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Abstract

Kaposi sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA herpesvirus belonging 

to the gammaherpesvirinae subfamily. KSHV has been associated with the development of three 

neoplastic diseases: Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric 

Castleman disease (MCD). In this review, we discuss the three KSHV-associated malignancies, 

KSHV genome, latent and lytic aspects of the viral lifecycle, putative viral oncogenes, as well as 

therapeutic regimens used for the treatment of KS, PEL, and MCD.

Keywords

KSHV; oncogenesis; AIDS-related malignancies; viral latency; lytic replication

1. Introduction

The members of the herpesviridae family are well represented in nature and can be found in 

many different species across the animal kingdom. They are also highly adapted to their 

hosts and are thought to have coevolved with their hosts for millions of years. Typically, 

herpesviruses have a double-stranded DNA genome (124–230 kb) enclosed in an 

icosahedral capsid (~125 nm in diameter) composed of 162 capsomeres. The capsid 

structure is surrounded by an amorphous tegument layer that separates it from the outer, 

glycoprotein-decorated, envelope. Common to all human herpesviruses is their ability to 

adapt very well to the cellular milieu of the infected host and their ability to evade host 

immune responses to establish life-long latent infection. Based on their biological properties 
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including host range, replication cycle and cell tropism, these viruses are classified into the 

alpha-, beta-, and gammaherpesvirinae subfamilies [1].

There are eight known human herpesviruses (HHV). Most of the human population is 

infected with one or more of these viruses, and they rarely cause severe disease in the host 

unless the host immune system is compromised. Human herpesviruses belonging to the 

alpha subfamily include herpes simplex viruses (HSV) 1 and 2 (HHV-1 and HHV-2), and 

varicella-zoster virus (VZV; HHV-3). Members of the human betaherpesvirinae include 

cytomegalovirus (CMV; HHV-5), HHV-6 variants A and B, and HHV-7. Human 

gammaherpesvirinae include Epstein-Barr virus (EBV; HHV-4) and Kaposi sarcoma-

associated herpesvirus (KSHV; HHV-8). Strikingly the members of gammaherpesvirinae are 

strongly associated with neoplastic disease. For example, EBV is distinctly associated with 

Burkitt’s lymphoma, Hodgkin’s lymphoma, nasopharyngeal carcinoma, T and natural killer 

cells lymphoma, and post-transplant lymphoma [2; 3; 4; 5]. KSHV is the etiological agent of 

several human cancers including Kaposi sarcoma (KS) [6; 7], primary effusion lymphoma 

(PEL) [8], and the plasmablastic variant of multicentric Castleman disease (MCD) [9; 10]. 

Additionally, there have also been reports of KSHV-associated solid lymphomas of HIV-

positive and negative individuals [11] as well as KSHV-associated lymphomas in patients 

with primary immunodeficiencies such as common variable immunodeficiency [12].

The gammaherpesviruses have evolved to possess a plethora of viral gene products that 

intricately subvert normal cellular pathways. The dysregulated signaling pathways include 

those involved in cell cycle progression, apoptosis, immune surveillance, and antiviral 

responses. Gammaherpesviruses are masters of altering these pathways in favor of their 

survival. They are known to establish persistent viral infection, and to evade viral clearance 

by actively suppressing apoptosis and escaping immune detection. The survival mechanisms 

used by these viruses are thought to inadvertently contribute to host cell transformation and 

the development of neoplasia, which is most frequently seen in the setting of 

immunodeficiency. In this review, we will focus on KSHV in terms of its associated clinical 

diseases and current therapies, as well as viral genes implicated in tumorigenesis and 

oncogenesis.

2. Clinical diseases associated with KSHV infection

2.1. Kaposi sarcoma

Kaposi sarcoma was named by Dr. Moritz Kaposi, a prominent Hungarian dermatologist, 

who first described the rare classical form of KS as “idiopathic multiple pigmented sarcoma 

of the skin” in 1872 [13]. Since the 1950s, an infectious agent was suspected to cause KS. 

