and
Wong 2007). That is, the MWM could just as well be inter-
preted as a measure of blindness not memory. Similarly, the
best predictor of the tail-flick measure of pain sensitivity is the
identity of the experimenter, not the genetics of the mouse
(Chesler et al. 2002); and the elevated plus maze (EPM)
shows many features that to an ethologist or psychologist sug-
gest weak validity (Andreatini and Bacellar 2000; Andrews
and File 1993). Furthermore, important ethological consider-
ations are often overlooked. For instance, while the MWM
makes sense for a marshland species like the Norway rat,
the MWM for mice does not survive a thorough ethological
analysis (Gerlai and Clayton 1999). However, as phenotyping
often points out, such considerations are of little interest as
long as the task can detect differences (Hossain et al.
2004), and are dismissed by using the word “-like.”

Worse still, the choice of these tasks is often based on
simple word matches, unaware of the technical use of the
word in the behavioral literature. For instance, “anxiety,”
strictly defined, refers to the normal conflict of two motiva-
tions (hence the deliberate conflict of fear and exploration
in most tests) (Gray 1987). This is just fundamentally differ-
ent from the pathological anxiety that characterizes disorders
such as obsessive-compulsive disorder (OCD) or generalized
anxiety disorder, in which the essence of the pathology of the
disorder is that anxiety is experienced when there is no con-
flict, or is experienced to an excessive degree in response to
minor conflict (American Psychiatric Association 2013). As a
result, the use of measures of normal anxiety to measure
pathological anxiety is dubious at best. At the most extreme,
researchers with no human clinical knowledge will latch onto
completely superficial behavioral similarities, label them
“-like”, and actually use behaviors in mice that would indicate
differential diagnoses in humans. The best example of this is
OCD, where any vaguely repetitive behavior in mice is
referred to as “OCD-like.” Unfortunately, stereotypies, self-
injury, and body-focused repetitive behavior disorders (e.g.,
trichotillomania) are all exclusionary differentials (i.e., if
the presenting behavioral symptom is a stereotypy, a diagno-
sis of OCD is not possible) (American Psychiatric Associa-
tion 2013). In fact, this author is unaware of any mouse
model with “OCD-like” behavior where that behavior is not
actually an exclusionary differential in humans. Such models
may throw light on physiology common to repetitive behav-
ior disorders (including OCD), but they cannot be a valid
model of OCD specifically.
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Table 1 Three dimensions of validity (adapted from Tricklebank and Garner 2012). Validity can be thought
of as three independent dimensions, and most tests of validity involve at least two of these dimensions
(for instance, the failure of mouse models to predict human outcomes is a failure of predictive, external,
convergent validity). For additional discussion, see (Campbell and Fiske 1959; Martin and Bateson 1986;
Tricklebank and Garner 2012; Willner 1986; Wiirbel 2000)

Dimension Subtype

Definition and examples

Face v Construct v Face
Predictive

Does the measure or model appear outwardly similar to what it is supposed to measure or
model in terms of behavior, phenomenology, epidemiology, etc.? (For example, does a

fear measure resemble fear responses for the species? Does the animal behavior
resemble the behavior seen in human patients?)

Construct

Does the measure or model involve the mechanism or processes that is supposed to

measure or model (at physiological, neuropsychological, motivational levels, etc.)? (For
example, can the measure actually access these processes? Is the methodology
consistent with the theory behind the measure? Does an animal model involve the same
physiology as the human measure or condition?)

Predictive

Does the measure or model actually predict outcomes it is supposed to? (For example,

does a behavioral stress measure predict stress hormone levels? Does an animal model
predict human drug response? Does the animal model respond only to treatments that
successfully treat human patients?)

Internal v External Internal

Are the methodology and results of the measure or model consistent with both the theory

and existing data from the model system? (For example, is the methodology consistent
with the mathematics describing the measured properties? Is the measure ecologically
relevant to the test species? Does the measure agree with other measures of the same
property in the same individuals?)

External

Are results from the measure or model broadly applicable? (For example, is the kind of fear

measured in a fear test broadly applicable to the kind of fear being modeled in humans?
Does the model give the consistent results across a range of environmental conditions
that accurately reflect the range of environmental conditions experienced by human

patients?)

Convergent v
Discriminant

Convergent

Does the measure or model show broad agreement with properties of the thing being
measured, or properties of the human condition being modeled? (For example, are

different measures of fear correlated? Does the model show similar behaviors to the
human condition? Do drugs that treat human patients also treat model symptoms? Is the
gene knocked out in the model also downregulated in human patients? Do mechanisms
in the model mirror those in humans?)

Discriminant Does the measure or model exclude alternative processes or differential diagnoses? (For
example, is a fear measure clean, or is it correlated with measures of other behavioral
traits? Does the model show behaviors, physiology, or symptoms atypical of the human
conditions, or typical of a differential diagnosis to the human condition? Do drugs that fail
to treat humans also fail to treat the model? Do all human patients show downregulation
of the gene knocked out in the model, or only a subset? Do mechanisms that distinguish
human disorders or subtypes also distinguish the animal models?)

