
rsfs.royalsocietypublishing.org
Review
Cite this article: Murfee WL, Sweat RS,

Tsubota K, Mac Gabhann F, Khismatullin D,

Peirce SM. 2015 Applications of computational

models to better understand microvascular

remodelling: a focus on biomechanical

integration across scales. Interface Focus 5:

20140077.

http://dx.doi.org/10.1098/rsfs.2014.0077

One contribution of 11 to a theme issue

‘Multiscale modelling in biomechanics:

theoretical, computational and translational

challenges’.

Subject Areas:
biomedical engineering, computational biology

Keywords:
microcirculation, angiogenesis, agent-based

model, computational fluid dynamics,

hypertension, multiscale computational model

Author for correspondence:
Walter L. Murfee

e-mail: wmurfee@tulane.edu
& 2015 The Author(s) Published by the Royal Society. All rights reserved.
Applications of computational models to
better understand microvascular
remodelling: a focus on biomechanical
integration across scales

Walter L. Murfee1, Richard S. Sweat1, Ken-ichi Tsubota2, Feilim
Mac Gabhann3,4,5, Damir Khismatullin1 and Shayn M. Peirce6

1Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Energy Center, New Orleans,
LA 70118, USA
2Department of Mechanical Engineering, Chiba University, 1 – 33 Yayoi, Inage, Chiba 263 – 8522, Japan
3Department of Biomedical Engineering, 4Department of Materials Science and Engineering, and 5Institute for
Computational Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
6Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22903, USA

Microvascular network remodelling is a common denominator for multiple

pathologies and involves both angiogenesis, defined as the sprouting of new

capillaries, and network patterning associated with the organization and

connectivity of existing vessels. Much of what we know about microvascular

remodelling at the network, cellular and molecular scales has been derived

from reductionist biological experiments, yet what happens when the exper-

iments provide incomplete (or only qualitative) information? This review

will emphasize the value of applying computational approaches to advance

our understanding of the underlying mechanisms and effects of microvas-

cular remodelling. Examples of individual computational models applied

to each of the scales will highlight the potential of answering specific ques-

tions that cannot be answered using typical biological experimentation

alone. Looking into the future, we will also identify the needs and challenges

associated with integrating computational models across scales.
1. Introduction
The design of effective therapeutic strategies aimed at manipulating the micro-

circulation requires a better understanding of microvascular remodelling,

which involves both angiogenesis, defined as the sprouting of new capillaries,

and network patterning associated with the organization and connectivity of

existing vessels (figure 1). In multiple pathologies, such as cancer, proliferative

retinopathies and rheumatoid arthritis, blocking remodelling would be

beneficial. In others, such as myocardial infarction, stroke and hypertension,

promoting remodelling would be desirable. Development of these types of

therapies requires a better understanding of each subprocess involved in

microvascular remodelling and, just as important, knowledge of how each sub-

process is coordinated across a network. From tissue-level patterns and vessel

networks to multiple cell types and spatially patterned molecular cues, micro-

vascular remodelling integrates multiple components across different levels of

biological scale (figure 2). A key obstacle to advancing our understanding is

the inability to probe the specific component-level effects when biological

experiments fall short of providing the necessary spatial and temporal resol-

ution to measure multiple metrics over the time course of a response. So a

critical question emerges: How can we gain new information when our exper-

imental observations are often limited by noise and resolution? One answer is

computational models.

The objective of this article is to present examples of computational appli-

cations that have provided new insights at the network, vessel, cellular and
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Figure 1. Example of an adult rat mesenteric microvascular network before and after angiogenesis. Time-lapse comparison of images from the same network was
obtained using the rat mesentery culture model [1]. Asterisk (*) indicates regions of increased vessel density. Arrows indicate new capillary sprouts. The network-
level comparison exemplifies the spatial heterogeneity within a network and the need to investigate local environmental differences within a tissue during micro-
vascular remodelling. Scale bars, 200 mm.
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molecular levels for advancing our understanding of the under-

lying mechanisms and effects of microvascular remodelling.

By presenting different modelling examples together, a new

opportunity becomes obvious—the linking of computational

models together in order to span biological scales in a way that

is otherwise unachievable using experimental approaches

alone. Accordingly, we will also identify the challenges associ-

ated with multiscale modelling. In comparison with existing

reviews that extensively cover the full scope of modelling [2–5],

this article serves to give a snapshot of five important and very

different computational modelling approaches that have been

developed to answer questions that cannot be answered exper-

imentally. We submit that computational models can create

new information and can offer a quantitative interpretation of

the literature that guides new directions of research.
2. Multiscale components involved in
microvascular remodelling

Microvascular remodelling is a general term which is used to

describe an adaptation of the microcirculation at either the

network, cellular or even molecular level. Traditionally,

microvascular remodelling is delineated into three processes:

vasculogenesis, angiogenesis and arteriogenesis [6,7]. Vascu-

logenesis refers to the formation of blood vessels from

undifferentiated precursor cells. This process is most often

associated with vascular development during embryonic

development, yet recent work has suggested a potential

role for the recruitment of vascular precursor cells to either

endothelial or pericyte cell locations along neovessels in the

adult [8–11]. Angiogenesis is the sprouting of capillaries

from pre-existing vessels and involves endothelial cell inter-

actions with the local environment and other cell types,

including existing perivascular, circulating and tissue resi-

dent precursor cells [12]. The involvement of more than a

single cell type in angiogenesis is emphasized by the limited

efficacy of using single-molecule approaches in the treatment

of myocardial ischaemia [13,14] to promote functional

growth of new vessels. Finally, arteriogenesis is a related pro-

cess that encompasses pericyte recruitment to capillaries,

differentiation of pericytes into more mature smooth muscle

cells (SMCs) and vessel enlargement [15,16]. In a broad
sense, arteriogenesis can also include the subsequent

maintenance of arteriole versus venous identity.

Considering the three subprocesses of vasculogenesis, angio-

genesis and arteriogenesis, microvascular remodelling can be

thought of as involving a host of biological components and

processes: endothelial cells, pericytes, SMCs, precursor cells,

white blood cells (WBCs), red blood cells (RBCs), macrophages,

growth factor production, growth factor receptor–ligand binding,

intracellular signalling, cell contraction, mechanotransduction,

fluid dynamics, permeability, inflammation, genetic and epige-

netic gene regulation and a multitude of others, with the

functional targeting of each subprocess, cell or molecule

potentially representing a therapeutic strategy.

The complexity of the coordinated orchestra of subpro-

cesses is appreciated when one can observe the cumulative

effects of components at the network level. To exemplify

this point, let us consider the comparison of the same rat

mesenteric network before and after angiogenesis (figure 1).

The rat mesentery is a unique tissue that contains three-

dimensional networks within a 20–40 mm thick connective

tissue, thus enabling visualization of remodelling subpro-

cesses over different spatial locations within a network

(figure 2). The observation of new vessel sprouting from

specific vessels at discrete regions of a network highlights

the importance of understanding how local environments

influence network-level behaviour. For example, consider

that specific locations of WBC adhesion within different

vessel types can impact local haemodynamics at the vessel

level. The local haemodynamics can then influence flow pat-

terns at other locations across the network. The complexity of

microvascular remodelling can be further appreciated by con-

sidering the fate, function and roles of other cell types such as

macrophages, fibroblasts and circulating progenitor cells,

whose behaviours affect and are affected by the microvascu-

lar network. And we cannot neglect that multiple other

systems, such as the nervous and lymphatic systems, interact

with the vasculature during angiogenesis. Our ability to

make sense of how all of these components interact (net-

works, vessels, cells and molecules) requires us to

understand how they are spatially and temporally integrated

within a system and across systems. While this review will

fall short of providing a comprehensive platform for accom-

plishing this, we will describe specific questions motivated
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Figure 2. The complexity of microvascular remodelling spans multiple scales.
(a) An image of a perfused microvascular network post-angiogenesis. PECAM
labelling identifies all the vessels within the network and injected-dextran
labelling indicates that even the newest formed vessels are patent. Scale
bar, 200 mm. (b) A PECAM-positive capillary sprout perfused with dextran.
Scale bar, 10 mm. (c) Example of CD11b-positive monocytes/macrophages
along venules versus arterioles in an adult microvascular network. The differ-
ential adhesion of WBCs in vessel-specific locations further emphasizes the
importance of cell dynamics in vessel- and network-level haemodynamics.
Scale bar, 50 mm.

rsfs.royalsocietypublishing.org
Interface

Focus
5:20140077

3

by experimental observations at different scales across a

microvascular network (figure 3) in an attempt to introduce

the need for such integration. Undoubtedly, further investi-

gation of each subprocess and specific cell behaviours is

warranted, but it will be just as necessary to dynamically

integrate our learned understanding, and computational

modelling offers an attractive approach—if not the only

approach currently to do so.
3. Computational modelling examples
In this section, we summarize five different computational

modelling studies that span the components of the microcir-

culation (figure 4). In doing so, we will consider the
interrelationships between endothelial cell growth factor

receptor binding, blood cell biomechanics, flow through a

capillary sprout and whole network-level patterning. For

each example, we identify the question, physiological motiv-

ation, the modelling approach and the gained insights that

have come from modelling the biology using mathematical

and computational approaches. While our sampling from

the literature is incomplete and insufficient for portraying the

extensive role that computational modelling has played in

helping us to understand microvascular growth and remodel-

ling, the selection of examples we review here attempts to

represent the breadth of questions being addressed in different

subfields and showcases their interrelated importance.

3.1. Network level: do hypertensive microvascular
networks have increased resistance?

An advantage of computational models is the ability to isolate

the contributions of individual parameters to an overall

response. In this example, we will examine a case of microvas-

cular alterations during a pathological scenario—hypertension.