The discovery of the causative agent of KS, however, was not intensively pursued until the 

early 1980s, when the incidence of KS dramatically increased in homosexual and bisexual 

HIV-positive individuals during the AIDS epidemic. The sudden surge of KS incidence 

among HIV-infected individuals strongly suggested an infectious agent was involved in the 

development of KS. In 1994, Chang and Moore used representational difference analysis to 

characterize DNA fragments obtained from KS biopsies and established an association of a 

novel human gammaherpesvirus with KS [6]. This newly identified virus was named 

KSHV. KS is a highly vascular tumor of endothelial lymphatic origin [14; 15]. 
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Histologically, the signature KSHV-infected cells are spindle-shaped, poorly differentiated, 

and highly proliferative [16]. KS is also characterized by extravasation of erythrocytes, 

infiltration of inflammatory cells (macrophages, lymphocytes and plasma cells) and neo-

angiogenesis [17]. Clinically, KS is characterized by dermatological lesions that are red, 

brown, or purple in pigmentation. These lesions can be found cutaneously, mucosally, or 

viscerally. KS can be staged by six overlapping clinicopathologic forms: patch, plaque, 

nodular, lymphadenopathic, infiltrative, and florid [18; 19]. It is important to note that 

greater than 95% of KS lesions contain KSHV viral DNA. Based on epidemiological and 

clinical outcomes, KS can be classified into 4 different clinical subtypes. These are classic/

sporadic, endemic/African, epidemic/AIDS-associated, and iatrogenic/post-transplant. 

Classic KS is the form described by Dr. Kaposi. The presentation of classic KS typically 

occurs with an indolent course in Mediterranean and Eastern European elderly men over 50 

years of age. The lesions are generally localized in the upper and/or lower extremities 

without much involvement with, or spreading to, the lymph nodes and internal organs. 

Patients diagnosed with classic KS may progress to other secondary malignancies, primarily 

non-Hodgkin’s lymphomas (NHL) [20; 21]. African endemic KS is commonly seen in 

Eastern and central African countries such as Uganda, Malawi, and Kenya. Endemic KS 

may be indolent or aggressive, with more lymph node involvement than classic KS. The 

aggressive form (also known as lymphadenopathic form) of endemic KS is more commonly 

found in children at pre-puberty ages, with high fatality rates [22]. AIDS-associated KS is 

the most common and aggressive variant, with the most lymph node/visceral spreading 

amongst all KS subtypes [23; 24]. During the HIV/AIDS epidemic, the incidence of KS 

concurrently peaked with HIV diagnoses. Due to its strong association with AIDS, KS was 

identified as an AIDS-defining illness and served as a marker for HIV disease in the mid-

eighties [25]. Indeed, KS is the most common malignancy associated with HIV infection and 

can lead to significant mortality [26]. KS is the most common tumor in African men [27; 28; 

29]. This epidemiologic form of KS is found with increased frequency in homosexual AIDS 

patients who are relatively young. With the advent of highly active antiretroviral therapy 

(HAART) in the 1990s, the incidence and mortality of AIDS-associated KS have 

dramatically dropped [30; 31]. However, KS continues to remain the most common AIDS-

associated cancer in developed nations and in developing countries [32]. Another form of 

KS, known as iatrogenic/post-transplant KS, is associated with immune suppression after 

long-term immunosuppressive therapy used to prevent rejection of solid allografts [33]. 

Renal transplant patients are the most likely group to develop this form of KS. Interestingly, 

the KSHV-infected endothelial cells or lymphocytes found in KS lesions in these patients 

can originate from donor tissues [34]. Reduction or withdrawal of immunosuppressive 

therapy has been shown to be effective in resolving iatrogenic KS. However, this also 

increases the likelihood of allograft rejection.

2.2. Primary effusion lymphoma

In addition to KS, primary effusion lymphoma (PEL), sometimes referred to as body cavity-

based lymphoma (BCBL), has been strongly associated with KSHV [8]. PEL is a unique 

form of NHL found more commonly in immunocompromised AIDS patients. Unlike KS, 

PEL is derived from clonally expanded malignant B cells and presents as a lymphomatous 

effusion tumor contained in various body cavities such as the pericardium, pleurum, and 
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peritoneum. There are, however, reports of PEL as a solid mass in lymph nodes and other 

organs [35]. PEL is aggressive and rapidly progressing, and can cause high fatality. The 

mean survival time for patients with PEL is approximately two to six months [36]. 

Histologically, PEL cells are larger than normal lymphocytes and erythrocytes, and contain 

features of both large cell immunoblastic lymphoma and anaplastic large cell lymphoma. 

PEL cells express CD45, activation-associated antigens, clonal immunoglobulin 

rearrangements but usually lack B cell-associated antigens [37]. PEL cells can be KSHV 

single-positive or KSHV/EBV double-positive. KSHV genomes are found in PEL cells at a 

high copy number (50–150 viral genomes per infected cell) [8; 38; 39].

2.3. Multicentric Castleman disease

The plasmablastic variant of multicentric Castleman disease (MCD) is also highly associated 

with KSHV; however, the other form of MCD, namely, the hyaline variant of MCD, is not. 