The misuse of barbering (fur and whisker pulling) neatly
illustrates both points. It is widely misinterpreted as normal
dominance behavior (i.e., a low level of barbering behavior
is considered a social deficit) (Hanell and Marklund 2014),
despite the fact that ethologists firmly debunked this interpre-
tation many years ago (Garner et al. 2004a; Van de Weerd
et al. 1992). At the same time, barbering is also widely
used as an “OCD-like behavior” (e.g., Hill et al. 2007). Aside
from the fact that it is farcical for a behavior to be both
abnormal and normal at the same time, barbering is in fact
a well-validated model of trichotillomania (Garner et al.
2004b, 2011), and trichotillomania is an exclusionary diagno-
sis for OCD (American Psychiatric Association 2013).
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Have phenotyping measures actually been validated?
The topic of validity and validation is complex (for
in-depth dicussion of different kinds of validity, and how
to test for them, see Tricklebank and Garner [2012], summa-
rized in Table 1). Nevertheless, the most important thing to
understand about validity is that it is completely distinct
from reliability (Martin and Bateson 1986). Validity asks
whether my measure or model actually means what it is sup-
posed to, and what the limits of that inference might be—both
questions being empirically answerable. Conversely, reliabil-
ity asks whether my measure gives the same result under
different circumstances (e.g., when it is repeated, or if two dif-
ferent raters score the same behavior). However, a completely
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reliable measure can be invalid. For example, a phrenologist
could measure the size and location of bumps on your head on
two different days and get the same results (test—retest reli-
ability), or two phrenologists could measure your head and
get the same results (inter-rater reliability), but these results
say absolutely nothing about personality or criminality.

Given the central importance of validity to behavioral
science, it is worrisome that few phenotyping tasks have
been formally validated. Instead, the quality of behavioral
measures in phenotyping is primarily assessed on whether
they can discriminate between treatments or genotypes
(e.g., Hossain et al. 2004); whether they are off the shelf,
quick, and easy to perform (e.g., Hanell and Marklund
2014); and whether they are reliable (e.g., Wahlsten et al.
2003). Indeed classic validation papers often demonstrate
nothing more than the sensitivity to distinguish mouse strains
(e.g., Moy et al. 2004) or the reliability of the measure (e.g.,
Nadler et al. 2004). However, highly sensitive measures have
an inherent tendency to decrease validity and increase false
discovery rates (FDRs) (Figures 1B and C).

Most measures assume convergent face validity (i.e., they
outwardly resemble the intended deficit being measured), but,
as the examples above illustrate, this is a very weak and often
misleading assumption. For instance, stereotypies lack face
and construct validity as a measure of OCD, but realizing
so requires knowledge of human symptomatology and diag-
nostics. Most also have accrued a level of convergent internal
predictive validity, in that they respond to drugs that work in
humans. The limitations of this form of validation should be
obvious. First, human disorders are not diagnosed by drug
response, and most psychoactive drugs have multiple (side)
effects (in other words, although some simple tics in Tourette
syndrome respond to haloperidol, not all behaviors in mice
that respond to haloperidol are tics). Second, this confines
us to find “more of the same” (i.e., just because known
analgesics cause changes in the tail-flick test, it does not fol-
low that an analgesic with a novel mode of action would)
(Tricklebank and Garner 2012).

Normally in ethology or psychology, we would want to see
stronger, quantifiable forms of validation. For instance, when
multiple measures of anxiety are taken, one would expect
them to correlate (internal, convergent, construct validity),
but this is often not the case (e.g., Binder et al. 2004).
Similarly, we would expect a measure not to be sensitive to
alternative deficits (internal, discriminant, construct validity),
but again this is often not the case (e.g., for the MWM: Brown
and Wong 2007). More subtly, when we want to detect traits
(e.g., pathological anxiety), the measure should not be fooled
by states. That is, we want to detect stable features of the an-
imal’s behavior, not fleeting moment-to-moment changes,
Again this is often not the case (e.g., for measures of anxiety
and fear: Andreatini and Bacellar 2000; Andrews and File
1993; Miller et al. 2006). Finally, if a measure really is detect-
ing pathology relevant to humans, then it should predict drugs
that work (external, predictive, convergent validity) and
drugs that do not work (external, predictive discriminant
validity) in humans. However, the relatively high failure
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rate of central nervous system (CNS) drugs in human trials
(Kola and Landis 2004) suggests that this, too, is not the case.

Thus “-like” is clearly not good enough. Validating exist-
ing phenotyping measures, however, is not a constructive
exercise—we already know that most phenotyping measures
are of limited validity. Furthermore, even a crude measure is
useful for making an initial screen. Instead, a better strategy is
to use phenotyping measures correctly (i.e., for initial
screens) and complement them with new measures specifi-
cally designed to weed out the false positives injected
by the use of phenotyping (Figure 1D). In other words, if
we want animal results to predict human outcomes, then we
need to measure the same clinical phenomena in animals that
we do in humans (Garner et al. 2011; Insel 2007; Malkesman
et al. 2009; Tricklebank and Garner 2012).

Trap Number Two: Going Fishing

The single most effective defense against false positives is hav-
ing a strong specific hypothesis. This is for two reasons. First,
the logic underlying the calculation of a p value requires a null
hypothesis: p =the chance of observing an effect this large or
greater, if we can assume that there is truly no effect. Therefore,
without a null hypothesis, a p value is meaningless (see Fig-
ure 2A). Second, the overall chance of a false positive result
increases the more tests are performed (a problem called mul-
tiplicity). For instance, if I perform five tests, the chance that at
least one will be significant at p < 0.05 by chance alone is 23%
(Grafen and Hails 2002). For this reason, we apply multiple-
testing corrections when we are performing post hoc tests of
a significant interaction in analysis of variance (ANOVA), for
example, so that the overall probability of any of the multiple
comparisons between means equals the “family level” limit of
p <0.05 with which the original F ratio was tested (Neter et al.
1996). A strong hypothesis predicts that a particular manipula-
tion will have a particular effect in a particular measure, thus
there is one test per hypothesis and the experiment is protected
from multiplicity. The golden rule is that if [ use multiple tests
to assess the same hypothesis, then I must correct for multiple
testing (Benjamini and Yekutieli 2001).

Weaker hypotheses—for instance, that my manipulation
will cause a difference in any of the measures taken—break
this rule. The phenotyping philosophy of “any difference is
interesting” is a perfect example. For instance, consider a
phenotyping experiment that uses three measures of anxiety
(open-field, EPM, and light—-dark box), each with multiple
submeasures: the number of comparisons used to test the sin-
gle hypothesis (that anxiety differs by treatment) increases
exponentially, and we can virtually guarantee that at least
one will be significant by chance alone. The trap is to then
cherry-pick the one apparently significant result (or, worse
still, ignore conflicting results), which virtually guarantees a
false positive (Begley 2013; Ioannidis 2005).