Hypertension, defined by increased blood pressure, has been

clinically linked to an increased risk of stroke, myocardial

infarction, heart failure, renal disease and mortality [17].

Furthermore, in animal models, hypertension has been associ-

ated with increased oxidative stress, greater numbers of

activated circulating leucocytes, elevated capillary flow resist-

ance, impaired selectin-mediated leucocyte adhesion and

widespread endothelial cell apoptosis [18–20]. A common

characteristic of hypertension is microvascular rarefaction,

defined as the anatomical loss of microvessels. Based on the

logical assumption that reduced vessel density correlates to a

reduced number of parallel resistance pathways, rarefaction is

often assumed to contribute to increased network resistance.

Yang & Murfee [21] identified that, in adult rat mesenteric net-

works harvested from spontaneously hypertensive rats, the

patterning alterations are more complex than just vessel loss.

Compared with normotensive controls, hypertensive networks

contained an increased number of arterial/venous connections,

which would serve to reduce network resistance by way of

low-resistance pathways from the high- to low-pressure sides

of the network. Thus, the effects of the hypertension-associated

patterning alterations, including both a decrease in the number

of vessels and an increase in arterial/venous connections,

remained unclear. In light of the experimental challenges of iso-

lating network pattern versus diameter or viscosity changes,

computational modelling proved to be a useful tool.

Based on segment lengths, branching locations and an

assumed pressure drop, resistance per network was calculated

using a simple segmental resistance model previously estab-

lished by the laboratories of Secomb and Pries to isolate

topological details (i.e. vessel patterning or organization) versus

geometrical details (i.e. vessel diameters and lengths) [22].

Segment nodal positions were identified across intact adult

hypertensive and normotensive networks, which were immuno-

histochemically labelled and imaged. Then input and output

pressures were assigned to the input arterioles and output

venules, respectively, and network and segmental flows were cal-

culated assuming a modified Poiseuille flow relationship. For

each segment, the apparent viscosity was updated to account

for changes in haematocrit in branching vessels based on empiri-

cal data reported by Pries and Secomb using intravital

microphotometric evaluation and optical density measurements



experimental observations computational models

Do hypertensive microvascular networks
have increased resistance?

Do endothelial cells experience shear stress
during capillary sprouting?

What is the role of red blood cell membrane
mechanics on deformation during blood flow?

What is the influence of white blood cell
deformability on adhesion to the endothelium?

How are microenvironmental growth factor
patterns sensed by endothelial cells?

PECAM

Figure 3. Consideration of experimental observations across intact microvascular networks motivates physiological questions at the network, vessel, cellular and
molecular level. This review article highlights a subset of these questions that are answered with the use of a computational model. The image shown was obtained
via PECAM labelling of an adult rat mesenteric network to identify blood and lymphatic vessels. An advantage of this tissue type is that it allows visualization down
to the single-cell level at different locations. The spatial heterogeneity and need for considering discrete locations within a network are exemplified by the structural
differences in vessel and cellular morphologies along arterioles, venules and capillaries. Scale bar, 200 mm.
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from the rat mesenteric microcirculation [23–25]. Satisfying the

conservation of mass at each node, the nodal pressures

and flows were determined. The total network resistance was

calculated by dividing the total pressure drop by the total flow

through the network.

The network resistances in the hypertensive and

normotensive networks were not significantly different. Inter-

estingly, only when the arterial/venous shunts were removed

from the hypertensive networks was a decrease observed. The

results from this study challenge the common paradigm that

microvascular patterning changes during hypertension cause

increased resistance and highlight the value of applying a

simple computational approach to isolate network-level par-

ameters to gain insights that would be highly challenging to

evaluate in vivo. Applications of similar models have also

proved useful for investigating network-level haemodynamic

changes associated with diabetes, exercise and multiple other

scenarios [25–29]. And, more recently, Secomb et al. [30] have

since extended their classical network-based model to include

essential parameters for angiogenesis, allowing for the analy-

sis of endothelial cell sprouting in response to specific growth

factors coupled to structural relations and biochemical stimuli.

An opportunity to build on this pioneering work is to include

local anatomical details that accurately predict vessel- and

cell-specific haemodynamics. And it goes without saying, an

opportunity with as much impact exists for integrating
vessel-level models based on different computational

approaches [31–33].

3.2. Vessel level: do endothelial cells experience shear
stress during capillary sprouting?

Haemodynamics, and in particular shear stress due to the

fluid viscous forces, affects endothelial cell function and

differentiation. Based on in vitro flow chamber experiments

largely motivated by atherosclerosis scenarios [34,35] and

in vivo animal models in which local fluid velocity within

individual vessels has been assumed to be increased [36–

39], evidence strongly supports that shear stress is a critical

regulator of many, if not all, of the endothelial cell dynamics

associated with angiogenesis. In recent years, microfluidic

angiogenic assays have more directly linked shear stress

stimuli to endothelial cell sprouting [40]. However, important

questions still remain: Do endothelial cells along a capillary

sprout experience a shear stress, and, if so, does the magni-

tude of shear stress differ depending on the location along

the sprouting cell?

These questions are difficult to answer experimentally

because of technical challenges associated with intravital

measurement of flow profiles within a sprout. Stapor et al.
[41] recently used a computational fluid dynamic approach

to estimate the shear stress distribution along a blind-ended
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Figure 4. Multiscale components of the microcirculation. Computational modelling applications at the network, vessel, cell and molecular levels provide valuable
insights for scenarios in which in vivo experimentation is limited. The differences in modelling theory represent the future challenge in their integration across scales.
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vessel. Before Stapor et al.’s work, computational/mathemat-

ical models had been used to investigate the effects of rigid

and elastic spheres in straight tubes and at bifurcations

[42–45], but these types of models had not been applied to

flow in a blind-ended capillary sprout.

Using a three-dimensional computational fluid dynamic

model and a finite volume method, velocity profiles and

wall shear stress distributions were determined along

blind-ended channels that sprouted off parent vessels.

Both the blind-ended and parent vessel geometries were

based on geometry measurements made from intact adult

microvascular networks. The shear stress and shear stress

gradients were simulated for three cases: (i) a non-per-

meable wall, (ii) a uniformly permeable wall, and (iii) a

non-permeable wall with open slots representative of endo-

thelial cell clefts. Shear stresses at the sprout entrance were

predicted to range from 8 to 10 dyne cm22 and stresses

decreased below 0.2 dyne cm22 (a value identified as

being a physiological threshold for endothelial responses

[46]) within the initial 10% of the sprout length. For two

cases, shear stresses within the sprout were elevated: at

the open slots, representative of interendothelial cell clefts,

the shear stress magnitude was 5.9 dyne cm22; and for

cases of longer sprouts, shear stress magnitudes remained

above 1 dyne cm22.

The computational results by Stapor et al. provide a first

estimation of shear stress magnitudes and emphasize the

value of applying similar approaches to estimating local

shear stress distributions due to transmural or interstitial

flows over endothelial cells. The application of compu-

tational fluid dynamic models offers a method to build

intuition that can then be applied to the reductionist in
vitro experiments and might give us a better appreciation

of what the values of shear stresses in those experiments

mean for the context of capillary sprouting. Consider the

paradigm of endothelial tip cells versus stalk cells along a

capillary sprout—a topic which has recently emerged at

the forefront of vascular biology research and consum-

mately been reviewed by others [47–49]. Tip cells are

non-proliferative and sense local chemical cues and guide

the sprout. Stalk cells are proliferative and in essence are

seen as the pushers along a sprout. But—can tip versus

stalk cell phenotypic differences be explained by shear stres-

ses? To answer this question, we must first know the shear

stress magnitudes that each cell type experiences, and the

work by Stapor et al. suggests that the answer depends on

sprout length and/or endothelial cell junction details.

And, maybe more importantly, consideration of the local

mechanical cues sensed by endothelial cells motivates the

future opportunity to couple computational fluid dynamic
models with other endothelial cell models, such as those

concerning tip cell selection [50].
3.3. Cell level: what is the role of red blood cell
membrane mechanics on deformation during
blood flow?

The estimation of shear stress along capillary sprouts is com-

plicated by including the effects of RBCs. Logically, RBC flow

by the entrance of a blind-ended sprout or even within a

sprout would impact local shear stress and shear stress gradi-

ent magnitudes. Indeed, Stapor et al. [41] suggested that RBC

flow within a host vessel resulted in local maximum magni-

tudes at the sprout entrance. RBC plugging of the sprout

served to shorten the effective sprout length and similarly

influenced magnitudes depending on the wall permeability

scenario. But, the study failed to realistically consider RBC

deformability and its effects on blood flow. For this question,

we have to move away from microvascular research and enter

the areas of biophysics and blood rheology—three research

areas that have not historically overlapped with one another.

A single RBC consists of an outer viscoelastic cell mem-

brane and an inner viscous fluid with a non-zero excess

surface area, and thus it deforms under the blood flow

where the mechanics of the cell membrane plays a major

role. Based on the observation of relatively large defor-

mations of RBCs in response to external forces such as

those applied by micropipette aspiration, viscous shear flow

and optical tweezers, the constitutive equations for the cell

membrane have been identified with a set of elastic constants.

Another major factor that could determine elastic defor-

mation of the membrane is the zero-stress configuration or

natural state. However, as deformations of RBC membranes

at the zero-stress configuration are relatively small and diffi-

cult to measure in biological experiments, determining the

relative contribution of this state requires computational

simulations.

