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Arguably one of the most important effects of climate change is the potential

impact on human health. While this is likely to take many forms, the impli-

cations for future transmission of vector-borne diseases (VBDs), given their

ongoing contribution to global disease burden, are both extremely important

and highly uncertain. In part, this is owing not only to data limitations and

methodological challenges when integrating climate-driven VBD models and

climate change projections, but also, perhaps most crucially, to the multitude

of epidemiological, ecological and socio-economic factors that drive VBD trans-

mission, and this complexity has generated considerable debate over the past

10–15 years. In this review, we seek to elucidate current knowledge around

this topic, identify key themes and uncertainties, evaluate ongoing challenges

and open research questions and, crucially, offer some solutions for the field.

Although many of these challenges are ubiquitous across multiple VBDs,

more specific issues also arise in different vector–pathogen systems.
1. Introduction
There is increasing awareness that levels and layers of complexity are the rule when

describing and predicting the impacts of climate variability and change on the
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transmission of vector-borne diseases (VBDs) [1–5]. Recent work

has highlighted that while climate patterns, particularly temp-

erature and rainfall trends (although changing wind patterns

could also have important implications for some vectors [6]),

can have direct effects on VBD transmission [1,2,4,5,7–13], this

influence may be significantly modified by confounding non-cli-

matic factors implicated in human communities [3,4,14–25].

Although climate patterns may govern the potential global distri-

bution of a VBD, the actual magnitude and spatial extent within

regions are likely to be governed by a multitude of transmission-

related non-climatic factors, including epidemiological, environ-

mental, social, economic and demographic factors [17,25–29].

These studies emphasize that quantifying the impact of climate

change on VBDs requires a better understanding of not only

the relative effects of these individual variables, but also the com-

bined (and complex) outcomes that interactions between these

indirect ecological factors and direct biological influences can

have on the vector–pathogen–host relationships that underpin

VBD transmission [1,3,4,30]. A more recent emerging trend is

also recognition of the role that human reflexivity may play in

constraining the reliability of ecological predictions [31,32]; that

is, if predictions are made and taken seriously, people may

change their actions and behaviour, in turn, making accurate

forecasting more difficult. These considerations imply that to

better understand the likely impact of climate change on VBDs,

it is important to view climate-driven disease systems as complex

socio-ecological dynamical systems that emphasize (i) the multi-

level causation of disease, (ii) the impact of broad contextual

stressor factors that determine transmission at the population

level, (iii) the importance of considering nonlinear feedback

loops between human activities/reflexivity and global change,

and (iv) the hierarchical cross-scale effects of local–global

change in disease drivers [33–35].

These considerations, particularly the need for coupling

human and natural system dynamics and interactions as

implied by the socio-ecological systems paradigm [33–35],

clearly present a major challenge to current efforts aimed at

reliably quantifying the effects of climate change on VBDs.

While, on the one hand, ignoring important non-climatic

modifying or confounding factors (such as ecosystem and

land-use change, agricultural and other economic practice,

urbanization, human migration, health infrastructure and

technologies and host demographics and behaviour) will

lead to overestimation of the impact of climate change

[1,4,22,36], the properties connected with the emergent,

adaptive and nonlinear dynamics of human–natural systems

will, on the other hand, make predictions of invasion, expansion

and response of VBDs in human populations as a result of

climate change extremely difficult to achieve [35,37,38]. The

complexity deriving from these features constrains the use of

simple risk-based ‘reductionist’, linear and equilibrium-based

methods, as embodied by regression-based risk modelling

methods (even if multivariate in form) and multi-criteria or vari-

able score-based community vulnerability indices [39–41], for

both investigating associations of climate variability with

VBDs and predicting its effects on future transmission. Such

methods provide us with useful frameworks for conceptualiz-

ing the links that may operate between climate change and

exposure to risk and adaptive capacities of humans in deter-

mining the overall vulnerability of a community; however,

these complex biological–human interactions mean that they

will invariably be less effective for capturing the full range

of dynamic behaviours that a VBD system may experience as
a result of climate change. This implies a clear need for the

development of a more integrated complex systems-based

ecological framework that can reliably link climate change,

ecosystems, economies and societies with disease dynamics

if more reliable analysis and predictions of shifts in VBD

transmission dynamics owing to global change are to be

achieved [35].