Thus the statistical issues facing phenotyping are much
closer to genotyping (where we may be testing for differences
in thousands of genes) than traditional hypothesis-led
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Figure 2 The “confusion matrix” is used to describe the contribu-
tions of different results to the properties of measures or experiments,
and the assumptions underlying their calculation (it is the mathemat-
ical representation of the Venn diagrams in Figure 1). In this case we
consider experimental outcomes. Rows show the truth in the real
world, and columns the outcome of an experiment. FP = False Posi-
tive; FN = False Negative; TP = True Positive; TN = True Negative.

(A) A p value is the probability, assuming that the null hypothesis is true
(that there is no real treatment effect) of obtaining a result at least as large
as the one observed. One useful way to think about this concept is to
imagine that we knew for a fact that the null hypothesis is true and per-
formed thousands of experiments. The resulting False Positive Rate
(FPR) would be equal to the significance level chosen (i.e., if p <0.05
is accepted as significant, then the FRP will = 5%). TP and FN are whit-
ed out because they are not considered in the logic of a p value.
(B) When the null hypothesis is not known (and cannot be assumed),
p values lose their meaning. This is typically the case in genomic stud-
ies and is argued here as also true for phenotyping. Instead all that is
known is that positive results were observed. In this case, we can calcu-
late a False Discovery Rate (FDR) as the proportion of positive findings
expected to be False Positives. FN and TN are whited out because they
are not considered in the logic of FDR. As with p values, a g value can
be estimated for each result, or we can simply label all results less than a
critical ¢ value. In either case the ¢ value represents the FDR at which
the result ceases to be believable, so ¢ <0.1 means that a result is not
believable once we are unwilling to tolerate a FDR of more than 10%.
Like a p value, a result with a ¢ <0.1 (for instance) may still be a FP.

science. Given a weak hypothesis, p values become increas-
ingly meaningless (because we are no longer safe in our as-
sumption that the null hypothesis is true). Instead, now all we
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know for a fact is that we observed a positive result. In this
case, we can still calculate a test—a ¢ value, or the chance
that the observed result(s) are a false discovery (see Fig-
ure 2B) (Benjamini and Yekutieli 2001).

Weak-hypothesis discovery techniques (like microarrays,
RNA-seq, or phenotyping) are often unfairly characterized
as fishing expeditions. This is unfair both to fishing and to
discovery. At least a fisherman knows what species, sexes,
or sizes she wants to catch, and can throw back the fish she
does not want. In other words, she may use a sensitive meth-
od to catch all the available fish, but she then uses a specific
method to screen out the ones she doesn’t want. Naive anal-
ysis of phenotyping or genotyping data has no such safety net
—there is no way of picking out the real results from the false
discoveries. To be fair, at least in genotyping we can use g
values and FDR calculations to statistically isolate the results
most likely to be true, and we can use biologically informed
techniques (such as gene set enrichment analysis [GSEA]) to
pick out the most biologically plausible results (Subrama-
nian et al. 2005). There is no reason why we cannot apply
the same logic to analysis of phenotyping data (and every
reason to do so). At the very least, we should be testing
phenotyping data with g values. This could be achieved by
either figuring an FDR correction for the whole experiment,
or perhaps with more focused hypotheses for each behavioral
domain. This is a straightforward calculation and can be
derived from the list of all observed p values relevant to a
hypothesis (Benjamini and Yekutieli 2001). Similarly, the
logic of GSEA can also be applied—if multiple tests are
used to address the same hypothesis, then isolated results
should be disbelieved, and results in agreement should carry
more weight.

Trap Number Three: Confirmation is not Hypothesis
Testing

The final trap is by no means confined to neuroscience. At its
broadest, it can be described as mistaking a tool for a model. If
we had a surgical lesion model (e.g., spared nerve injury), it
would obviously be wrong to think of the scalpel used to
perform the surgery as the model. However, we consistently
mistake molecular scalpels in the form of knockout mice (for
instance) as models. The fact that the tool is itself an animal is
beside the point. This trap is triggered when we mistake con-
firmation for hypothesis testing. The difference should be ob-
vious: we test hypotheses by falsifying them, but a
confirmatory experiment does the exact opposite—it attempts
to prove the original finding. As a result, a logical error in the
interpretation of the original finding can be permutated
through each confirmatory experiment. In the case of knock-
out mice, the pervasive mistake is to assume that the specific
genetic lesion in the mouse is also the cause of the phenotype
in humans (or wild-type mice). The specific genetic lesion
(the genetic scalpel) may be rare or even impossible in the
wild, and may bring about its effects through knock-on con-
sequences on other molecular pathways. Table 2 illustrates
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Table 2 Confirmatory experiments do not test for alternative physiological, biological, or psychological in-
terpretations. The first column illustrates a series of experiments by an antique British sports car enthusiast.
By failing to consider whole-car biology, the experimenter erroneously concludes that gas (accelerator)
pedals are not only the cause of rapid aging that plagues these classic cars, but also the cause of accidents in
general. Hopefully the flaws in the interpretation are glaring. The second column summarizes a series of
experiments reporting the unexpected finding that Hoxb8 deletion leads to excessive grooming and self-
injury (in addition to the expected skeletal abnormalities seen in these mice) (Greer and Capecchi 2002), and
finally attributing the unexpected behavioral phenotype to selective Hoxb8 deletion in “hematopoietic” (bone
marrow) derived cells (Chen et al. 2010). Note that the logical reasoning is identical for both series of exper-
iments. In the case of the mice, the same lack of whole-animal thinking leads to a completely implausible
model. It might well be the case that through a complex cascade of events this genetic scalpel influences the
true disease process, but this mouse cannot represent a meaningful disease process in humans (i.e., it cannot
be a model). For instance, it is implausible that a selective somatic mutation in bone marrow, or selective
pathological downregulation, of HOXBS8 occurs in 3.5% of women. What is particularly shocking about this
example is that Chen et al. (2010) go as far as to imply that bone marrow transplant might be a possible therapy

in humans

Knockout antique British sports cars

Knockout mice

* Brake and gas (accelerator) pedals are in every car, | wonder what ¢ Hoxb8is found in every mammal, | wonder what happens

happens if | make a car without them?
o Pedal knockout cars unexpectedly do not get in accidents
and show less aging.