MCD is a reactive lymphadenopathy that is considered non-neoplastic as polyclonal B-cell 

populations are usually found in the lesion. However, monoclonal B cell expansion has also 

been reported for plasmablastic MCD [40; 41]. Plasmablastic MCD can have an aggressive 

and rapid progression leading to high fatality. Histologically, germinal center expansion and 

vascular endothelial proliferation occur within the involved lymph nodes of MCD. 

Dysregulated IL-6 levels, likely contributed in part by virally encoded IL-6 (vIL-6) [42], 

may account for the clinico-pathophysiology of MCD. Like KS and PEL, KSHV genomes 

are detectable in almost all HIV-positive MCD cases and about fifty percent of HIV-

negative MCD cases. [10; 16]. Additionally, KSHV has been shown to be associated with a 

plasmablastic variant of MCD.

3. The KSHV genome

KSHV has a double-stranded DNA genome and its size ranges from 165–170 kb [43; 44]. 

The long unique region (LUR), which is about 138 to 140.5 kb in length and contains all of 

the KSHV ORFs, is flanked by terminal repeat (TR) sequences at both ends of the linear 

viral genome. Each TR is 801 bp in length and is highly GC-rich. The number of TRs varies 

among KSHV isolates, ranging from 16 to 75 [45], which accounts for the variation in the 

genome sizes of KSHV isolates. The KSHV genome exhibits very high degree of similarity 

to retroperitoneal fibromatosis-associated herpesvirus (RFHV) and rhesus monkey 

rhadinovirus (RRV) in the rhadinovirus subfamily of gammaherpesvirinae. RFHV appears 

to be more closely related to KSHV. Although many of the KSHV ORFs are conserved in 

alpha- and beta-herpesviruses, the virus does contain a significant number of unique ORFs 

not found in other herpesviruses (Table 1). These KSHV-specific ORFs are designated K1 

to K15, based on their relative locations (from left to right) in the KSHV genome (Figure 1). 

Moreover, KSHV also contains several viral genes that have been pirated from the host 

genome and are homologues of cellular genes [46].

Many viral genes are involved in signal transduction (e.g. K1, K15), cell cycle regulation 

(e.g. vCyclin, LANA-1), inhibition of programmed cell death (e.g. K1, vFLIP, vBcl-2) and 

immune modulation (e.g. viral chemokine receptors, vIRFs, K3, K5). Additionally, a 

number of KSHV genes are expressed by alternative splicing (reviewed in [47]), by the use 

of alternative transcriptional start sites, or internal ribosome entry sites (IRES) [48; 49]. 
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Very recently, a total of 12 microRNAs have been discovered in the KSHV genome [50; 51; 

52; 53]. Ten of these microRNAs were found in the non-coding region between K12/

Kaposin and K13/Orf71/vFLIP, and two were located within the K12 ORF (Figure 1). All of 

the KSHV microRNAs were expressed during latency [50; 54; 55; 56], with a sub-set of 

these microRNAs being upregulated during the lytic cycle. Recent evidence has identified 

cellular and viral targets of these microRNAs, as well as their roles in KSHV pathogenesis 

[54; 55; 57; 58; 59]. Besides microRNAs, KSHV also produces a non-coding RNA 

transcript that is 1077 bp in size, polyadenylated and exclusively nuclear (PAN) [60; 61; 62; 

63]. PAN RNA is made during the lytic cycle and has been shown to retain intronless RNA 

in the nucleus and block the assembly of an export-competent mRNP.

4. The viral lifecycle

Like other herpesviruses, KSHV displays two different phases of its viral lifecycle. Latent 

KSHV is characterized by a circularized, extra-chromosomal viral genome (episome) and 

the expression of a very small subset of latent transcripts in the infected cells; no functional 

or infectious viral particles are produced during latency. In latently infected cells, in all three 

KSHV-associated malignancies, the expression of OrfK12/Kaposin, K13/Orf71/vFLIP, 

Orf72/vCyclin, and Orf73/LANA has been detected. In PEL and MCD cells, OrfK10.5/

LANA-2/vIRF3 expression was also detected [64]. The lytic cycle is characterized by the 

replication of linear viral genomes, and the expression of more than 80 transcripts in a 

highly orchestrated temporal order of immediate-early (α), early (β), and late (γ) categories. 

These categories are defined by sensitivity to cycloheximide and phosphonoacetic acid 

(PAA) treatment after chemical induction of viral reactivation [65; 66; 67; 68]. Unlike early 

and late genes, immediately-early (IE) genes are not sensitive to the protein synthesis 

inhibitor cycloheximide, as the expression of IE genes does not rely on viral protein 

synthesis. IE genes are important for regulating the subsequent transcriptional cascade. 