Mathematical models of pathogen population dynamics,

by virtue of their ability to provide a quantitative means for

integrating and simulating the impacts of multi-factorial

and multi-scale disease transmission processes, may offer

us a particularly pertinent methodological tool for develop-

ing such holistic predictive and investigative frameworks

[7–13,19,25,27,42–58]. Recent advances in incorporating the

effects of climate, as well as anthropogenic alterations of

ecosystems (e.g. via induced changes in vector biodiversity

[59], population movements and immunity [60,61], socio-

economic development and the effects of public health

interventions), with disease transmission [25,62] make these

tools even more applicable as quantitative frameworks for

capturing the full range of community vulnerabilities to

VBD transmission as a result of global climate change. Such

models, by careful elaboration and inclusion of nonlinear

functional relationships between biological and non-

biological social components of disease transmission, may

also represent the only means by which the full complexity

(emergence, self-organization, points of bifurcation and

regime shifts) of the response of a natural–human system

to global change may be explored [25,62]. In addition, new

data–model assimilation frameworks provide a means for

such models to capture and incorporate local social, ecological

and climatic conditions, thereby affording the examination of

the impacts of these proximate causes within the broader

context of global climate change [42,63,64]. This modelling

approach thus not only offers the possibility of addressing

the dynamic interactions of the various factors involved in

transmission, but crucially also the ability to deal with cross-

scale interactions and feedbacks that are likely to play major

roles in climate-induced changes in transmission [17,35].

In addition, recent work on spatial agent-based modelling fra-

meworks [44,65] offers approaches that allow exploration of

how human behaviour and reflexivity may be incorporated

with social–economical and natural components at various

organizational levels in order to predict likely community

vulnerabilities and responses to global climate change. Such

individual-based, as well as Monte Carlo-based, ensemble

modelling approaches also provide a means of addressing

the impacts of uncertainties and stochasticity on predictions,

thereby facilitating the generation of outputs in probabilistic

terms for use by policy- and decision-makers at various

organizational levels [65–68].
2. The role of climate in insect vector – pathogen
interactions

(a) The role of temperature in the replication and
transmission of major vector-borne diseases

Temperature is well acknowledged to directly impact VBDs

in insect hosts; insects are poikilotherms and their internal

temperature varies considerably with ambient temperature,

greatly affecting their physiology, as well as directly exposing



rstb.royalsocietypublishing.org

3
the pathogens they carry to ambient temperatures. Other cli-

matic factors impacting vector–pathogen interactions are

those affecting vector susceptibility to infection, including

vector physiology and fitness (and thus the ability to fight

off infection) and the probability of exposure to infection

(such as host preference and biting rate). The impact of

environmental factors on different pathogens and vectors is

diverse and specific to individual vector–pathogen combi-

nations. This specificity requires tailored parameters for

individual vector–pathogen systems to more accurately

project the impact of climatic changes on VBD transmission.
Phil.Trans.R.Soc.B
370:20130551
(i) Viral vector-borne diseases transmitted by mosquitoes
Viral replication kinetics in insect-cultured cells are depen-

dent on temperature, with viral attachment and cell

infection being more efficient at higher temperatures [69].

However, the relationship between temperature and viral

replication/transmission dynamics in many biological sys-

tems is not straightforward. A number of studies have

demonstrated a strong association between temperature and

viral replication in mosquito species, with higher tempera-

tures generally leading to shorter extrinsic incubation

periods (EIPs), increased infection rates and faster dissemina-

tion rates, although these vary considerably in different

mosquito/virus combinations. Within the flavivirus genus,

yellow fever (YF) infection of Aedes aegypti shows a decreased

EIP at higher temperatures, but YF infection of Haemagogus
mosquitoes demonstrates lower infection rates at lower temp-

eratures [70]. A recent study, however, found increased YF

infection in Aedes albopictus mosquitoes reared at lower temp-

eratures (attributable to impaired RNAi responses in the

mosquito), demonstrating further the complexities of down-

stream temperature effects on immature mosquito life

stages [71]. Indeed, the same result also appears to be true

for chikungunya virus (CHIKV) infection of Ae. aegypti [71]

and Ae. albopictus [72].