¢ Confirm with at least one additional make of car.

» Confirm with selective pedal removal.
o Only cars without gas pedals show the phenotype.

» Confirm with rescue of function.
o Transplant gas pedals into the pedal-less cars.

o Now accidents and aging are equivalent to normal cars.
* Gas pedals cause accidents and aging.

if | make mice without it?

o Hoxb8 knockout mice unexpectedly pull hair and
self-injure—proposed as a model of “OCD-like”
behavior.

* Confirm on C57BL/6 and 129 backgrounds.

» Confirm with selective cell-line deletion, using Cre/loxP.
o Phenotype only seen when Hoxb8 is knocked out in
“hematopoietic” cell-lines in bone marrow.

¢ Confirm with rescue of function.
o Transplant bone marrow from wild-type mice.
o Now grooming is equivalent to wild-type mice.

* Hematopoietic Hoxb8 silencing causes pathological
grooming.

this flawed logic using the example of knockout cars (where
gas and brake pedals are removed), and the failure of confir-
matory experiments to detect the false positive result. It shows
the 1:1 correspondence to a series of experiments that lead to
the biologically impossible implication that trichotillomania
(which affects 3% to 4% of women) is caused by a spontane-
ous silencing of the HOXBS gene in bone marrow white
blood stem cells (Chen et al. 2010; Greer and Capecchi 2002).

In fact, barbering provides another very instructive exam-
ple. Hill and colleaagues (2007) knocked out the gene coding
for aromatase in order to engineer estrogen-deficient mice as
a model of male-biased early-onset tic-like OCD. The logic
being that this subset of OCD patients show evidence of low-
ered catechol-O-methyltransferase (COMT) activity, and the
corresponding COMT gene is regulated by estrogen. Sure
enough, male knockout mice showed increased barbering
relative to wild-type, while female mice did not. Aside
from the fact that barbering is not a model of OCD, what
these authors failed to realize is that barbering severity and
incidence is higher in females than in males (Garner et al.
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2004b) and that an estrogen pulse specifically mediated by
aromatase is required to masculinize the brain (Lephart
1996). Thus the male knockout mice had feminized brains,
and, sure enough, are simply showing the same levels of
barbering behavior as wild-type and knockout female
mice. No amount of confirmatory experiments (just like
with the Hoxb8 studies in Table 2) can overcome this basic
biological error.

The trap here is that, while confirmatory experiments do
rule out technical errors (like background strain effects),
they are designed to check the veracity of a tool, not a model.
However, if we want to avoid false positives in terms of trans-
lation to humans, we need to rule out biological, developmen-
tal, and psychological whole-animal alternative explanations.
One of the simplest ways to do so is to model the development
of disease itself. Again, this doesn’t mean abandoning knock-
out mice—genetic scalpels are hugely useful for testing
particular hypotheses, they just are a very poor choice for
modeling the development of a disease in a wild-type
population.
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Solutions—Biomarkers and Preventative
Personalized Medicine

The modern push toward personalized medicine is intimately
tied to the idea of biomarkers (Gottesman and Gould 2003;
Gould and Gottesman 2006; National Institute of Mental
Health 2008). If we consider the development of a disorder
from a risk allele, then we can follow disease development
through a chain of genomic, physiological, biological,
and psychological measures to the final symptomatology.
Through development, these measures become less determi-
nant (penetrant), increasingly complex, and may diverge into
nonpathological subclinical traits, into different subtypes of a
disorder, or even into different disorders. This building com-
plexity reflects the increasing influence of epistatic, epigenet-
ic, and environmental risk factors through development.
Biomarkers are measurable obligate steps that development
has to pass through. They are bottlenecks under the control
of epigenetic or environmental factors (the term “endopheno-
type” refers to a biomarker that is an immediate determinant
consequence of a gene or environmental event that triggers
disease development). By understanding the factors regulat-
ing these bottlenecks we can potentially stop or strongly
curtail disease development—the classic example in psychi-
atry being phenylketonuria (Diamond 1996). As a result,
biomarkers are key to screening and also preventing disease,
as well as personalizing treatment not to a patient’s symptoms
but to the developmental biology of those symptoms
(Gottesman and Gould 2003).