KSHV encoded Rta is an IE lytic master switch protein that has been shown to be required 

and sufficient for initiating the lytic replication cycle to completion. The IE gene K8/K-bZIP 

appears to antagonize Rta transactivation activity [69; 70]. The third IE gene, Orf45, is 

important for the suppression of interferon induction by lytic viral infection or reactivation 

[71]. In contrast to IE genes, early and late genes are not sensitive to cycloheximide, and are 

distinguished by their dependence on DNA replication. The expression of early genes is 

independent of viral DNA synthesis and is not inhibited by PAA treatment, whereas the 

expression of late genes is dependent on the replication of viral genomes and therefore 

sensitive to PAA inhibition. To model KSHV lytic replication in vitro, chemical induction 

using n-butyrate and 12-O-tetradecanoylphorbol-13-acetate (TPA) to reactivate PEL cells 

has been reported. TPA treatment can lead to reactivation in about 20–30% of PEL cells [43; 

72]. The general function of early and late genes is to facilitate the replication of viral 

genomes, viral assembly and egress.

5. Putative viral genes involved in KSHV transformation and oncogenesis

Transformation is a key event in the multistep process of oncogenesis. It involves changes in 

cellular signaling pathways and cell morphology, leading to a state of uncontrolled 

proliferation. In KSHV, transformation of endothelial cells can lead to chromosome 
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instability [73], alteration of cellular gene expression profiles [74], acquisition of telomerase 

activity and anchorage-independent growth [75], increase in cell invasiveness [76] as well as 

long-term proliferation and survival of these cells [75; 77]. A number of KSHV-encoded 

proteins are believed to have transforming and oncogenic properties. They include both 

latent and lytic proteins: the latent proteins are likely to enhance the survival and 

proliferation of the infected cells, whereas the lytic viral proteins are believed to mediate 

paracrine secretion of growth and angiogenic factors essential for tumor growth and 

development. This is postulated based partially on the observation that the latent genes 

(especially those encoded on the latency-associated cassettes) are detectable in situ in the 

majority of KS, PEL, and MCD samples, whereas the lytic genes (e.g. K1, vIL-6, vGPCR) 

are detectable in only small sub-sets of tumor samples. These oncogenic viral products are 

described below.

5.1. LANA

In addition to its role in the establishment and maintenance of latency (reviewed in [78; 79; 

80]), the latency-associated nuclear antigen (LANA) can perturb a plethora of cellular 

pathways to contribute to tumorigenesis. For example, LANA can physically associate with 

p53 and inhibit p53-mediated transcription activity and apoptosis [81]. LANA can also 

inactivate the tumor suppressor retinoblastoma (Rb) gene and release E2F transactivator 

which induces cell to transit through the G1/S cell cycle checkpoint [82]. To promote G1/S 

transition, LANA interacts with the bromodomain-containing protein RING3/Brd2 [83; 84; 

85; 86], and can sequester glycogen synthase kinase (GSK)-3β in the nucleus, which 

prevents GSK-3β from complexing with, and degrading, β-catenin in the cytoplasm. The 

stabilized β-catenin can translocate into the nucleus, where it complexes with the 

transcription factors lymphoid enhancing factor (LEF) and T-cell factor (TCF) to 

transactivate responsive genes including CCND1 and Myc, which have been implicated in 

cell cycle regulation and oncogenesis [87; 88]. LANA can cooperate with the oncogene H-

Ras to transform primary rat embryo fibroblasts and render them tumorigenic [82]. LANA 

was also shown to upregulate human telomerase reverse transcriptase (hTERT) gene 

expression and to immortalize primary HUVEC and increase their proliferation [89]. 

Finally, transgenic mice expressing LANA under the endogenous LANA promoter 

developed splenic follicular hyperplasia with increased germinal centers as well as 

lymphomas [90]. Based on these findings, LANA appears to at least set the initial stage for 

sarcomagenesis and lymphomagenesis.

5.2. K13/vFLIP

The viral FLICE (Fas-associated death-domain like IL-1 beta-convertase enzyme) inhibitory 

protein (vFLIP) is also known as K13, and is encoded by Orf71 [66; 67; 91]. Latent 

expression of vFLIP occurs via splicing of the LANA transcript from the tricistronic 

messenger RNA, and via the use of the IRES in vCyclin coding sequences [49; 92; 93]. 

Similar to cellular FLIPs, vFLIP inhibits death receptor signaling by specifically abrogating 

the interaction between Fas-associated death domain (FADD) and caspase-8 [94]. The 

inhibition of this pathway blocks Fas-mediated apoptosis, thus providing a survival 

advantage for KSHV-infected cells [95]. In addition to blocking the extrinsic apoptotic 

pathway, vFLIP also associates with the IKK complex and the heat shock protein 90 (hsp90) 
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to induce NFκB survival signaling [96; 97; 98; 99]. The induced NFκB signaling is 

significant in at least two aspects: viral latency and oncogenesis. First, NFκB activation by 

vFLIP is critical for vFLIP inhibition of lytic replication via the AP-1 pathway [100; 101]. 