Dengue virus (DENV) infection rates are also tempera-

ture-dependent, demonstrating increased infection and

transmission rates at higher temperatures [73–76], as well

as altered infection rates and EIP in response to fluctuating

temperatures and diurnal temperature range (DTR). DTRs

have been shown to enhance DENV infection rates and

reduce EIPs [77] at low temperatures, but decrease infection

rates (and not affect DENV EIP) at higher temperatures [78].

Alphaviruses also demonstrate reduced EIPs at higher

temperatures, but display variation in the effects on infection

and transmission rates. Eastern equine encephalitis virus

(EEEV) and West Nile virus (WNV) infection rates in

Ae. triseriatus and Culex univittatus are independent of temp-

erature, whereas western equine encephalitis virus (WEEV)

infection rates in C. tarsalis decrease at higher temperatures

(e.g. 328C) compared with moderate temperatures (e.g.

258C) [70]. EEEV, WEEV and WNV all have reduced EIPs

at higher temperatures [70,79]. Sindbis virus infection and

dissemination rates have been found to be higher in Ae.
aegypti mosquitoes after rearing larvae at higher temperatures

[80], whereas, in contrast, studies have shown increased

CHIKV (and YF) infection rates in larvae raised at lower

temperatures [71,72].

Thus, although the overall trend for viral VBDs is for

higher temperatures to increase replication rates, decrease

EIPs and increase transmission rates, variation in the limited
number of examples given here illustrates the need for tailored

parametrization of VBD models. To better reflect biological

systems, the effects of DTR, temperature effects on vector

susceptibility through vector fitness and the impact of temp-

erature variation during mosquito development on vector

susceptibility should be considered when assessing climate

effects on VBD vector–pathogen interactions.
(ii) Malaria
The transmission cycle of the malaria parasite in mosquito

vectors is more complex than that of viruses, including mul-

tiple developmental stages and the additional complication

of nonlinear density-dependent effects on parasite numbers

[81]. Temperature sensitivity of malaria parasites in mosquito

hosts has long been established [82–84], with many models

using the Detinova curve and monthly average temperatures

to describe changes in the parasite EIP with temperature.

More recent work suggests a new temperature sensitivity

curve, incorporating the effects of fluctuating daily tempera-

ture on development. A series of studies investigating the

effect of DTR on parasite development and transmission

have shown that DTRs increase rate processes (speed up para-

site development) at low mean temperatures and decrease

rate processes at higher temperatures [85–88]; thus, using

mean temperatures in disease models will underestimate

transmission at cooler temperatures and overestimate at

warmer temperatures. In addition to DTR affecting parasite

development, temperature also has an impact on the pro-

portion of mosquitoes carrying infectious sporozoites, with

mosquitoes maintained at higher temperatures demonstrating

a lower prevalence of sporozoites in the salivary glands [89].

Thus, at high temperatures, despite a decrease in parasite

development time, fewer mosquitoes become infectious and

able to transmit the parasite. Another recent study has

highlighted another complicating factor in the effects of temp-

erature on parasite transmission, whereby asynchrony

between completion of the parasite EIP and occurrence of

the next blood meal can develop as temperature changes.

This could lead to a delay in parasite transmission, despite a

reduction in parasite EIP, as temperatures rise [90], highlight-

ing how thermal effects on both pathogen and its vector

must be considered for accurate transmission modelling.

Using these new thermal sensitivities, malaria transmission

has recently been predicted to peak at 258C (dramatically

lower than previous predictions) and decline significantly

above 288C [91].

In addition to its direct effects on parasite development,

temperature can also have a profound effect on vector physi-

ology and immune responses [92]. Temperature has been

shown to affect immune responses in a variety of insects,

including beetles, crickets, butterflies and Drosophila (fruit

flies). Focusing on mosquito vectors, a few studies have inves-

tigated the effect of temperature on mosquito immune

responses; Suwanchaichinda & Paskewitz [93] showed that

the melanization response in Anopheles gambiae progressively

decreases as temperatures increase, while Murdock et al. [94]

investigated the response of cellular and humoral immunity

to changes in temperature. In the latter study, a complex pic-

ture emerged, with melanization, phagocytosis and an

antimicrobial peptide (AMP) defensin expression peaking at

188C, whereas nitric oxide synthase expression peaked at

308C. Expression of a further AMP, cecropin, showed no
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response to changes in ambient temperature. The study in