An RBC can be modelled as a capsule, defined as a fluid

drop encapsulated by a surface membrane with the elastic

mechanics of the surface membrane broadly characterized

by in-plane shear and area dilatation deformations and out-

of-plane bending deformation. For the natural states of the

elastic membrane, two configurations have been commonly

assumed: a biconcave disc, which is the shape of a normal

RBC (i.e. discocyte), and a sphere, which is the shape of a reti-

culocyte (precursor of a mature RBC). Recently, Tsubota &

Wada [51] proposed intermediate shapes between a sphere

and biconcave discoid shape determined by linear geometri-

cal interpolation between the two shapes with the spatial
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non-uniformity parameter a for a model of the membrane’s

natural state with respect to in-plane shear deformation,

while the natural state with respect to out-of-plane bending

deformation was assumed to be a flat plane. Tsubota and

Wada demonstrated that, given an ideal tank-treading (TT)

motion under viscous shear flow of Reynold’s number � 1

(i.e. Stokes flow), an additional membrane elastic force gener-

ated due to the motion monotonically increases with

increasing a of the cell membrane. By using direct numerical

simulations with a particle method for a coupled problem

between cell membrane deformation and viscous fluid flow

[52], Tsubota & Wada [53] confirmed that transition between

TT and tumbling (T) motions under viscous shear flow

occurs when the additional elastic force during the TT

motion is compatible with the viscous fluid force. In addition,

Tsubota et al. [54] identified a critical fluid shear force at

which a transition between TT and T motions of an RBC

occurs in in vitro experiments by using a boundary element

method and assuming the experimentally measured elastic

moduli. Based on another simulation by Tsubota et al. [54],

the moderate non-uniformity of the membrane’s natural state

is also necessary to maintain a biconcave discoid shape of a

normal RBC at an equilibrium state in a stationary fluid, other-

wise an RBC takes a cupped shape of a diseased state (i.e.

stomatocyte) for a spherical natural state or more flattened dis-

coid shape for a biconcave discoid natural state (a ¼ 1). In

simulating the equilibrium shape mechanics, the membrane’s

bending rigidity at the transition of equilibrium shapes from

the biconcave disc to the cup is different by an order of magni-

tude, depending upon the type of bending model employed,

and thus a choice of bending models should be paid great

attention [55].

This focus on single RBC mechanics provides valuable

insight for understanding blood rheology in capillaries, pre-

capillary arterioles and post-capillary venules, where RBCs

move in a single-file line. However, blood also consists of

RBCs, WBCs and platelets, and the intercellular interactions

can be viewed as just as important for influencing local hae-

modynamics. For example, interactions between multiple

RBCs, RBCs and WBCs, and RBCs and platelets have sub-

stantial effects on blood rheology [52]. They are responsible

for the increased concentration of RBCs near the flow centre-

line and WBC and platelet margination (cell migration to

vessel wall margins) [56–61]. While blood cell dynamics

can be qualitatively observed experimentally, the mechanistic

contributions to cell mechanics or hydrodynamic interactions

remain difficult to evaluate. To this end, a number of compu-

tational models have recently been developed to simulate

WBC mechanics [62] and the interactions between RBCs

and WBCs in microvessels or microchannels [63–68]. These

models predict that the high deformability of RBCs is the

main reason why RBCs push out WBCs and platelets from

the centreline to the vessel walls.

3.4. Cell level: what is the influence of white blood cell
deformability on adhesion to the endothelium?

Given the importance of inflammation, macrophages and

circulating precursors to the different subprocesses of micro-

vascular remodelling, consideration of blood cell dynamics

also warrants additional discussion of WBC adhesion to the

endothelium. We know that the adhesion of single WBCs

serves to disturb blood flow, substantially increases flow
resistance in small vessels, and, of course, plays a critical

role in inflammation. Yet, just as in the case of needing com-

putational models to elucidate the influence of RBC

mechanics on deformability during flow, computational

models are needed to investigate the effects of WBC mech-

anics on the leucocyte adhesion cascade. To this end, a

number of computational models have been proposed to

simulate receptor-mediated rolling and adhesion of WBCs

to vascular endothelium. Most of them are rigid cell models

[64,69–72], applicable to study WBC rolling and adhesion

at low, subphysiological shear stresses. In order to more rea-

listically predict the influence of WBC mechanics on rolling

and adhesion, three-dimensional models of deformable

WBCs have been developed. In these models, a cell is treated

as a liquid capsule in which the bulk of the cell has the same

properties as the extracellular fluid and cell deformation is

controlled by the mechanical properties of its membrane or

cortical layer [73,74] or as a compound liquid drop with cor-

tical tension and bulk viscoelasticity of the nucleus and the

cytoplasm [75,76].

To understand how WBCs, as well as RBCs and even plate-

lets, contribute to microvascular remodelling, we need to

know the mechanical and adhesive properties of these cells

during their circulation in vivo [77]. As blood is a highly hetero-

geneous suspension of cells and there is a significant level of

heterogeneity in vascular endothelium, the measurements of

the properties of individual cells or a small group of cells

from intravital images or related in vivo data remain a big chal-

lenge. Computational models integrated with in vivo
experiments are one of the most promising ways to extract

the in vivo properties of blood cells. A recent achievement in

this area of research is the viscoelastic cell adhesion model

(VECAM), the first three-dimensional computational algor-

ithm for receptor-mediated deformable leucocyte rolling and

adhesion in shear flow that integrates the experimentally

tested rheological models of WBC cytoplasm and nucleus,

extension and tether pulling from WBC microvilli, cortical ten-

sion and stochastic receptor–ligand binding kinetics [78].

VECAM predicts the existence of the critical cytoplasmic

viscosity above which circulating WBCs cannot adhere to the

endothelium and shows that a decrease in the cytoplasmic

viscosity leads to a decrease in the rolling velocity, drag and

torque due to the formation of a large, flat area of WBC–endo-

thelium contact [78]. Insights such as these provide valuable

information for understanding why WBC and circulating

precursor cell trafficking to specific locations in a network

might be impaired when cell properties are altered in a given

pathological scenario.

3.5. Molecular level: how are microenvironmental
growth factor patterns sensed by endothelial cells?

The regulation of network patterning, capillary sprouting,

vessel diameter, vessel permeability and other microvascu-

lar remodelling dynamics is additionally finely tuned by a

complex set of growth factor interactions at the molecular

level. As an example of this complexity, we will examine

the vascular endothelial growth factor (VEGF) family,

members of which communicate a message of hypoxic dis-

tress from a parenchymal or stromal cell to the local

vasculature [5]. Once secreted by the hypoxic cell, these fac-

tors diffuse through the basement membranes and

extracellular matrix in the interstitial space, ultimately
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binding to receptor tyrosine kinases on the ablumenal sur-

face of an endothelial cell.

The complexities of VEGF include the following partial

list [79]. First, five VEGF family genes encode dozens of

splice isoforms, each with different affinity for the various

VEGF receptors. It is necessary to account for them all, as

this competition determines the downstream outcome.

Second, three genes encode receptor tyrosine kinases—the

VEGFRs—that bind the VEGF ligands; plus, two genes

encode isoform-specific co-receptors (the neuropilins). This

competition among receptors means that relative expression

of the receptors, which can be heterogeneous, is key to their

response. Third, binding to extracellular matrix proteogly-

cans can transiently immobilize and store VEGF. This alters

VEGF patterning, while immobilized VEGF can also bind

VEGF receptors and produce signalling that is different

from soluble VEGF. Fourth, VEGF receptors are present on

multiple cell types—not just the target endothelial cells, but

also stromal cells such as neurons, glia and SMCs, and par-

enchymal cells in certain tissues including many tumours.

These alternative sinks for VEGF provide a clearance path

that alters microgradients, while also providing survival sig-

nalling to the expressing cell. Fifth, soluble receptors can

sequester VEGF and increase cell-receptor-mediated clear-

ance without signalling; these diffusible sinks can also

modify local gradients of available VEGF and active

receptors.

Understanding the local microenvironment—in this case,

the local gradients of VEGF and sFlt1 near blood vessels—is

key to understanding what the cells ‘see’, which is to say,

what the cell can sense about its environment. Receptor lig-

ation and activation is the first step, and this is controlled

by local VEGF concentrations and patterns. But these

microgradients are not currently directly measurable using

experimental means; while some growth factor gradients

have been visualized in situ [80,81], these are monotonic gra-

dients over longer distances. Instead, we need computational

models to bridge this experimental gap. One approach is the

use of nonlinear partial differential equations to simulate the

local gradients of soluble and matrix-bound VEGF and sFlt1

in the interstitial space, and the gradients of ligand-bound,

activated VEGF receptors on blood vessels in the region of

interest [82–87]. The input data for these models include: a

detailed molecular interaction network; cell-type-specific

gene expression and secretion rates; cell-type-specific recep-

tor protein expression; and image-based microanatomy.

Simulations of VEGF gradients in skeletal muscle have

shown that gradients are present even at rest (due to hetero-

geneity in tissue structure) [82] and are accentuated by

exercise [83,84]. The simulations further showed that gradi-

ents were driven by receptor density, and this suggests an

alternative biomimetic method enhancing angiogenesis:

increasing receptor expression [85]. Zooming in on the micro-

environment surrounding sprouting vessels, simulations

further showed that the differences among VEGF isoforms

that contributed to the formation of their distinct gradients

were not those expected; in particular, clearance by non-

endothelial receptor expression was predicted to be the

primary mode of gradient formation [86]. In simulations of

vascular development in embryoid bodies, endothelial

secretion of soluble VEGF receptor-1 formed a gradient in

the opposite direction to VEGF, which decreased VEGFR acti-

vation but also altered the gradient of VEGFR activation on
the blood vessel surface [87]. These effects were shown to

be accentuated by the proximity of vessels to each other,

suggesting a possible mechanism for sprout divergence. Over-

all, these results emphasize the value of using a computational

modelling approach to gain insight into underlying molecular

mechanisms of microvascular remodelling that we cannot

observe experimentally and, perhaps more importantly, the

application of such in silico views offers possible explanations

for the specific cellular-, vessel- and network-level dynamics

which we can observe.