Second, the enhanced NFκB signaling may be important for the transforming and oncogenic 

potential of vFLIP as demonstrated in Rat-1 fibroblast assays and tumors in nude mice 

[102]. In primary dermal microvascular endothelial cells, vFLIP expression was shown to 

induce anoikis (detachment induced apoptosis), but not apoptosis, due to growth factor 

depletion suggestive of its role in paracrine factor secretion and KS development [103].

5.3. Kaposin

The Kaposin transcripts represent the most abundantly expressed viral transcripts during 

KSHV latency. Kaposin A is encoded by OrfK12, while Kaposins B and C initiate upstream 

of OrfK12 at two repeat regions (termed DR1 and DR2), and their transcripts extend into 

OrfK12 [104]. Kaposin A has oncogenic potential as demonstrated by focus formation assay 

in transfected Rat-3 cells. This morphological change is mediated through interaction with 

cytohesin-1 [105]. Cytohesin-1 is a guanine nucleotide exchange factor for the GTPase ARF 

as well a regulator of cell adhesion. When injected into athymic mice, the transformed Rat-3 

cell lines containing Kaposin sequences produced high-grade, highly vascular, 

undifferentiated sarcomas [106]. In contrast to the undetectable protein level of Kaposin A 

in virus-infected cells, Kaposin B was shown to be the most abundant Kaposin protein in the 

PEL cell line BCBL-1 [104]. Kaposin B functions to stabilize cytokine expression such as 

IL-6 and GM-CSF by inhibiting degradation of their messages. The inhibition was achieved 

via Kaposin B binding and activation of MK2 kinase, which inhibits degradation of mRNA 

containing AU-rich elements (e.g. cytokines) [107]. The mRNA stabilization activity is 

dependent on the direct repeat (DR1 and DR2) elements of Kaposin B [108].

5.4. K1

K1 is a 46-kDa type I membrane glycoprotein encoded by the first open reading frame 

[109]. K1 is also designated VIP (variable ITAM-containing protein) as it contains an 

immunoreceptor tyrosine-based activation motif (ITAM) [110]. K1 demonstrates early lytic 

kinetics and its expression has been detected in KS, PEL, and MCD [67; 109; 111; 112]. K1 

has been shown to transform Rat-1 rodent fibroblasts by inducing morphological changes 

and foci formation [113], and can functionally substitute for STP in the context of HVS 

infection to immortalize T lymphocytes to IL-2-independent growth as well as induce 

lymphomas [113]. Transgenic mice expressing the K1 gene showed constitutive activation 

of NF-κB and Oct-2, increased Lyn tyrosine kinase phosphorylation and activity, as well as 

increased basic fibroblast growth factor (bFGF) expression [114]. Some of these mice 

developed tumors with features resembling the spindle-cell sarcomatoid tumor and 

malignant plasmablastic lymphoma [114].

Structurally, K1 contains a long N-terminal extracellular domain, a transmembrane domain, 

and a short C-terminal cytoplasmic tail. The C-terminus of K1 is well conserved and 

contains an ITAM that is normally important for lymphocyte activation signaling [110]. K1 

appears to be constitutively active and independent of ligand binding [113]. In B cells, K1 

has been shown to activate PI3K (p85 subunit), Akt, Vav, and Syk kinases, and to induce 
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NFAT and NFκB transcriptional activities for cell survival [110; 115; 116]. In addition, K1 

can prevent death receptor-mediated apoptosis of B lymphocytes by inhibiting the induction 

of FasL expression and activating the PI3K/Akt pathway [115]. Another striking feature of 

K1 is the induced downregulation of surface B cell receptor by endoplasmic reticular 

sequestration [117]. This may inhibit apoptosis as a consequence of BCR signaling. K1 

signaling activity in B-cells has been linked to K1 internalization and since K1 also co-

internalizes with BCR, it suggests a possible mechanism of BCR downregulation from the 

cell surface [118]. In epithelial and endothelial cells, K1 expression induced the secretion of 

angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix 

metalloproteinase-9 [119]. K1 also activated the PI3K/Akt/mTOR pathway in endothelial 

cells [111]. In endothelial cells, K1 has been shown to immortalize and extend the life span 

of primary human umbilical vein endothelial cells (HUVEC) in culture [111]. K1 ITAM 

expression also activates both the VEGF/VEGFR-2 and the PI3K/Akt signaling pathways in 

HUVEC [111]. Cumulatively, these data suggest a paracrine model in which K1-mediated 

secretion of cytokines is involved in the development of KSHV-associated diseases [119]. 