If we are concerned with preventative and personalized
medicine, then we clearly need animal models in which we
can discover and follow biomarkers that predict onset,
severity, or treatment response. In addition, models based
on biomarkers resolve many of the problems discussed above.
At its simplest, if a model is based on human biomarkers, then
we no longer have to worry about whether a measure is
“-like,” and, if that biomarker is a druggable target, then we
have a direct readout of predictive efficacy. Two important
caveats should be mentioned. First, the word “biomarker” is
widely misused to mean any clinical sign (often biochemical)
correlated with disease, in contrast to the strong causal defini-
tion of a biomarker in the original literature (Gottesman and
Gould 2003; Gould and Gottesman 2006). Such correlational
“biomarkers” may still be useful for model validation, or as
measures of treatment response, or predictors of outcome.
However, they are unlikely to be targets (other than for purely
symptomatic treatment). Instead, true causal biomarkers are
much more likely to be targets that can block disease patho-
genesis itself. Second, reverse-translating biomarkers from
humans to animals allows us to directly test the causality of
a human biomarker. For instance, the limited causality seen
in transgenic mouse models of Alzheimer’s disease has
been critical in rethinking the pathogenesis of the disease
(Kokjohn and Roher 2009; Sabbagh et al. 2013; Zahs and
Ashe 2010). Thus these caveats are, if anything, arguments
for the power of the rigorous application of the original
causative definition of a biomarker. Accordingly, several
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authors have argued for biomarker-based, spontaneous, or
reverse-translated models (which are essentially synony-
mous) as solutions to the issue of predictive validity
(e.g., Garner et al. 2011; Gould and Gottesman 2006; Insel
2007; Malkesman et al. 2009; Tricklebank and Garner
2012; Zahs and Ashe 2010). In some cases, this calls for a
new model, but in reality it calls for a new approach to animal
modeling (Insel 2007). As this review has emphasized, such a
new approach can often involve repurposing existing models
or technologies. Simply put, biomarkers emphasize that the
“new medicine,” and hence the new kind of model, will be
about the process of disease, not the pattern of symptoms.

What Does Modeling Process Rather
Than Pattern Entail?

Spontaneous and Variable Models

At the most basic, if we want to study individual differences in
disease, then we need models where individuals vary in se-
verity or incidence, so that biomarkers can be manipulated. Ex-
isting spontaneous models (where animals are not treated, but
naturally occurring individual differences are studied) provide
a pool of candidates, such as the Ossabaw pig model of meta-
bolic syndrome (Dyson et al. 2006), or the use of stereotypies
in captive animals as a model of stereotypies in autism (Garner
and Mason 2002; Garner et al. 2003, 2011; Lewis et al. 2006).
This represents a fundamental shift from the conventional
wisdom in induced models (i.e., a treatment induces the model
versus control animals), where variability between animals is
viewed as a nuisance to be controlled. If individual variability
is the red meat of human medicine, then we must embrace and
study the variability in animal models.

This point underlines the difference between a tool and a
model discussed above. For instance, Hoxb8 mutant mice
show 100% penetrance: all animals pull hair, both male and fe-
male (Greer and Capecchi 2002). Thus one of the most salient
piece of disease biology in trichotillomania and in hair pulling
in other animals (the strong female bias) (Dufour and Garner
2010) cannot be studied. Indeed, the biomarker concept can
be viewed as fundamentally opposed to reductionist determin-
ism. If the real nature of disease is the modulation of molecular
events by the environment, then the further along disease
development progresses the less determinant it becomes.
Thus a good model will be one where genetics confers risk,
not certainty, and the modulators of that risk can be studied.

Reverse Translation

Just because a model is spontaneous, does not mean that it is
valid. For spontaneous models to be useful we need to be able
to measure human biomarkers, using the same methodology,
in the model; and novel biomarkers discovered in the model
should be apparent in human patients (if they are not then the
development of the disease and the human is critically differ-
ent). This requirement actually leads to one of the most
powerful features of a biomarker approach to modeling. It
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allows for rapid validation of the model, and for validation of
findings from the model, without having to commit to a tra-
ditional drug development pipeline (Tricklebank and Garner
2012). Thus the first step is “reverse-translation”—that is,
taking from humans highly specific biomarkers that are
known to have clinical implications (in terms of disease
development, prognosis, diagnosis, or drug response) and
adapting them to animals. Insulin insensitivity in spontane-
ous models of metabolic syndrome is a simple example. In
fact, psychiatry is replete with candidates, given the extensive
literature tying particular symptoms to specific neuropsycho-
logical measures (and the RDoCs represent an evolution
of this approach), which can often be reverse-translated as
maze or operant tasks. For instance, neuropsychological
measures of frontal cortex function that predict the particular
kinds of repetitive behavior across diagnoses as broad as
autism, schizophrenia, OCD, and trichotillomania (Garner
2006) have been reverse-translated for many species (Birrell
and Brown 2000; Dias et al. 1996; Garner et al. 2006) and
accordingly distinguish between the different kinds of repet-
itive behavior in mice (Garner et al. 2011). Other well-
established reverse-translated paradigms include cognitive
bias (relevant to depression) (Harding et al. 2004) and delay
discounting (relevant to addiction and ADHD) (Oberlin and
Grahame 2008).

Reverse-translated tasks have an inherent construct validity.
However, physiological, behavioral, and psychological differ-
ences between animals and humans can always still impact
the predictive validity of a model (e.g., Zahs and Ashe
2010). Thus the validity of reverse-translated tasks or biomark-
ers should still be tested empirically. For instance, reverse-
translated biomarkers should be specific predictors of the
same symptoms in animals as in humans and distinguish
between similar symptoms (Garner et al. 2011). They should
respond to the same manipulations or drugs, again showing
both sensitivity and specificity (Helms et al. 2006); and mice
bred or engineered for a particular symptomatic state should
also show changes in the biomarkers characteristic of at-risk
human populations (Oberlin and Grahame 2008). They can
also be validated using known failures (see below).

Adopting Human Clinical Trial Designs

As discussed above, we need to use experimental designs that
study individual variability, rather than control it. Variability
is inescapable, we can try to control it, but this is a losing
proposition. For instance, mice vary systematically in their
level of anxiety, abnormal behavior, and immune suppression
according to their position in the cage rack (Ader et al. 1991;
Garner et al. 2004a). In fact, female non-obese diabetic
(NOD) mice are sufficiently anxious and immune suppressed
that they show a delay in the onset of Type I (autoimmune)
diabetes when housed higher on the cage rack (Ader et al.
1991). Some profound effects on experimental outcomes
simply cannot be controlled—for instance, the identity of
the experimenter (Chesler et al. 2002).
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Figure 3 The biomarker model of disease development. As disease
develops, physiological measures and ultimate symptomatology
become increasingly complex and less determinant, reflecting the in-
fluence of genetic and environmental interactions with the underly-
ing genotype (or original cause of the disease). Development may
diverge and terminate before true disease onsets (yielding subclini-
cal traits) or may diverge into closely related disorders. Biomarkers
are bottlenecks in disease development, which can be measured, and
ideally can also be manipulated by their environmental risk factors.
Entirely determinant biomarkers of a genotype (or other immediate
cause of disease), are called endophenotypes (Garner et al. 2011;
Gottesman and Gould 2003; Gould and Gottesman 2006).