4. Integration of models across scales: future
needs and challenges

The five examples described in §3 have proved useful for pro-

viding new information, yet each is limited by its necessary

simplifying assumptions (as is the case for all computational

and mathematical models). The network-level model

example accounts for vessel-specific changes in haematocrit,

but does not account for the RBC membrane mechanics, the

presence of WBCs or transient microdomain changes due to

growth factor gradients. It also does not account for flow in

blind-ended sprouts, which, as the vessel-level example

demonstrates, could be substantial due to growth-factor-

mediated cell–cell junction adaptation and increased per-

meability. And, to really develop a comprehensive model of

a microvascular network, do we need to include the role of

the glycocalyx shedding [88,89], vascular network metab-

olism [90], platelet aggregation, vasoreactivity or other

dynamic events at different levels of scale (e.g. gene

expression)? Additional questions become apparent when

one reviews the different models together. Can the effects

of WBC or RBC deformation on flow through a vessel

impact tip cell recognition of local growth factor gradients?

Can vessel organization within a network influence the

location or extent of stalk cell proliferation? The answers to

these questions are likely to be ‘yes’. However, we lack

many of the tools that are necessary for answering these ques-

tions experimentally. Perhaps it is possible to leverage

computational modelling in order to integrate the necessary

complexity by linking models across spatial and temporal

scales. Models that integrate phenomena/mechanisms at

one level of scale can predict outcomes at higher levels of

scale, so intuitively it makes sense that it would be possible

to couple different models together to achieve multiscale

integration.

When we think about integrating models across scales, an

obvious issue is interscale connectivity, which can be pragma-

tically viewed as intermodel connectivity. In the face of this

challenge, the need for integration across spatial and temporal

scales has emerged as an emphasis for modelling microvascu-

lar remodelling [33], as well as other areas of research outside

the vascular system [91,92]. One promising platform is agent-

based modelling (ABM), in which discrete cells behave auton-

omously based on a set of rules. Because each set of rules can

be based on biological experiments or outputs from an

embedded computational model running either in parallel or

iteratively, this approach offers attractive flexibility and is

well equipped for linking, or coupling, models at different

levels of scale. For the rest of this section, we will focus on

ABM, yet we recognize that other modelling platforms based

on continuum approaches can prove just as useful in this

regard. As one example, Kapela et al. [93] suggest a paradigm
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for modelling vasoreactivity using continuum models based

on finite-element analysis to account for the spatial heterogen-

eity at each scale, from intracellular and cell membrane

dynamics to whole cells. In this article, we chose to focus on

ABM because it is particularly well suited for modelling emer-

gent phenomena, such as growth and remodelling of a tissue

or microvascular network [94].

ABM can be used to simulate the behaviours of individ-

ual cells, such as endothelial cells, SMCs, pericytes,

immune cells and stromal cells, as well as their interactions

with one another and with the tissue environment [95–99].

As a multi-cell modelling technique situated in-between the

scales that are of most interest to the small blood vessel

field (nm through mm), ABM has been positioned as a

linker that can bridge modelling approaches focused on mol-

ecular interactions with modelling approaches that deal with

the tissue-level scale [100,101]. The earliest of these multi-

scale modelling attempts are being used to study how key

molecular signalling pathways in sprouting angiogenesis,

such as VEGF and NOTCH-Delta-like ligand-4 (DLL-4), inter-

act to induce endothelial cell behaviours that lead to new

vessel formation [94,102,103].

Coupling ABM with other modelling approaches to form a

truly unified multiscale computational model poses an

additional unique set of challenges. Overcoming these

challenges requires both conceptual and computational inno-

vations in model building, evaluation and validation. The

logistics of coupling models requires critical decisions about

which inputs to and outputs from each model can (or

should) be passed back and forth to the other and how this

sharing is managed. Java ‘umbrella’ programs, and more

recently Matlab ‘interfacing’ programs, have been developed

to orchestrate the communication of data between agent-

based models and other models [98,104,105]. In passing

information back and forth, it is essential that the values and

units of shared variables be consistent between the ABM

and the modelling approach with which it is coupled. How-

ever, this is made challenging by the fact that different data

types are typically used to parametrize the two types of

models, so internal congruency is not necessarily a given.

Hence, it may be necessary to modify the parameters within

one or both models to ensure congruency between them

[101]. When there is a mismatch in spatial scales between the

ABM and the other modelling approach with which it is

coupled, as is likely to be the case when constructing a

multiscale model, each model will represent the biology with

a different degree of granularity. This can further complicate

the sharing of information between the models because it

may require sampling or averaging the information in the

fine-grained model in order to translate it appropriately to

the coarse-grained model. And, vice versa, when passing

information from the coarse-grained model back to the fine-

grained model, there will need to be a strategy for partitioning

the information to a finer scale. Another important consider-

ation is the frequency with which information is shared, or

passed back and forth, and this is likely to have a considerable

effect on computation time. This challenge can be accentuated

if the ABM is stochastic (i.e. incorporates a degree of random-

ness, which is often the case), and multiple simulation runs are

required to generate a distribution of outputs for a given

parameter set. Strategies to parallelize the multiscale compu-

tational model, or at least the ABM simulation runs, can

often be helpful in reducing overall computation time.
Evaluating models poses even more challenges. Sensi-

tivity analyses are typically used to explore how altering

the parameters, alone or in combination, affects the outputs

of the model. However, for a multiscale model that involves

ABM coupled with another modelling approach, conducting

even a one-dimensional sensitivity analysis can become

unwieldy. Furthermore, a multiscale model will inherently

have outputs at many different scales, and which parameters

to vary and which outputs to measure while doing so may

not be obvious. There may be additional confounding

issues when considering that the units of the parameters

we wish to vary at the respective scales may not be compati-

ble, and we may not know whether we are using comparable

levels of perturbation. One approach to help deal with this is

to calculate a sensitivity coefficient, S, in which the size of the

parameter change, DP, is normalized to the initial parameter

value P0. If we also wish to compare different outputs with

one another, then we may want to normalize by the original

output metric Y0. This yields a normalized sensitivity coeffi-

cient that allows comparison across both changes in

parameters and measured outputs

S ¼ DY
DP

P0

Y0
¼ Y1 � Y0

P1 � P0

P0

Y0
:

The resulting normalized sensitivity coefficient can be

interpreted as follows: if S ¼ 1, this indicates a 1 : 1 relation-

ship between the change in the parameter and the change

in the output metric; if S , 1 or S . 1, this indicates lesser

or greater sensitivity of the model output to a change in

that parameter, respectively. As most models of biology are

nonlinear, a change in the level of a given parameter is unli-

kely to have a linear effect on the output. For example, a 50%

increase in a particular model parameter will not necessarily

have twice the effect on the output that a 25% parameter

increase would have. Therefore, it is good practice to calculate

sensitivity coefficients for several relevant parameter pertur-

bation levels to identify nonlinearities in the model. In the

cases of nonlinear computational models with multiple

unknowns, it might be necessary to perform validation based

on experimental data using multiple nonlinear regression analy-

sis. From sensitivity studies, a vector that includes all input

parameters can be identified. Using this vector, we can calculate

the best-fit values at which the cost function is minimal. This

optimization problem can then be solved with a number of

algorithms, such as the Levenberg–Marquart method or

random search algorithms [106].

To date, there are no formalized strategies for validating

multiscale computational models. The current best practices

in model validation, regardless of scale, rely on comparing

model predictions with independent experimental results. If

there is a good match between model prediction and actual

data, we conclude that the computational model is ‘valid’.

What constitutes a ‘good match’ may be a qualitative judge-

ment or a quantitative assessment backed by statistical

analysis—for example, that the predicted data fall within

the 95% confidence interval of the actual data (or vice

versa). Whether or not it is sufficient to compare a multi-

scale model’s predictions with independent data at one

level of scale has not been determined, but it is likely that

validation will be required at multiple levels of scale,

especially if important predictions are made at different

levels of scale. While the issues of validation remain to be
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debated, striving for model validation—the act of seeing how

a model’s output compares with an experimental measure-

ment—is an inherently useful endeavour. When a model

falls short of perfectly matching the prediction, we should

iterate, refine and try again. That is when important learning

happens. And when a model pushes the boundaries and tries

to predict something truly new, empirical data against which

to compare a model’s predictions may not exist. Model vali-

dation in this case might be impossible. But, even without

validation, models can still be useful—particularly in

suggesting new experiments to perform and new hypotheses

to pursue. This cycle of model refinement and attempted vali-

dation can be particularly useful in leveraging a model’s

ability to suggest new mechanisms that have not yet been

identified or interactions that are currently unknown.
s
5:20140077
5. Summary
Microvascular remodelling requires the dynamic interplay

between molecular signalling, various cell behaviours and

tissue-level changes that feedback on one another. The

focus of this review was to highlight how different biomecha-

nical dynamics studied at one scale can influence behaviour

at another scale. As high-quality and high-throughput bio-

logical data at multiple different levels of spatial scale

(molecular through tissue) become increasingly available,

we are inclined to try to link these data together in order to

define the cause-and-effect biological mechanisms that span

across spatial scales, and with even greater quantitative

detail. Doing so provides an opportunity to probe, for

example, how receptor–ligand interactions in the membrane

of one endothelial cell impact the migratory behaviours of a

neighbouring cell, and, ultimately, whether a new capillary

sprout at a specific location within a network will experience

shear stress. Similarly, to understand how the branching of a

heterogeneous microvascular network affects blood flow and
the recruitment of circulating monocytes that coordinate

the remodelling of an arteriole through a panoply of cytokine

and growth factor secretion requires integration of cause-and-

effect relationships across scales. Because these relationships

are complex, dynamic and spatially heterogeneous—and

usually impossible to assess in vivo using the currently avail-

able experimental tools—it becomes useful (if not essential)

to employ computational modelling approaches that inte-

grate information across spatial and temporal scales. So

what can we do when faced with the obstacle of biological

experiments falling short of providing specific, mechanistic

and/or quantitative answers? As highlighted by the five

examples in this article, valuable information can be gained

through the use of computational models, yet a critical ques-

tion becomes—how can the models be integrated to make the

computational space look like what we see under the micro-

scope? While approaches, such as ABM, provide platforms

for the necessary integration, caution should be applied to

each modelling application to evaluate the required threshold

of complexity.