Thus K1 appears to be important in KSHV associated tumorigenesis and angiogenesis.

5.5. vGPCR

Viral G-protein-coupled receptor is encoded by Orf74 of KSHV [120; 121]. It is expressed 

early during the lytic cycle and is a viral homologue of the cellular angiogenic IL-8 receptor 

[122]. vGPCR possesses seven transmembrane domains that are universally found in 

cellular GPCRs [122]. The expression of vGPCR can be found in only a small fraction of 

KS, PEL, and MCD samples [123]. This protein has potent oncogenic activities, as 

evidenced by its ability to transform and form foci in murine NIH3T3 cells as well as to 

produce tumors when injected into nude mice [124]. Like K1, vGPCR can immortalize 

HUVEC and protect these cells from apoptosis induced by serum starvation [125; 126]. A 

sub-set of vGPCR transgenic mice developed KS-like angioproliferative lesions with surface 

markers and cytokine profiles resembling those of KS [127; 128; 129]. As observed in 

KSHV-associated malignancies, the expression of vGPCR was detected in only a small 

population of cells in the transgenic tumors and in a few other tissues, suggesting that 

vGPCR-mediated tumor formation is driven by spontaneous lytic reactivation in the 

background of latently infected cells. VEGF secretion was increased in these vGPCR-

induced tumors [127]. Unlike its cellular homologues, vGPCR signaling is constitutive and 

independent of ligand binding [130]. vGPCR can activate mitogen-activated protein kinases 

(MAPKs)[123], PLC [126], PI3K [126], and Akt [125] in endothelial cells. These data 

implicate that like KSHV K1, autocrine/paracrine signaling of vGPCR might contribute to 

KSHV-associated oncogenesis and angiogenesis.

5.6. vIL-6

Viral interleukin-6 encoded by OrfK2 is a homologue of cellular IL-6 (24.6% amino acid 

sequence identity) [46]. Viral IL-6 expression can be detected in KS, PEL, MCD samples to 

different extents (MCD>PEL≫KS) [64; 131]. Interestingly, IL-6 overexpression was 

suspected to be important in KS and MCD pathogenesis, prior to the discovery of KSHV 

[132; 133]. Similar to cellular IL-6, vIL-6 signaling triggers the JAK/STAT (Janus tyrosine 

kinases signal transducers and activators of transcription) [134], MAPK, and H7-sensitive 
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pathways [135]. The JAK/STAT pathway induced by vIL-6 results in increased VEGF 

expression and signaling in an autocrine/paracrine fashion [136]. Unlike its cellular IL-6 

homologue, whose signaling depends upon both gp80 (IL-6Rα) and gp130, vIL-6 signaling 

can be achieved through gp130 alone [134]. Therefore, vIL-6 seems to bypass the normal 

cellular checkpoint of gp80 coupling with gp130 for IL6 binding. Innoculation of NIH3T3 

cells stably expressing vIL-6 into athymic mice resulted in tumor formation, hematopoiesis, 

and plasmacytosis compared to the control mice. The vIL-6-expressing tumors were also 

more vascularized, which correlated with an elevated level of VEGF secretion [137].

5.7. vIRF-1

The viral interferon regulatory factor-1 is encoded by KSHV OrfK9 [138; 139]. In contrast 

to the other three KSHV-encoded IRFs, the vIRF-1 transcript is unspliced. In PEL cells, the 

expression of vIRF-1 is low during latency but can be induced to high levels during lytic 

infection [140]. The most apparent function of vIRF-1 is to suppress both type I and type II 

interferon responses [139; 141; 142]. vIRF-1 can compete with cellular IRF3 to interact with 

the transcriptional coactivator CBP and p300. This interferes with the formation of the 

IRF3/CBP/p300 complexes [141; 143]. In addition to suppressing the host anti-viral 

response, vIRF-1 can block apoptosis induced by tumor necrosis factor α (TNFα) and p53, 

respectively [141; 144]. Viral IRF-1 can physically associate with p53 and repress its 

transactivation and apoptotic functions through inhibition of p53 phosphorylation and 

acetylation [144; 145]. Viral IRF-1 is a potential oncogene, as NIH3T3 cells stably 

expressing vIRF-1 can grow under conditions of serum deprivation. These cells exhibit loss 

of contact inhibition in soft agar and can form tumors in nude mice [142]. Transformation of 

vIRF-1 expressing NIH3T3 cells was found to be mediated by the induction of Myc proto-

oncogene through vIRF-1 activation of the plasmacytoma repressor factor (PRF) element 

[146].