reference [94] demonstrates how the immune gene profile

of a vector at one ambient temperature can be completely

altered at a different temperature. This could impact the vec-

torial capacity of insect vectors of malaria and other

pathogens. In [95], it was demonstrated that ambient temp-

erature influences the expression of immune genes that can

regulate the intensity of Plasmodium yoelii infection in An. ste-
phensi mosquitoes. Changes in immune responses may alter

or temper the effects of temperature on parasite development,

although with respect to transmission, these effects are likely

to be subtle.
 il.Trans.R.Soc.B
370:20130551
(iii) Lyme disease and other tick-borne diseases
Studies on climate and tick-borne diseases have largely

focused on the effect of temperature or climate change on

the distribution of the tick hosts (primarily Ixodes scapularis
and Ixodes ricinus), with currently little literature document-

ing tick–pathogen interactions, especially with respect to

temperature and environmental conditions.

For Lyme disease transmission, the length of time feeding

positively correlates with transmission from infected tick to a

mouse host [96], indicating that because climate influences

the duration of feeding, it will also affect transmission

rates. The EIP of the bacteria is determined by the develop-

mental duration of the immature tick stages, as bacteria are

typically acquired during the larvae or nymph stages and

transmitted during the nymph or adult stages, respectively

[97]. In this respect, the EIP is not dependent on the replica-

tion nor developmental kinetics of the pathogen (as seen for

viral VBDs and malaria, respectively), but is more directly

influenced by vector development and questing behaviour.

Studies on the molecular interactions between tick hosts

and Lyme disease have shown that temperature changes,

stress and pathogen infection lead to the upregulation of

heat shock proteins, which contribute to tick survival and

possibly reduce infection [98]. To the best of our knowledge,

no empirical studies on the effect of temperature on the EIP of

Lyme disease, or the probability of transmission, have been

carried out.

Crimean Congo haemorrhagic fever (CCHF) is caused by

a tick-borne virus of the Bunyaviridae family. It has complex

enzootic cycles: several putative tick vectors with two- or

three-host life cycles. Nothing is known at the molecular

level about the interactions between the virus and Hyalomma
ticks [97]. This represents a significant research gap that

requires attention before any projections can be made on

the effect of climate on virus replication and disease

transmission.

Another important group of tick-borne pathogens is the

emerging rickettsial diseases, with Rocky Mountain spotted

fever (Rickettsia rickettsia) being the most severe of the rickett-

sioses (reviewed in [99]). Emerging in Europe and the

Mediterranean are Mediterranean spotted fever (Rickettsia
conorii, endemic in the Mediterranean and with occasional

cases in northern and central Europe), Rickettsia slovaca (pre-

sent in France, Slovakia, Hungary and Spain), Rickettsia
mongolitimonae (Southern France), Israeli spotted fever, Rick-
ettsia conorii subsp. israelensis (the middle east and Portugal)

and R. aeschlimannii (one case in France), among others

[100]. A range of tick vectors are involved in transmission

and, as for CCHF, very little is known about the interactions
between these bacterial pathogens and their invertebrate

vectors.

(iv) Leishmaniasis
There have been recent expansions in geographical areas

where Leishmaniasis is endemic in both South America and

South Europe and changes in climate are one possible contri-

buting factor [101]. Like other vector–pathogen combinations

already discussed, ambient temperatures have a clear direct

effect on sandfly development, but a less clear effect on

range expansion because of the confounding influence of

photoperiod on overwintering diapause [101]. However, the

role of climate in parasite development has received little

attention. One previous study [102] indicated that Leishmania
infantum developed better in the digestive tract of phleboto-

mine sandflies at higher temperatures, whereas another

recent study [103] expanded this to examine the effect of

temperature on the development of several Leishmania spp.,

in different sandfly species. The latter study showed that

Leishmania parasites developed faster at higher temperatures

during the early stages of infection, but that temperature

had little effect on the establishment of infection. The mon-

tane L. peruviana appeared to show adaptation to cooler

temperatures. Differences in development time, blood meal

digestion and defaecation were observed for different fly–

parasite combinations, again highlighting the need for

specific parametrization of transmission models.