Multiscale computational modelling of microvascular

remodelling, or any other complex biological process for

that matter, is a new frontier. While the challenges posed to

model construction, evaluation, validation and dissemination

are only beginning to be identified and addressed, recog-

nition of the need to integrate different types of models

across scales represents an exciting opportunity for the

future.

Acknowledgements. We thank David C. Sloas for his help with preparing
the figures.

Funding statement. This work was supported by the Tulane Center for
Aging and NIH 5-P20GM103629–02 to W.L.M.; JSPS Grant-in-Aid
for Scientific Research 25630046 to K.T.; American Heart Association
12BGIA12060154, Sloan Research Fellowship and NIH R01HL101200
to F.M.G.; Louisiana Board of Regents LEQSF(2011–2014)-RD-A-24
and National Science Foundation 13012861 to D.K.; NIH EY022063
and NIH HL082838 to S.M.P.
References
1. Stapor PC, Azimi MS, Ahsan T, Murfee WL. 2013 An
angiogenesis model for investigating multicellular
interactions across intact microvascular networks.
Am. J. Physiol. Heart Circ. Physiol. 304, H235 –
H245. (doi:10.1152/ajpheart.00552.2012)

2. Peirce SM, Mac Gabhann F, Bautch VL. 2012
Integration of experimental and computational
approaches to sprouting angiogenesis. Curr. Opin.
Hematol. 19, 184 – 191. (doi:10.1097/MOH.
0b013e3283523ea6)

3. Peirce SM. 2008 Computational and mathematical
modeling of angiogenesis. Microcirculation 15,
739 – 751. (doi:10.1080/10739680802220331)

4. Walpole J, Papin JA, Peirce SM. 2013 Multiscale
computational models of complex biological
systems. Annu. Rev. Biomed. Eng. 15, 137 – 154.
(doi:10.1146/annurev-bioeng-071811-150104)

5. Logsdon EA, Finley SD, Popel AS, Mac Gabhann F.
2014 A systems biology view of blood vessel growth
and remodelling. J. Cell. Mol. Med. 18, 1491 – 1508.
(doi:10.1111/jcmm.12164)
6. Peirce SM, Skalak TC. 2003 Microvascular
remodeling: a complex continuum spanning
angiogenesis to arteriogenesis. Microcirculation 10,
99 – 111. (doi:10.1038/sj.mn.7800172)

7. Carmeliet P. 2004 Manipulating angiogenesis in
medicine. J. Intern. Med. 255, 538 – 561. (doi:10.
1111/j.1365-2796.2003.01297.x)

8. Carmeliet P. 2005 Angiogenesis in life, disease and
medicine. Nature 438, 932 – 936. (doi:10.1038/
nature04478)

9. Asahara T, Murohara T, Sullivan A, Silver M, van der
Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM.
1997 Isolation of putative progenitor endothelial cells
for angiogenesis. Science 275, 964 – 967. (doi:10.
1126/science.275.5302.964)

10. Lyden D et al. 2001 Impaired recruitment of bone-
marrow-derived endothelial and hematopoietic
precursor cells blocks tumor angiogenesis and growth.
Nat. Med. 7, 1194 – 1201. (doi:10.1038/nm1101-1194)

11. Majka SM, Jackson KA, Kienstra KA, Majesky MW,
Goodell MA, Hirschi KK. 2003 Distinct progenitor
populations in skeletal muscle are bone marrow
derived and exhibit different cell fates during
vascular regeneration. J. Clin. Invest. 111, 71 – 79.
(doi:10.1172/JCI16157)

12. Clark ER, Clark EL. 1940 Microscopic observations on
the extra-endothelial cells of living mammalian
blood vessels. Am. J. Anat. 66, 1 – 49. (10.1002/aja.
1000660102)

13. Henry TD et al. 2003 The VIVA trial: vascular
endothelial growth factor in ischemia for vascular
angiogenesis. Circulation 107, 1359 – 1365. (doi:10.
1161/01.CIR.0000061911.47710.8A)

14. Simons M et al. 2002 Pharmacological treatment of
coronary artery disease with recombinant fibroblast
growth factor-2: double-blind, randomized,
controlled clinical trial. Circulation 105, 788 – 793.
(doi:10.1161/hc0802.104407)

15. Heil M, Schaper W. 2004 Influence of mechanical,
cellular, and molecular factors on collateral artery
growth (arteriogenesis). Circ. Res. 95, 449 – 458.
(doi:10.1161/01.RES.0000141145.78900.44)

http://dx.doi.org/10.1152/ajpheart.00552.2012
http://dx.doi.org/10.1097/MOH.0b013e3283523ea6
http://dx.doi.org/10.1097/MOH.0b013e3283523ea6
http://dx.doi.org/10.1080/10739680802220331
http://dx.doi.org/10.1146/annurev-bioeng-071811-150104
http://dx.doi.org/10.1111/jcmm.12164
http://dx.doi.org/10.1038/sj.mn.7800172
http://dx.doi.org/10.1111/j.1365-2796.2003.01297.x
http://dx.doi.org/10.1111/j.1365-2796.2003.01297.x
http://dx.doi.org/10.1038/nature04478
http://dx.doi.org/10.1038/nature04478
http://dx.doi.org/10.1126/science.275.5302.964
http://dx.doi.org/10.1126/science.275.5302.964
http://dx.doi.org/10.1038/nm1101-1194
http://dx.doi.org/10.1172/JCI16157
http://dx.doi.org/10.1002/aja.1000660102
http://dx.doi.org/10.1002/aja.1000660102
http://dx.doi.org/10.1161/01.CIR.0000061911.47710.8A
http://dx.doi.org/10.1161/01.CIR.0000061911.47710.8A
http://dx.doi.org/10.1161/hc0802.104407
http://dx.doi.org/10.1161/01.RES.0000141145.78900.44


rsfs.royalsocietypublishing.org
Interface

Focus
5:20140077

10
16. Mac Gabhann F, Peirce SM. 2010 Collateral capillary
arterialization following arteriolar ligation in murine
skeletal muscle. Microcirculation 17, 333 – 347.
(doi:10.1111/j.1549-8719.2010.00034.x)

17. Carretero OA, Oparil S. 2000 Essential hypertension.
Part I: definition and etiology. Circulation 101,
329 – 335. (doi:10.1161/01.CIR.101.3.329)

18. Fukuda S, Yasu T, Kobayashi N, Ikeda N, Schmid-
Schonbein GW. 2004 Contribution of fluid shear
response in leukocytes to hemodynamic resistance in
the spontaneously hypertensive rat. Circ. Res. 95,
100 – 108. (doi:10.1161/01.RES.0000133677.77465.38)

19. Suematsu M, Suzuki H, Delano FA, Schmid-
Schonbein GW. 2002 The inflammatory aspect of
the microcirculation in hypertension: oxidative
stress, leukocytes/endothelial interaction, apoptosis.
Microcirculation 9, 259 – 276. (doi:10.1038/sj.mn.
7800141)

20. Suzuki H, Schmid-Schonbein GW, Suematsu M,
DeLano FA, Forrest MJ, Miyasaka M, Zweifach BW.
1994 Impaired leukocyte – endothelial cell
interaction in spontaneously hypertensive rats.
Hypertension 24, 719 – 727. (doi:10.1161/01.HYP.24.
6.719)

21. Yang M, Murfee WL. 2012 The effect of
microvascular pattern alterations on network
resistance in spontaneously hypertensive rats. Med.
Biol. Eng. Comput. 50, 585 – 593. (doi:10.1007/
s11517-012-0912-x)

22. Pries AR, Secomb TW, Gaehtgens P. 1996
Relationship between structural and hemodynamic
heterogeneity in microvascular networks.
Am. J. Physiol. 270, H545 – H553.

23. Secomb TW, Pries AR, Gaehtgens P, Gross JF. 1989
Theoretical and experimental analysis of hematocrit
distribution in microcirculatory networks. In
Microvascular mechanics: hemodynamics of systemic
and pulmonary microcirculation (eds JS Lee,
TC Skalak), pp. 39 – 49. New York, NY: Springer.

24. Pries AR, Kanzow G, Gaehtgens P. 1983
Microphotometric determination of hematocrit in
small vessels. Am. J. Physiol. 245, H167 – H177.

25. Pries AR, Secomb TW, Gaehtgens P. 1998 Structural
adaptation and stability of microvascular networks:
theory and simulations. Am. J. Physiol. 275, H349 –
H360.