In addition to their transforming/oncogenic properties in overexpression systems (in 

isolation), most of the putative oncogenic KSHV gene products (e.g. LANA, vCyclin, 

vFLIP, vIL-6, Kaposin B, K1, vGPCR, vIRF-1) described in this section can be detected in 

KS, PEL, and MCD specimens, albeit with differential contribution (Table 1). This further 

corroborates their important roles in the initiation and/or maintenance of KSHV-associated 

malignancies. Very generally speaking, predominantly latent proteins are expressed in KS 

and PEL cells, but both latent and lytic proteins are expressed in MCD. Intriguingly, 

processivity factor-8 (PF-8)/Orf59 and vIRF-1 can be detected in PEL cell line but not in 

PEL primary tissues [64; 147]. Furthermore, PEL cell lines require chemical induction to 

express vIL-6 while primary PEL tumor cells express vIL-6 without the dependence of lytic 

reactivation [64; 131; 148]. The discrepancies could be due to the loss of tumor 

microenvironment in cell lines or adaptation of PEL cells during passages. This may raise a 

potential problem of using PEL cell lines to extrapolate the PEL disease state.

Although we have not described the functions of all the unique genes encoded by KSHV due 

to space restrictions, a brief description of these genes is listed in Table 2.
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6. Treatment of KS, PEL, and MCD

Treatment options for KS are based on disease severity, the KS subtype, and immune status. 

For relatively mild and limited KS, local treatment options such as topical alitretrinoin, 

surgical excision, radiation therapy, and intralesional chemotherapy (e.g. vinblastine) can be 

used to treat the symptoms. These local therapies do not prevent new KS lesions from 

developing. For more severe and aggressive KS, systemic chemotherapy with agents such as 

liposomal anthracyclines (doxorubicin and daunorubicin; first-line) and paclitaxel (second-

line) is usually the mainstay of treatment. Other chemotherapeutics include vinorelbine, 

interferon-α, and interleukin-12. Although the approaches mentioned above have some 

beneficial effects to the patients, they are not very effective, as they do not target specifically 

the agent causing the tumor. The mTOR inhibitor, rapamycin (Sirolimus) was tested against 

iatrogenic KS and was highly successful [149; 150]. In AIDS-KS patients, HAART is 

recommended to reduce the extent and size of KS lesions. HAART might also reduce the 

incidence of new KS in HIV-positive individuals. These beneficial effects are likely due to 

immune reconstitution. In addition to HAART, the tyrosine kinase inhibitor imatinib, and 

IL-12 also demonstrate some activities against AIDS-KS [151; 152].

PEL patients have very poor prognosis and have a median survival of only two to three 

months after diagnosis. As in the case of KS, a patient co-infected with HIV is likely to 

benefit from HAART [153]. Complete remission of PEL with HAART is seen occasionally 

[153; 154; 155]. On the other hand, conventional CHOP-like regimens (cyclophosphamide, 

doxorubicin, vincristine, and prednisone) did not improve survival compared to other HIV-

associated NHL [154]. For HIV-negative cases of PEL, patients may be given liposomal 

anthracycline with or without bortezomib (proteasome inhibitor) and prednisone. 

Bortezomib was reported to be efficacious in treating PEL cell lines when it was used alone 

or in combination with doxorubicin and Taxol [156]. Rapamycin has also shown promise in 

treating PEL cells in culture and in a xenograft model [157]. Although radiation therapy is 

rarely performed to treat PEL, it may be an option for patients who do not tolerate the above 

treatment options.

Treatment options for MCD include surgical excision, cytoreduction chemotherapy (CHOP 

or CVAD), radiation therapy, immune modulators such as steroids and interferon-α, 

thalidomide, monoclonal antibodies against IL-6 (atlizumab) and CD20 surface marker 

(rituximab), and inhibitors of KSHV viral replication (reviewed in [32; 158]). The patient 

responses to these therapeutic options are mixed and therefore, the establishment of 

treatment regimens requires more epidemiological data. As a general rule of thumb, 

chemotherapy is preferred for MCD with severe systemic symptoms; the viral replication 

inhibitors (especially ganciclovir), interferon-α, and anti-IL-6 and anti-CD20 monoclonal 

antibodies appear to be the more specific and promising candidates for treating MCD [158].

In conclusion, the current treatment strategies for KS, PEL, and MCD are still sub-optimal. 