Furthermore, when an experiment is controlled to an arbi-
trary narrow environment, we lose the ability to infer anything
about the generality of the result (Festing 2014; Fisher 1935;
Wiirbel 2000), and the risk of false discoveries increases by
an order of magnitude (Richter et al. 2009) (this point is de-
veloped in the first example below). The alternative approach
is to measure sources of variability and to control for them in
the statistical analysis (e.g., including control variables, per-
haps for motivational level or general learning ability, mea-
sured elsewhere in the task). We can also adapt the classic
solution in human trials of sampling across a diverse popula-
tion and “matching” placebo- and drug-treated individuals
(for instance), which is a special case of a “randomized block
design” (Wiirbel and Garner 2007). In epidemiology, this
concept is called stratifying (Woodward 1999). In agricultural
statistics, it is called blocking (i.e., the subplots within one
field are matched; Grafen and Hails 2002). In all cases, the
idea is the same—we don’t even need to know how or why
pairs (or groups) of individuals are similar, we just need to
put together pairs of individuals we expect to be more similar
to each other than to other individuals (Festing 2014; Grafen
and Hails 2002). In the case of mice, so many factors cluster
on cage that we can treat cage as our matched pair (or block),
if the treatment is applied to individual mice; or to adjacent
pairs of cages on the rack if the treatment is applied to the
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Figure 4 The fallacy of arguing that “human designs” (i.e., controlled heterogenized designs) are less powerful than traditional neuroscience meth-
ods. Using the observed variance components in the data from a complex reverse-translated paradigm (Garner et al. 2006), the impact of different
analytic approaches are simulated at different sample sizes, and the resulting p values plotted. The analysis can block (match) by Cage (C+), it can
optionally include Sex if this variable is of experimental interest (S+), and Internal controls can be included (I+). Thus C+S+I+ is equivalent to a
human matched pairs design with statistical (rather than experimental) matching for an internal control such as IQ. C-S-I- is a naive #-test. (A) The
observed effect size of +33.2%. (B-D) Simulated effect sizes of +10%, +20%, and +40% are shown. Note that the sample size required to achieve
significance with the human design is extremely stable, essentially as a result of Mead’s rule (Mead 1988). Note that blocking for biologically
quantifiable (I+) sources of error, and unquantifiable but assignable (C+), are both required to maximize power. Note that for C+ analyses (where
cage is nested in Sex), S+ and S- analyses produce identical results (as shown by the overlay of the dashed and solid lines of each color, and as would
be expected from the partitioning of variance in a nested design). For C- analyses, including Sex in the analysis provides a slight benefit (reflecting
the minimal impact of Sex on this particular data set). Thus an additional advantage of including Cage in particular is that it accounts for variables
such as Sex, without having to worry about the magnitude of their impact on the data (Wiirbel and Garner 2007).

cage (Wiirbel and Garner 2007). The impact is profound, stressors can show catastrophic changes in biology (Weiss
reducing sample size by up to two orders of magnitude (see 1971). Thus we can define stress as the state in which an
Figure 4). Yet the real surprise is not that a simple solution animal can safely control a stressor, and distress as the state
exists, but that such a fundamental cornerstone of experimen- in which an animal can control a stressor only by negatively
tal design in every other area of biological research is bizarre- impacting another biological system (Moberg 2000). For in-
ly absent from preclinical and basic work in animal models stance, if mice find standard housing conditions aversively
(Festing 2014). cold (Gaskill et al. 2009), they can use nesting material to

control this stressor (Gaskill et al. 2012, 2013a); and, without
nesting material, they are demonstrably distressed as their

Enrichment and Home Cage Measures reproductive output suffers (Gaskill et al. 2013b, 2013c).
Thus the fundamental argument for enrichment is that an

We need models where the biological and environmental animal is actually abnormal without it.

“background” on which the disease process develops is like We do not have to look far to find evidence that this might

humans. Animals are fundamentally designed to control affect experimental outcomes. For instance, social housing

stressors that they care about. Indeed, animals that cannot has profound impacts on cancer models. Rats housed singly

control (through behavior or physiology) even innocuous have massively increased risk and severity of mammary