26. Pries AR, Reglin B, Secomb TW. 2005 Remodeling of
blood vessels: responses of diameter and wall
thickness to hemodynamic and metabolic stimuli.
Hypertension 46, 725 – 731. (doi:10.1161/01.HYP.
0000184428.16429.be)

27. Pries AR, Secomb TW, Gessner T, Sperandio MB,
Gross JF, Gaehtgens P. 1994 Resistance to blood
flow in microvessels in vivo. Circ. Res. 75, 904 – 915.
(doi:10.1161/01.RES.75.5.904)

28. Binder KW, Murfee WL, Song J, Laughlin MH, Price
RJ. 2007 Computational network model prediction
of hemodynamic alterations due to arteriolar
remodeling in interval sprint trained skeletal
muscle. Microcirculation 14, 181 – 192. (doi:10.
1080/10739680601139237)

29. Benedict KF, Coffin GS, Barrett EJ, Skalak TC. 2011
Hemodynamic systems analysis of capillary network
remodeling during the progression of type 2
diabetes. Microcirculation 18, 63 – 73. (doi:10.1111/
j.1549-8719.2010.00069.x)

30. Secomb TW, Alberding JP, Hsu R, Dewhirst MW,
Pries AR. 2013 Angiogenesis: an adaptive dynamic
biological patterning problem. PLoS Comput. Biol. 9,
e1002983. (doi:10.1371/journal.pcbi.1002983)

31. Smith NP, Pullan AJ, Hunter PJ. 2002 An
anatomically based model of transient coronary
blood flow in the heart. SIAM J. Appl. Math. 62,
990 – 1018. (doi:10.1137/S0036139999355199)

32. Tong S, Yuan F. 2001 Numerical simulations
of angiogenesis in the cornea. Microvasc. Res. 61,
14 – 27. (doi:10.1006/mvre.2000.2282)

33. VanBavel E, Bakker EN, Pistea A, Sorop O, Spaan JA.
2006 Mechanics of microvascular remodeling. Clin.
Hemorheol. Microcirc. 34, 35 – 41.

34. Davies PF. 1995 Flow-mediated endothelial
mechanotransduction. Physiol. Rev. 75, 519 – 560.

35. Skalak TC, Price RJ. 1996 The role of mechanical
stresses in microvascular remodeling.
Microcirculation 3, 143 – 165. (doi:10.3109/
10739689609148284)

36. Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K,
Kamiya A. 1997 Effects of shear stress on wound-
healing angiogenesis in the rabbit ear chamber.
J. Surg. Res. 72, 29 – 35. (doi:10.1006/jsre.1997.
5170)

37. Milkiewicz M, Brown MD, Egginton S, Hudlicka O.
2001 Association between shear stress,
angiogenesis, and VEGF in skeletal muscles in vivo.
Microcirculation 8, 229 – 241. (doi:10.1038/sj/mn/
7800074)

38. Nasu R, Kimura H, Akagi K, Murata T, Tanaka Y.
1999 Blood flow influences vascular growth during
tumour angiogenesis. Br. J. Cancer 79, 780 – 786.
(doi:10.1038/sj.bjc.6690125)

39. Zhou A, Egginton S, Hudlicka O, Brown MD. 1998
Internal division of capillaries in rat skeletal muscle
in response to chronic vasodilator treatment with
alpha1-antagonist prazosin. Cell Tissue Res. 293,
293 – 303. (doi:10.1007/s004410051121)

40. Song JW, Munn LL. 2011 Fluid forces control
endothelial sprouting. Proc. Natl Acad. Sci. USA 108,
15 342 – 15 347. (doi:10.1073/pnas.1105316108)

41. Stapor PC, Wang W, Murfee WL, Khismatullin DB.
2011 The distribution of fluid shear stresses in
capillary sprouts. Cardiovasc. Eng. Technol. 2,
124 – 136. (doi:10.1007/s13239-011-0041-y)

42. Sugihara-Seki M, Skalak R. 1988 Numerical study of
asymmetric flows of red blood cells in capillaries.
Microvasc. Res. 36, 64 – 74. (doi:10.1016/0026-
2862(88)90039-8)

43. Tözeren H, Skalak R. 1978 The steady flow of closely
fitting incompressible elastic spheres in a tube.
J. Fluid Mech. 87, 1 – 16. (doi:10.1017/
S002211207800289X)

44. Wang H, Skalak R. 1969 Viscous flow in a cylindrical
tube containing a line of spherical particles. J. Fluid
Mech. 38, 75 – 96. (doi:10.1017/S0022112069
00005X)

45. Barber JO, Alberding JP, Restrepo JM, Secomb TW.
2008 Simulated two-dimensional red blood cell
motion, deformation, and partitioning in
microvessel bifurcations. Ann. Biomed. Eng. 36,
1690 – 1698. (doi:10.1007/s10439-008-9546-4)

46. Cooke JP, Rossitch Jr E, Andon NA, Loscalzo J, Dzau
VJ. 1991 Flow activates an endothelial potassium
channel to release an endogenous nitrovasodilator.
J. Clin. Invest. 88, 1663 – 1671. (doi:10.1172/
JCI115481)

47. Eichmann A, Le Noble F, Autiero M, Carmeliet P.
2005 Guidance of vascular and neural network
formation. Curr. Opin. Neurobiol. 15, 108 – 115.
(doi:10.1016/j.conb.2005.01.008)

48. Adams RH, Eichmann A. 2010 Axon guidance
molecules in vascular patterning. Cold Spring Harb.
Perspect. Biol. 2, a001875. (doi:10.1101/cshperspect.
a001875)

49. Wacker A, Gerhardt H. 2011 Endothelial
development taking shape. Curr. Opin. Cell Biol. 23,
676 – 685. (doi:10.1016/j.ceb.2011.10.002)

50. Bentley K, Gerhardt H, Bates PA. 2008 Agent-based
simulation of notch-mediated tip cell selection in
angiogenic sprout initialisation. J. Theor. Biol. 250,
25 – 36. (doi:10.1016/j.jtbi.2007.09.015)

51. Tsubota K, Wada S. 2010 Elastic force of red blood
cell membrane during tank-treading motion:
consideration of the membrane’s natural state.
Int. J. Mech. Sci. 52, 356 – 364. (doi:10.1016/j.
ijmecsci.2009.10.007)

52. Tsubota K, Wada S, Yamaguchi T. 2006 Particle
method for computer simulation of red blood cell
motion in blood flow. Comput. Methods Programs
Biomed. 83, 139 – 146. (doi:10.1016/j.cmpb.2006.
06.005)

53. Tsubota K, Wada S. 2010 Effect of the natural state
of an elastic cellular membrane on tank-treading
and tumbling motions of a single red blood cell.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81,
011910. (doi:10.1103/PhysRevE.81.011910)

54. Tsubota K, Wada S, Liu H. 2014 Elastic behavior of a
red blood cell with the membrane’s nonuniform
natural state: equilibrium shape, motion transition
under shear flow, and elongation during tank-
treading motion. Biomech. Model. Mechanobiol 13,
735 – 746. (doi:10.1007/s10237-013-0530-z)

55. Tsubota K. 2014 Short note on the bending models
for a membrane in capsule mechanics: comparison
between continuum and discrete models. J. Comput.
Phys. 277, 320 – 328. (doi:10.1016/j.jcp.2014.08.
007)

56. Schmid-Schonbein GW, Skalak R, Usami S, Chien S.
1980 Cell distribution in capillary networks.
Microvasc. Res. 19, 18 – 44. (doi:10.1016/0026-
2862(80)90082-5)

57. Schmid-Schonbein H, Born GV, Richardson PD,
Cusack N, Rieger H, Forst R, Rohling-Winkel I,
Blasberg P, Wehmeyer A. 1981 Rheology of
thrombotic processes in flow: the interaction of
erythrocytes and thrombocytes subjected to high
flow forces. Biorheology 18, 415 – 444.

58. Goldsmith HL, Spain S. 1984 Margination of
leukocytes in blood flow through small tubes.
Microvasc. Res. 27, 204 – 222. (doi:10.1016/0026-
2862(84)90054-2)

http://dx.doi.org/10.1111/j.1549-8719.2010.00034.x
http://dx.doi.org/10.1161/01.CIR.101.3.329
http://dx.doi.org/10.1161/01.RES.0000133677.77465.38
http://dx.doi.org/10.1038/sj.mn.7800141
http://dx.doi.org/10.1038/sj.mn.7800141
http://dx.doi.org/10.1161/01.HYP.24.6.719
http://dx.doi.org/10.1161/01.HYP.24.6.719
http://dx.doi.org/10.1007/s11517-012-0912-x
http://dx.doi.org/10.1007/s11517-012-0912-x
http://dx.doi.org/10.1161/01.HYP.0000184428.16429.be
http://dx.doi.org/10.1161/01.HYP.0000184428.16429.be
http://dx.doi.org/10.1161/01.RES.75.5.904
http://dx.doi.org/10.1080/10739680601139237
http://dx.doi.org/10.1080/10739680601139237
http://dx.doi.org/10.1111/j.1549-8719.2010.00069.x
http://dx.doi.org/10.1111/j.1549-8719.2010.00069.x
http://dx.doi.org/10.1371/journal.pcbi.1002983
http://dx.doi.org/10.1137/S0036139999355199
http://dx.doi.org/10.1006/mvre.2000.2282
http://dx.doi.org/10.3109/10739689609148284
http://dx.doi.org/10.3109/10739689609148284
http://dx.doi.org/10.1006/jsre.1997.5170
http://dx.doi.org/10.1006/jsre.1997.5170
http://dx.doi.org/10.1038/sj/mn/7800074
http://dx.doi.org/10.1038/sj/mn/7800074
http://dx.doi.org/10.1038/sj.bjc.6690125
http://dx.doi.org/10.1007/s004410051121
http://dx.doi.org/10.1073/pnas.1105316108
http://dx.doi.org/10.1007/s13239-011-0041-y
http://dx.doi.org/10.1016/0026-2862(88)90039-8
http://dx.doi.org/10.1016/0026-2862(88)90039-8
http://dx.doi.org/10.1017/S002211207800289X
http://dx.doi.org/10.1017/S002211207800289X
http://dx.doi.org/10.1017/S002211206900005X
http://dx.doi.org/10.1017/S002211206900005X
http://dx.doi.org/10.1007/s10439-008-9546-4
http://dx.doi.org/10.1172/JCI115481
http://dx.doi.org/10.1172/JCI115481
http://dx.doi.org/10.1016/j.conb.2005.01.008
http://dx.doi.org/10.1101/cshperspect.a001875
http://dx.doi.org/10.1101/cshperspect.a001875
http://dx.doi.org/10.1016/j.ceb.2011.10.002
http://dx.doi.org/10.1016/j.jtbi.2007.09.015
http://dx.doi.org/10.1016/j.ijmecsci.2009.10.007
http://dx.doi.org/10.1016/j.ijmecsci.2009.10.007
http://dx.doi.org/10.1016/j.cmpb.2006.06.005
http://dx.doi.org/10.1016/j.cmpb.2006.06.005
http://dx.doi.org/10.1103/PhysRevE.81.011910
http://dx.doi.org/10.1007/s10237-013-0530-z
http://dx.doi.org/10.1016/j.jcp.2014.08.007
http://dx.doi.org/10.1016/j.jcp.2014.08.007
http://dx.doi.org/10.1016/0026-2862(80)90082-5
http://dx.doi.org/10.1016/0026-2862(80)90082-5
http://dx.doi.org/10.1016/0026-2862(84)90054-2
http://dx.doi.org/10.1016/0026-2862(84)90054-2