(b) Challenges in understanding climate change effects
on vector-borne diseases

(i) Incorporating multiple drivers of disease risk
As discussed in §1, spatial and temporal patterns of VBDs are

influenced by both ecological and socio-economic factors.

Socio-economic conditions can influence transmission risk in

a way that complicates our understanding of temperature/

climatic influences. Rather than disputing which category of

driver is more important [104], we suggest more rigorous

exploration of the relative importance of each driver and

their interactions. Research integrating ecological and socio-

economic factors has begun. For example, a statistical model

was developed in [105] to predict the changing global distri-

bution of malaria under climate change and changing

per capita gross domestic product (pcGDP) based on the

IPCC A1B scenario [106]. This model predicted that increasing

pcGDP (a threefold increase by 2050) by itself would strongly

reduce the global distribution of malaria in the coming dec-

ades, whereas climate change by itself would expand that

distribution. Combining predicted changes in pcGDP with

climate change, the model predicted that an additional 210

million people will be at risk by 2050. Further evaluations

should consider socio-economic and ecological contexts.

GDP is likely to be more important in places where

malaria transmission risk is high [107]. If climate change

increases the risk of exposure, prior investments in abatement

could become inadequate and increased investment in miti-

gation might be required. It is also likely that temperature

gradients are not always collinear with either vector presence

or economic gradient, potentially leading to threshold effects.

Studies on wildlife diseases could provide an opportunity to

tease apart some of these complexities. Wildlife components

of disease risk (e.g. zoonotic amplification, persistence and
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population impacts) are clearly sensitive to temperature (as

demonstrated, for instance, with avian malaria in Hawaii

[108,109]). In addition, economically driven anthropogenic

effects may affect zoonotic VBD dynamics [110], whereas

socio-economic factors have also been suggested as driving

recent increases in human cases of the monkey malaria

Plasmodium knowlesi [111].

(ii) Selecting appropriate metrics of disease risk
The basic reproduction number R0 is frequently used to inte-

grate understanding about vector and pathogen ecology and

transmission behaviours. However, the usefulness of R0

compared with other metrics of risk requires further explora-

tion; it is a measure of invasion potential, but not necessarily

the best metric for determining possible temporal or spatial

changes in disease prevalence or incidence in areas of existing

transmission. In this case, measures such as the entomologi-

cal inoculation rate (EIR), which explicitly capture elements

of vector biology, might be a more appropriate risk metric

to model as a function of climate change. However, the

usefulness of any one metric very much depends on the

specifics of the question; trying to determine changes in

populations at risk owing to potential climate-induced

shifts in disease range, for example, is a very different ques-

tion from determining future changes in the frequency,

timing, size or duration of malaria epidemics at a location

characterized by intermittent, seasonal transmission. In gen-

eral, we would argue that statistical climate models based

on the distribution of recorded malaria cases are fraught

with problems of interpretation and should be interpreted

carefully. The distribution of malaria cases is a complex and

poorly understood consequence of ecological, socio-economic

and other factors, such that causal relationships are

frequently obscured.

(iii) Data availability to parametrize models of disease risk
Arguably the greatest limitation in the development of

mechanistic transmission models is our current understand-

ing of the essential empirical relationships between vectors,

pathogens and the environment. The low quality and quan-

tity of data available to parametrize models of risk are

often not considered in model development or interpretation.

Additional experimental research is required to explore and

define physiological temperature and moisture constraints

for the most important vector species. Strong evidence indi-

cates that temperature variability is important to estimating

risk [85–87,112,113], but vital rates are currently estimated

from very few data points representing laboratory responses

by vectors or pathogens to temperature averages [114],

together with inferences based on seasonal occurrence

[115]. In addition (and as noted in §2a), estimates of vital

rates for specific disease systems, for example, Plasmodium fal-
ciparum malaria, are often derived from data on a mix of

vector species, whereas endosymbionts such as Wolbachia
may be important in the biology and control of certain dis-

ease vectors [116] and may exhibit temperature responses

[117]. To validate these models, it is important to conduct

comparative research on different species within important

vector genera. For example, both Ae. aegypti and Ae. albopictus
are competent vectors of DENV, with different physiological

constraints and distinct transmission potentials. Combining

data for these two species to estimate vital rates would not
necessarily generate realistic inference. Furthermore, data

and research are particularly needed to better understand

the influence of environmental factors on key parameters

such as the EIP [89], vector competence [94,113], biting

behaviour and interactions with infection [118,119], because

these have been very under-researched to date.