450 ILAR Journal



tumors (Hermes et al. 2009). Even in socially housed rats,
those with stronger social relationships live longer and have
smaller tumor burdens (Yee et al. 2008), while mice housed in
groups are more responsive to chemotherapy (Kerr et al.
1997). But these effects are not confounds—they actually
mimic the profound impact that social support has on disease
progression in humans (Hermes et al. 2009; Kerr et al. 1997;
Kroenke et al. 2006; Yee et al. 2008). Nonsocial enrichment
also has profound effects—again enriched mice show lower
mortality and slower tumor growth than standard housed
mice, specifically because standard housed animals are suffi-
ciently stressed to be immune suppressed (Cao et al. 2010). In-
deed, the serum from enriched animals is able to suppress
cancer cell growth in vitro (Cao et al. 2010). Thus perhaps a
fundamental contributor to the poor predictive validity of can-
cer models (Begley and Ellis 2012; Mak et al. 2014) is not that
the biology of the disease is different in humans and animals,
but that the psychology is. In other words, animals in barren, un-
controllable environments are models of chronically stressed,
socially isolated, and immune-suppressed humans; but, if we
want good models of most human cancer patients receiving
physical and social supportive care, then we need to think care-
fully about the social and physical enrichment of these animals.
Similarly, in neuroscience, we can consider the role that
stressors may play in changing results. The most obvious
stressor is handling by the experimenter themselves. For
instance, the identity of the experimenter is a much better
predictor of tail-flick pain sensitivity than the strain (i.e.,
genetics) of the mouse (Chesler et al. 2002); to the point
that the mere odor of male experimenters is enough to cause
a stress-induced analgesic effect in mice (Sorge et al. 2014).
Similarly, handling affects performance in the EPM so pro-
foundly that it completely corrupts the ability of the task to
detect drug effects. Rats naive to handling can show an effect
of anxiolytic drugs, but not anxiogenic drugs, while rats
habituated to handling show an effect of anxiogenic drugs,
but not anxiolytic drugs (Andrews and File 1993). As most
phenotyping tasks involve extensive handling, it is hard to
see how the impact of this stressor can be eliminated. Again,
the best solution may be to add a new round of specific
measures taken in undisturbed animals in their home cage.
Ethological observation (see www.mousebehavior.org for
a guide to mouse ethology) is an obvious first step—for
example, the use of spontaneous stereotypies as models of
stereotypies in autism (Garner et al. 2011; Lewis et al.
2006). More complex cognitive tasks can be implemented
using automated apparatuses, such as touchscreens for pri-
mates (Dias et al. 1996) or automated mazes attached to the
home cage for rodents (Pioli et al. 2014). (Indeed, in this latter
example, the automated maze was much more robust than the
hand-run version of the same task in the same mice.)

Validating Animal Discoveries Without
a Human Drug Trial

Biomarkers allow several strategies for making quick go/
no-go decisions early in the pipeline (and thus to shift attrition
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to less economically and ethically less costly stages). Again,
the idea is to introduce a specific biomarker-based stage to
make early no-go decisions after the initial highly sensitive
phenotyping stage identifies a potential compound. First, be-
cause reverse-translated biomarkers (e.g., insulin resistance)
are direct measures of the mechanism of disease, a novel
drug should affect the biomarker as well as other phenotypes
in the model. Drugs that affect phenotypes without affecting
biomarkers may not be treating the underlying disease and
thus would be less likely to translate to humans, and can be
abandoned earlier in the pipeline. Second, reverse-translated
biomarkers allow us to follow disease development in ani-
mals from conception to death (while this is rarely the case
in humans) and identify earlier novel biomarkers that lead
to the known human (i.e., reverse-translated) biomarkers.
These novel biomarkers not only provide druggable targets
but also allow for rapid validation. Instead of performing a
clinical trial, a short study can test for novel biomarkers found
in the mouse and, if they are not found in humans, then a
quick no-go decision can be made for compounds targeting
these biomarkers early in the pipeline (Tricklebank and Gar-
ner 2012).

Validating Changes in Practice with Known
Failures

Finally, perhaps the most important validation that can be per-
formed is to compare a specific reverse-translated measure
against a sensitive phenotyping measure, and to test whether
they can correctly identify placebo treatment, treatment with a
known effective drug, and treatment with a known failed
drug. The specific test should correctly label the known inef-
fective drug as a negative, while the phenotyping measure
should identify it falsely as a positive. Both should identify
the known effective drug; and both should identify the con-
trol. This simple experiment resolves the “better the devil we
know” catch-22, that it is completely unrealistic to expect
industry or academia to adopt a new method or model that
cannot be empirically justified (by a successful translation)
until years down the pipeline in human trials. In fact, this
strategy can be used to test the effectiveness of any of the
changes in practice discussed above (for instance, we could
test whether enriched mice would have correctly identified
recent failures in cancer drug discovery).

Example 1: The Power of
Reverse-Translated Biomarkers
in a “Human” Design

The house mouse is an extraordinary animal in one particular
aspect. Unlike other commensal species (a commensal lives
in a niche created by humans), such as the pigeon, rat, or
Rhesus macaque, mice have successfully followed us around
the globe and colonized almost every environment humans
have ever created (Latham and Mason 2004; Silver 1995).
Unlike humans, they have done so without the benefit of
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language, or tools, or clothing. Instead they rely on phenotyp-
ic plasticity—or the ability of the same genome to express
different highly adaptive phenotypes in different environ-
ments (Miner et al. 2005). Phenotypic plasticity is the ulti-
mate expression of epigenetic regulation, and biomarkers
represent the mechanism through which the environment
can produce plastic phenotypes. Indeed, this connection is
central to a biomarker-based approach to preventative,
personalized medicine (Feinberg 2007). Thus mice are argu-
ably the best model of humans because they are so like us in
the one way that really matters (i.e., phenotypic plasticity) and
because, as they have co-evolved with us, they are likely to
respond to similar environments in similar ways, and thus
share similar connections between phenotypic plasticity and
disease.

When we standardize an experiment by trying to make
everything the same (as is typical in basic science), we are
in fact making an explicit assumption that phenotypic plastic-
ity does not exist (Richter et al. 2009). For instance, in exam-
ining influences on the tail-flick test of pain sensitivity,
Chesler and colleagues (2002) found that 27% of variability
in response could be attributed to genotype (the treatment),
42% to the test environment, and 18% to phenotypic plastic-
ity. If ignored, the 42% attributable to environment simply
adds noise to the experiment (but does not change relative
ranking of genotypes). This is the component that can be
controlled by standardizing the environment, and thus would
increase test sensitivity. However, if we choose one arbitrary
environment, then the 18% due to phenotypic plasticity
becomes indistinguishable from the true treatment effect,
potentially generating a false positive result (i.e., a result
only true in one arbitrary environment, not the general popu-
lation). Thus, standardizing through homogenization not only
decreases specificity and increases false discovery from
phenotypic plasticity, but the increased sensitivity further
adds to the risk of false discovery in general. This phenome-
non is referred to as the “standardization fallacy” (Wiirbel
2000) and was warned against by the father of modern biosta-
tistics (Fisher 1935). Indeed, it is the fundamental reason why
almost all other fields of biological research (including
human trials) examine a controlled heterogenous population
and standardize statistically, as discussed above.