rsfs.royalsocietypublishing.org
Interface

Focus
5:20140077

11
59. Munn LL, Melder RJ, Jain RK. 1996 Role of
erythrocytes in leukocyte – endothelial interactions:
mathematical model and experimental validation.
Biophys. J. 71, 466 – 478. (doi:10.1016/S0006-
3495(96)79248-2)

60. Pearson MJ, Lipowsky HH. 2000 Influence of
erythrocyte aggregation on leukocyte margination
in postcapillary venules of rat mesentery.
Am. J. Physiol. Heart Circ. Physiol. 279, H1460 –
H1471.

61. Fedosov DA, Fornleitner J, Gompper G. 2012
Margination of white blood cells in microcapillary
flow. Phys. Rev. Lett. 108, 028104. (doi:10.1103/
PhysRevLett.108.028104)

62. Miyoshi H, Tsubota K, Hoyano T, Adachi T, Liu H.
2013 Three-dimensional modulation of cortical
plasticity during pseudopodial protrusion of mouse
leukocytes. Biochem. Biophys. Res. Commun. 438,
594 – 599. (doi:10.1016/j.bbrc.2013.08.010)

63. Wang W, Diacovo TG, Chen J, Freund JB, King MR.
2013 Simulation of platelet, thrombus and
erythrocyte hydrodynamic interactions in a 3D
arteriole with in vivo comparison. PLoS ONE 8,
e76949. (doi:10.1371/journal.pone.0076949)

64. Sun C, Migliorini C, Munn LL. 2003 Red blood cells
initiate leukocyte rolling in postcapillary expansions:
a lattice Boltzmann analysis. Biophys. J. 85,
208 – 222. (doi:10.1016/S0006-3495(03)74467-1)

65. Dupin MM, Halliday I, Care CM, Alboul L, Munn LL.
2007 Modeling the flow of dense suspensions of
deformable particles in three dimensions. Phys. Rev.
E Stat. Nonlin. Soft Matter Phys. 75, 066707.
(doi:10.1103/PhysRevE.75.066707)

66. MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK.
2009 Simulating deformable particle suspensions
using a coupled lattice-Boltzmann and finite-
element method. J. Fluid Mech. 618, 13 – 39.
(doi:10.1017/S0022112008004011)

67. Pan T, Shi L, Glowinski R. 2010 A DLM/FD/IB
method for simulating cell/cell and cell/particle
interaction in microchannels. Chin. Ann. Math. Ser. B
31, 975 – 990. (doi:10.1007/s11401-010-0609-0)

68. Zhao H, Shaqfeh ES. 2011 Shear-induced platelet
margination in a microchannel. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 83, 061924. (doi:10.1103/
PhysRevE.83.061924)

69. Hammer DA, Apte SM. 1992 Simulation of cell
rolling and adhesion on surfaces in shear flow:
general results and analysis of selectin-mediated
neutrophil adhesion. Biophys. J. 63, 35 – 57. (doi:10.
1016/S0006-3495(92)81577-1)

70. Chapman G, Cokelet G. 1996 Model studies of
leukocyte-endothelium-blood interactions. I. The
fluid flow drag force on the adherent leukocyte.
Biorheology 33, 119 – 138. (doi:10.1016/0006-
355X(96)00011-X)

71. Zhang Y, Neelamegham S. 2002 Estimating the
efficiency of cell capture and arrest in flow
chambers: study of neutrophil binding via E-selectin
and ICAM-1. Biophys. J. 83, 1934 – 1952. (doi:10.
1016/S0006-3495(02)73956-8)

72. Pospieszalska MK, Zarbock A, Pickard JE, Ley K.
2009 Event-tracking model of adhesion identifies
load-bearing bonds in rolling leukocytes.
Microcirculation 16, 115 – 130. (doi:10.1080/
10739680802462792)

73. Jadhav S, Eggleton CD, Konstantopoulos K. 2005 A
3-D computational model predicts that cell
deformation affects selectin-mediated leukocyte
rolling. Biophys. J. 88, 96 – 104. (doi:10.1529/
biophysj.104.051029)

74. Pappu V, Bagchi P. 2008 3D computational
modeling and simulation of leukocyte rolling
adhesion and deformation. Comput. Biol. Med.
38, 738 – 753. (doi:10.1016/j.compbiomed.2008.04.
002)

75. Khismatullin DB, Truskey GA. 2004 A 3D numerical
study of the effect of channel height on leukocyte
deformation and adhesion in parallel-plate flow
chambers. Microvasc. Res. 68, 188 – 202. (doi:10.
1016/j.mvr.2004.07.003)

76. Khismatullin DB, Truskey GA. 2005 Three-
dimensional numerical simulation of receptor-
mediated leukocyte adhesion to surfaces: effects
of cell deformability and viscoelasticity. Phys.
Fluids 17, 031505. (doi:10.1063/1.1862635)

77. Khismatullin DB. 2009 Chapter 3: the cytoskeleton
and deformability of white blood cells. Curr. Top.
Membr. 64, 47 – 111. (doi:10.1016/S1063-
5823(09)64003-5)

78. Khismatullin DB, Truskey GA. 2012 Leukocyte rolling
on P-selectin: a three-dimensional numerical study
of the effect of cytoplasmic viscosity. Biophys. J.
102, 1757 – 1766. (doi:10.1016/j.bpj.2012.03.018)

79. Vempati P, Popel AS, Mac Gabhann F. 2014
Extracellular regulation of VEGF: isoforms,
proteolysis, and vascular patterning. Cytokine
Growth Factor Rev. 25, 1 – 19. (doi:10.1016/j.
cytogfr.2013.11.002)

80. Ruhrberg C, Gerhardt H, Golding M, Watson R,
Ioannidou S, Fujisawa H, Betsholtz C, Shima DT.
2002 Spatially restricted patterning cues provided
by heparin-binding VEGF-A control blood vessel
branching morphogenesis. Genes Dev. 16, 2684 –
2698. (doi:10.1101/gad.242002)

81. Czirok A, Rongish BJ, Little CD. 2011 Vascular
network formation in expanding versus static
tissues: embryos and tumors. Genes Cancer 2,
1072 – 1080. (doi:10.1177/1947601911426774)

82. Mac Gabhann F, Ji JW, Popel AS. 2006
Computational model of vascular endothelial
growth factor spatial distribution in muscle and pro-
angiogenic cell therapy. PLoS Comput. Biol. 2, e127.
(doi:10.1371/journal.pcbi.0020127)

83. Ji JW, Mac Gabhann F, Popel AS. 2007 Skeletal
muscle VEGF gradients in peripheral arterial disease:
simulations of rest and exercise. Am. J. Physiol.
Heart Circ. Physiol. 293, H3740 – H3749. (doi:10.
1152/ajpheart.00009.2007)

84. Mac Gabhann F, Ji JW, Popel AS. 2007 VEGF
gradients, receptor activation, and sprout guidance
in resting and exercising skeletal muscle. J. Appl.
Physiol. (1985) 102, 722 – 734. (doi:10.1152/
japplphysiol.00800.2006)

85. Mac Gabhann F, Ji JW, Popel AS. 2007 Multi-scale
computational models of pro-angiogenic treatments
in peripheral arterial disease. Ann. Biomed. Eng. 35,
982 – 994. (doi:10.1007/s10439-007-9303-0)

86. Vempati P, Popel AS, Mac Gabhann F. 2011
Formation of VEGF isoform-specific spatial
distributions governing angiogenesis: computational
analysis. BMC Syst. Biol. 5, 590509. (doi:10.1186/
1752-0509-5-59)

87. Hashambhoy YL, Chappell JC, Peirce SM, Bautch VL,
Mac Gabhann F. 2011 Computational modeling of
interacting VEGF and soluble VEGF receptor
concentration gradients. Front. Physiol. 2, 62.
(doi:10.3389/fphys.2011.00062)

88. Vink H, Duling BR. 1996 Identification of distinct
luminal domains for macromolecules, erythrocytes,
and leukocytes within mammalian capillaries. Circ.
Res. 79, 581 – 589. (doi:10.1161/01.RES.79.3.581)

89. Constantinescu AA, Vink H, Spaan JA. 2003
Endothelial cell glycocalyx modulates
immobilization of leukocytes at the endothelial
surface. Arterioscler. Thromb. Vasc. Biol. 23, 1541 –
1547. (doi:10.1161/01.ATV.0000085630.24353.3D)