While our understanding of KSHV biology and tumorigenesis has been increasing since the 

discovery of the virus, we are just beginning to translate knowledge from basic science 

research into more effective clinical management and therapies. We believe that the use of 

antiviral agents and small molecules that specifically target the signaling pathways of these 
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tumor cells are potentially more efficacious and have fewer side effects than conventional 

chemotherapy regimens. More case reports and randomized clinical trials are needed to 

advance and standardize treatments for KSHV-associated malignancies.
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Fig. 1. The KSHV genomic open reading frames (ORFs)
The arrows represent individuals ORFs and the dots represent the KSHV encoded 

microRNAs. ORFs unique to KSHV are labeled K1 through K15 and are indicated by black 

arrows. Alternative names mentioned in this review for some of these unique KSHV genes 

are in parentheses. Additional ORFs discussed in this review paper are also labeled. The 

ORFs common to rhadinoviruses are indicated by dark gray arrows, ORFs common to other 

gammaherpesviruses (e.g. EBV) are indicated by light gray arrows, and ORFs common to 

most herpesviruses are indicated by white arrows. TR denotes terminal repeats. The 

numbers on demarcated lines specify the approximate genome positions in Kb.
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Table 1

In situ detection of KSHV gene products in KS, PEL, and MCD

KS PEL MCD

LANA RNA & protein RNA & protein RNA & protein

vCyclin RNA RNA RNA

vFLIP RNA RNA RNA

Kaposin B RNA RNA & protein ?

vIRF-3/LANA-2 - RNA & protein RNA & protein*

vIL-6 RNA & protein* RNA & protein* RNA & protein*

K1 RNA & protein* RNA & protein* RNA & protein

vGPCR RNA RNA RNA

Rta/Orf50 RNA RNA ?

PF-8/Orf59 RNA & protein* RNA & protein* RNA & protein*

vIRF-1 RNA RNA RNA

Note:

*
represents a viral gene whose protein levels can be detected in only a small percentage of tumor cells.
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Table 2

Unique ORFs encoded by KSHV

ORF Alternative name Functions

K1 * VIP Transformation; B cell activation; inhibition of apoptosis; downregulation of surface B cell receptor 
(BCR); activation of PI3K/Akt/mTOR kinases

K2 * vIL-6 IL-6 homolog; B cell proliferation; autocrine/paracrine signaling

K3 MIR1 E3 ubiquitin ligase; immune evasion; inhibition of MHC class I and T cell killing

K4 vMIP-II; vMIP-1b; vCCL-2 MIP-I homolog; angiogenesis; CCR3 and CCR8 binding; chemoattraction of TH2 cells and 
monocytes (immune modulation)

K4.1 vMIP-III; vBCK; vCCL3 TARC/eotaxin homolog; induction of VEGF-A and angiogenesis; CCR4 binding; chemoattraction of 
TH2 cells (immune modulation)

K5 MIR2 E3 ubiquitin ligase; immune evasion; inhibition of MHC class I, B7, and ICAM expression

K6 vMIP-I; vMIP-1a; vCCL-1 MIP-I homolog; angiogenesis; CCR5 and CCR8 binding; chemoattraction of TH2 cells and 
monocytes

K7 Survivin; vIAP Inhibitor of apoptosis protein (IAP) homolog; inhibition of vGPCR expression and function

K8 K-bZIP An immediate-early gene that represses RTA transactivation activity and Rta induction of KSHV lytic 
cycle

K8.1 Viral glycoprotein (structural protein)

K9* vIRF-1 IRF homolog; Inhibition of type I interferon, p300, p53, and TGF-β; transformation

K10 vIRF-4 IRF homolog

K10.1
K10.5
K10.6

LANA-2 (K10.5); vIRF-3 IRF homolog; inhibition of type I interferon production and apoptosis (PKR- and caspase-3 
mediated); inhibition of p53 and NFκB; inhibition of Fas-mediated apoptosis via inhibition of CD95L 
surface expression

K11
K11.1
K11.5

vIRF-2 (K11.5) IRF homolog; inhibition of type I interferon and NFκB; inhibition of Fas-mediated apoptosis via 
inhibition of CD95L surface expression

K12* Kaposin Transformation (Kaposin A); cytokine and AU-rich mRNA stabilization by induction of p38 or MK2 
signaling (Kaposin B)

K13* vFLIP FLIP homolog; transactivator of NFκB; anti-apoptotic function; transformation

K14 vOx-2 Ox-2 (CD200) homolog; downregulation of myeloid cell activation; regulation of inflammatory 
cytokine production such as IL-1β, TNF-α, IL-8, IFN-γ and IL-6

K15 LAMP Activation of the intracellular signaling pathways (Ras/MAPK, NF-κB, and JNK/SAPK), leading to 
IL-6, IL-8, and Cox-2 induction. A chimeric protein consisting of the CD8 extracellular domain of 
CD8 and the K15 cytoplasmic domain could inhibit BCR signaling

Note: Due to the space restriction, only KSHV unique genes marked with an asterisk were discussed in more detail in the text.
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