Phenotypic plasticity is clearly widespread in behavioral
neuroscience—both when identical experiments are per-
formed in different laboratories (Crabbe et al. 1999; Richter
et al. 2009), and even when repeated in the same laboratory
(Chesler et al. 2002; Richter et al. 2010). Furthermore, when
the impact of phenotypic plasticity and standardization were
formally examined by Richter and colleagues (2009), as
expected, attempting to standardize experiments through
homogenization artificially inflated false discovery rates by
nearly an order of magnitude, yet this problem can be avoided
by adopting the human designs discussed above (Richter
et al. 2009, 2010, 2011). A common objection to these and
other papers from Wiirbel’s group is that the cost of these ad-
vanced experimental designs is a loss of power (e.g., van der
Staay et al. 2010; van der Staay and Steckler 2002). However,
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this is based on the strange assumption that one would incor-
rectly analyze such “human designs” with naive #-tests.

Figure 4 illustrates this fallacy (and the general cost of
using naive univariate tests of any kind). In this figure, data
are taken from a complex reverse-translated measure in our
own lab (Garner et al. 2006), and experiments of various sizes
simulated given the observed variance components in the
original data. Figure 4 shows the effects of sample size, effect
size, and different analytical models on the observed p value.
These data were chosen to illustrate the fact that any lab, and
reverse-translated measures, are just as susceptible to pheno-
typic plasticity. The only difference is how the data are ana-
lyzed. Note that they also illustrate the importance of internal
controls (which are generally lost in phenotyping measures)
and that including planned variability (in this case sex) does
not affect power if properly analyzed. The most important
point to take away is that human designs are remarkably in-
sensitive to effect size. Whereas a r-test may need thousands
of animals to detect a 10% effect size, the required sample
size for a properly analyzed experiment barely increases.
This reflects the successful partitioning of variance in such
designs and is a good example of Mead’s rule for estimating
power in factorial designs (Mead 1988). Thus the standard
counter-argument from traditional neuroscience is a straw
man—a properly analyzed human design is inherently more
powerful and more specific than a naive phenotyping and
t-test approach.

Example 2: A Biomarker-Based,
Reverse-Translated Model

To illustrate the application of the ideas in this review,
our work developing barbering in mice as a model of
trichotillomania is briefly reviewed. Trichotillomania,
or compulsive hair pulling, affects between 3% and 4% of
women (Christenson and Mansueto 1999; Christenson et al.
1991), making it one of the most common disorders in women.
Hair pulling in animals is also extremely common, and in
mice the behavior is called “barbering” (Dufour and Garner
2010). We first used behavioral epidemiology to identify
risk factors for barbering and to test for similarities to
trichotillomania (specifically, a female bias, onset with sexual
maturity, exacerbation by reproductive events, and exacerba-
tion by stress) (Garner et al. 2004a, 2004b). This pattern of
risk factors limits the range of potential human disorders to
a small handful. We also excluded alternative explanations
such as any connection to social dominance (Garner et al.
2004a). We then reverse translated neuropsychological bio-
markers that distinguish between different repetitive behavior
disorders in humans and specifically tested for biomarkers of
OCD and autism, finding a pattern of biomarkers that matches
only trichotillomania (Garner et al. 2011). Having validated
the model, we tested a neutraceutical treatment mimicking
the action of a selective serotonin reuptake inhibitor (SSRI),
which in fact increased both prevalence and severity of the
behavior (Dufour et al. 2010). We followed development
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through puberty, identifying a number of predictive biomark-
ers (Hess et al. 2008), all of which were pointing to a central
role of metabolically derived oxidative stress. Meanwhile,
Grant and colleagues (2009) reported that N-acetyl-cysteine
(NAC), a compound with minimal psychoactive properties,
alleviates symptoms in nearly 60% of patients. NAC, is the
rate-limiting precursor to the brain’s defense against oxidative
stress. Accordingly, we found 10-fold increases in biomarkers
of oxidative stress in barbering mice (Vieira et al. 2011) and
have shown that NAC can both prevent and cure barbering in
mice (Vieira et al. 2013). Thus, adopting a biomarker-based
approach allowed us to validate a model, identify the under-
lying disease process, identify predictive biomarkers that
could be used to screen young girls, and identify an innocu-
ous neutraceutical preventative treatment.

The next step is to implement exactly the no-go decision-
making step that was argued for at the start of the review. Now
that the mouse model has identified novel biomarkers that are
themselves druggable targets, we can go back to humans and
test for these novel biomarkers. If present, we have identified
a key part of the disease biology in humans; if not, then we
(like most animal models) will have only modeled the model.
Either answer is valuable.

Conclusions

The central argument of this review is that, if we want ani-
mal models to translate to human outcomes, then we need to
start performing animal experiments as if they were human
trials. A variety of pitfalls in current status quo methodology
were emphasized, and key elements of a biomarker-based
approach to animal models were emphasized. At the end
of the day, the real challenge is to persuade researchers to
adopt new methodologies on the basis of a leap of faith
that doing so will improve human outcomes over a decade
in the future. Unsurprisingly, few researchers have been
willing to take such a risk. Therefore the most important
idea in this review is that of “validation using known fail-
ures.” Every potential refinement to current practice (from
enrichment, to human experimental design, to reverse-
translated measures) can be empirically assessed by testing
whether they would have correctly identified a failed com-
pound as a true negative in animals, when traditional meth-
ods generate a false positive. Aggressively testing for ways
to improve human translation is arguably one of the most
important things the biomedical research community needs
to do. For every moment we delay, patients will continue to
suffer, and unimaginable amounts of money and animals are
needlessly wasted.
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