90. Bassingthwaighte JB, Beard DA, Carlson BE, Dash
RK, Vinnakota K. 2012 Modeling to link regional
myocardial work, metabolism and blood flows. Ann.
Biomed. Eng. 40, 2379 – 2398. (doi:10.1007/s10439-
012-0613-5)

91. Crampin EJ, Smith NP, Hunter PJ. 2004 Multi-scale
modelling and the IUPS physiome project. J. Mol. Histol.
35, 707 – 714. (doi:10.1007/s10735-004-2676-6)

92. Hunter P, Smith N, Fernandez J, Tawhai M. 2005
Integration from proteins to organs: the IUPS
physiome project. Mech. Ageing Dev. 126,
187 – 192. (doi:10.1016/j.mad.2004.09.025)

93. Kapela A, Nagaraja S, Parikh J, Tsoukias NM. 2011
Modeling Ca2þ signaling in the microcirculation:
intercellular communication and vasoreactivity. Crit.
Rev. Biomed. Eng. 39, 435 – 460. (doi:10.1615/
CritRevBiomedEng.v39.i5.50)

94. Bentley K, Philippides A, Ravasz Regan E. 2014 Do
endothelial cells dream of eclectic shape? Dev. Cell
29, 146 – 158. (doi:10.1016/j.devcel.2014.03.019)

95. Bailey AM, Lawrence MB, Shang H, Katz AJ, Peirce
SM. 2009 Agent-based model of therapeutic
adipose-derived stromal cell trafficking during
ischemia predicts ability to roll on P-selectin. PLoS
Comput. Biol. 5, e1000294. (doi:10.1371/journal.
pcbi.1000294)

96. Bailey AM, Thorne BC, Peirce SM. 2007 Multi-cell
agent-based simulation of the microvasculature to
study the dynamics of circulating inflammatory cell
trafficking. Ann. Biomed. Eng. 35, 916 – 936.
(doi:10.1007/s10439-007-9266-1)

97. Bauer AL, Jackson TL, Jiang Y. 2009 Topography of
extracellular matrix mediates vascular
morphogenesis and migration speeds in
angiogenesis. PLoS Comput. Biol. 5, e1000445.
(doi:10.1371/journal.pcbi.1000445)

98. Longo D, Peirce SM, Skalak TC, Davidson L, Marsden
M, Dzamba B, DeSimone DW. 2004 Multicellular
computer simulation of morphogenesis: blastocoel
roof thinning and matrix assembly in Xenopus
laevis. Dev. Biol. 271, 210 – 222. (doi:10.1016/j.
ydbio.2004.03.021)

http://dx.doi.org/10.1016/S0006-3495(96)79248-2
http://dx.doi.org/10.1016/S0006-3495(96)79248-2
http://dx.doi.org/10.1103/PhysRevLett.108.028104
http://dx.doi.org/10.1103/PhysRevLett.108.028104
http://dx.doi.org/10.1016/j.bbrc.2013.08.010
http://dx.doi.org/10.1371/journal.pone.0076949
http://dx.doi.org/10.1016/S0006-3495(03)74467-1
http://dx.doi.org/10.1103/PhysRevE.75.066707
http://dx.doi.org/10.1017/S0022112008004011
http://dx.doi.org/10.1007/s11401-010-0609-0
http://dx.doi.org/10.1103/PhysRevE.83.061924
http://dx.doi.org/10.1103/PhysRevE.83.061924
http://dx.doi.org/10.1016/S0006-3495(92)81577-1
http://dx.doi.org/10.1016/S0006-3495(92)81577-1
http://dx.doi.org/10.1016/0006-355X(96)00011-X
http://dx.doi.org/10.1016/0006-355X(96)00011-X
http://dx.doi.org/10.1016/S0006-3495(02)73956-8
http://dx.doi.org/10.1016/S0006-3495(02)73956-8
http://dx.doi.org/10.1080/10739680802462792
http://dx.doi.org/10.1080/10739680802462792
http://dx.doi.org/10.1529/biophysj.104.051029
http://dx.doi.org/10.1529/biophysj.104.051029
http://dx.doi.org/10.1016/j.compbiomed.2008.04.002
http://dx.doi.org/10.1016/j.compbiomed.2008.04.002
http://dx.doi.org/10.1016/j.mvr.2004.07.003
http://dx.doi.org/10.1016/j.mvr.2004.07.003
http://dx.doi.org/10.1063/1.1862635
http://dx.doi.org/10.1016/S1063-5823(09)64003-5
http://dx.doi.org/10.1016/S1063-5823(09)64003-5
http://dx.doi.org/10.1016/j.bpj.2012.03.018
http://dx.doi.org/10.1016/j.cytogfr.2013.11.002
http://dx.doi.org/10.1016/j.cytogfr.2013.11.002
http://dx.doi.org/10.1101/gad.242002
http://dx.doi.org/10.1177/1947601911426774
http://dx.doi.org/10.1371/journal.pcbi.0020127
http://dx.doi.org/10.1152/ajpheart.00009.2007
http://dx.doi.org/10.1152/ajpheart.00009.2007
http://dx.doi.org/10.1152/japplphysiol.00800.2006
http://dx.doi.org/10.1152/japplphysiol.00800.2006
http://dx.doi.org/10.1007/s10439-007-9303-0
http://dx.doi.org/10.1186/1752-0509-5-59
http://dx.doi.org/10.1186/1752-0509-5-59
http://dx.doi.org/10.3389/fphys.2011.00062
http://dx.doi.org/10.1161/01.RES.79.3.581
http://dx.doi.org/10.1161/01.ATV.0000085630.24353.3D
http://dx.doi.org/10.1007/s10439-012-0613-5
http://dx.doi.org/10.1007/s10439-012-0613-5
http://dx.doi.org/10.1007/s10735-004-2676-6
http://dx.doi.org/10.1016/j.mad.2004.09.025
http://dx.doi.org/10.1615/CritRevBiomedEng.v39.i5.50
http://dx.doi.org/10.1615/CritRevBiomedEng.v39.i5.50
http://dx.doi.org/10.1016/j.devcel.2014.03.019
http://dx.doi.org/10.1371/journal.pcbi.1000294
http://dx.doi.org/10.1371/journal.pcbi.1000294
http://dx.doi.org/10.1007/s10439-007-9266-1
http://dx.doi.org/10.1371/journal.pcbi.1000445
http://dx.doi.org/10.1016/j.ydbio.2004.03.021
http://dx.doi.org/10.1016/j.ydbio.2004.03.021


rsfs.royalsocietypublishing.org
Interfac

12
99. Peirce SM, Van Gieson EJ, Skalak TC. 2004
Multicellular simulation predicts microvascular
patterning and in silico tissue assembly.
FASEB J. 18, 731 – 733. (doi:10.1096/fj.03-0933fje)

100. Das A, Lauffenburger D, Asada H, Kamm RD. 2010 A
hybrid continuum-discrete modelling approach to
predict and control angiogenesis: analysis of
combinatorial growth factor and matrix effects on
vessel-sprouting morphology. Phil. Trans. R Soc. A
368, 2937 – 2960. (doi:10.1098/rsta.2010.0085)

101. Hayenga HN, Thorne BC, Peirce SM, Humphrey JD.
2011 Ensuring congruency in multiscale modeling:
towards linking agent based and continuum
biomechanical models of arterial adaptation. Ann.
Biomed. Eng. 39, 2669 – 2682. (doi:10.1007/s10439-
011-0363-9)

102. Bentley K et al. 2014 The role of differential VE-
cadherin dynamics in cell rearrangement during
angiogenesis. Nat. Cell Biol. 16, 309 – 321. (doi:10.
1038/ncb2926)

103. Walpole J, Hashambhoy YL, Chappell JC, Bautch VL,
Mac Gabhann F, Peirce SM. 2012 Multiscale
computational model of sprouting angiogenesis:
agent based modeling of endothelial sprout
behavior in the embryoid body. In Proc. Vascular
Biology 2012, Asilomar, CA, 14 – 18 October 2012.
Germantown, MD: North American Vascular Biology
Association.

104. Biggs MB, Papin JA. 2013 Novel multiscale
modeling tool applied to Pseudomonas
aeruginosa biofilm formation. PLoS ONE
8, e78011. (doi:10.1371/journal.pone.0078011)

105. Qutub AA, Liu G, Vempati P, Popel AS. 2009
Integration of angiogenesis modules at multiple
scales: from molecular to tissue. Pac. Symp.
Biocomput. 14, 316 – 327.

106. Price WL. 1983 Global optimization by
controlled random search. J. Optimiz. Theory Appl. 40,
333 – 348. (doi:10.1007/BF00933504)
e

Fo
cus

5:20140077

http://dx.doi.org/10.1096/fj.03-0933fje
http://dx.doi.org/10.1098/rsta.2010.0085
http://dx.doi.org/10.1007/s10439-011-0363-9
http://dx.doi.org/10.1007/s10439-011-0363-9
http://dx.doi.org/10.1038/ncb2926
http://dx.doi.org/10.1038/ncb2926
http://dx.doi.org/10.1371/journal.pone.0078011
http://dx.doi.org/10.1007/BF00933504

	Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales
	Introduction
	Multiscale components involved in microvascular remodelling
	Computational modelling examples
	Network level: do hypertensive microvascular networks have increased resistance?
	Vessel level: do endothelial cells experience shear stress during capillary sprouting?
	Cell level: what is the role of red blood cell membrane mechanics on deformation during blood flow?
	Cell level: what is the influence of white blood cell deformability on adhesion to the endothelium?
	Molecular level: how are microenvironmental growth factor patterns sensed by endothelial cells?

	Integration of models across scales: future needs and challenges
	Summary
	Acknowledgements
	Funding statement
	References