The enormous variation in EIR that can exist around a

given mean seasonal temperature [91,120] remains to be

explained, yet is critical to conclusions concerning the role of

climate change. Variation in EIR at a given temperature

regime could be due to local adaptation [121], control interven-

tions and/or socio-economic factors, differences between

vector and/or parasite species complexes across sites, poten-

tially subtle variation in life-history traits such as mosquito

population age structure [122], accuracy of (local) temperature

estimates or chosen temperature metrics and/or sampling pro-

tocols. Both empirical and theoretical studies are needed to

explore potential determinants, uncertainties in parameter

estimates and consequences for predictive models. Uncer-

tainty in the components of R0 (or other metrics) should be

integrated and acknowledged. In addition, many other

assumptions are frequently made regarding how biotic inter-

actions (e.g. competition, density dependence and host

density) regulate and limit vector populations. Uncertainties

owing to these assumptions are rarely considered or

acknowledged in risk metrics.

To advance the empirical base from which to derive

models, we recommend the following:

(1) Mean seasonal temperatures have been regularly used

and might be sufficient for some questions and some set-

tings, but, in general, DTR or similar measures of

temporal variability must be included. Off-season temp-

eratures and ranges might also be important in some

regions, but an understanding of which temperature

metrics are most important during this period is less

well developed.

(2) Humidity and evaporation rate influence adult mosquito

vital rates, but have received insufficient attention as

determinants of VBD risk. The effects of both mean

and fluctuating humidity and water vapour pressure,

as well as interactive effects with temperature, are often

poorly understood.

(3) The timing, frequency and quantity of precipitation are

important, but not well understood and are likely to

differ for different mosquito species. Total rainfall is

likely to have a highly nonlinear effect on mosquito

production, with the potential for qualitatively different

effects on container-breeding versus seasonal or

permanent wetland breeding species.

3. Models of relevant climatological, ecological
and epidemiological processes

(a) Types of models
With respect to models of relevance for studying the impact

of climate change on VBDs, these fall into the category of

either mechanistic or statistical in their construction.

Mechanistic (or process-based) models of vectors, disease

transmission or climate are those that represent the

system using dynamic (often nonlinear) equations, with

appropriate scales and interactions, which explicitly
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capture the relevant physical or biological processes. For

behaviours not explicitly resolved, but important to cap-

ture, these are parametrized with a diagnostic equation

representing the role of the parameter at the resolved

scale. The general benefit of these models is that they are

able to capture nonlinear and coupled interactions at mul-

tiple spatial and temporal scales, but, in the context of

accurately modelling VBDs themselves, their reliability

depends on possessing a complete picture of all aspects

of transmission and being able to accurately translate this

into a mathematical representation. In the context of cli-

mate change and VBDs, process-based VBD models do

not require the assumption of a stationary relationship

between determinants of disease and metrics of trans-

mission, which is a considerable advantage on the

decadal timescales of global change. Statistical models, on

the other hand, represent the relationships between rel-

evant variables (e.g. transmission and climatic factors)

from a purely descriptive perspective and their relationship

is sometimes assumed to be stochastic (although this can

also be built into mechanistic models). They are computa-

tionally inexpensive to run (and develop) and are well

suited for capturing timeseries and shorter-term (and

linear) behaviour for systems with a large set of par-

ameters, but do not attempt to incorporate known

mechanistic relationships. Whether predominantly mechan-

istic or statistical, each model type has benefits and

limitations and one possibility is a combination of

approaches in order to provide an optimal set of attributes

to connect climate with VBD transmission. The coupling of

different models produces new complications that need to

be addressed carefully; model coupling itself is a math-

ematical and computational science research problem and

although there has been early work to consider hybrid

models to maximize the benefit of each for the system

under consideration [123], such models will not be

considered further here.
(i) Statistical models
The majority of statistical models describing the relationship

between VBDs and environmental indicators of climate, cli-

mate change, meteorological factors and extreme weather

events exploit regression models either adapted to time-

series data or, for example, applied to investigate potential

future changes in vector distribution [124–126]. Statistical

models help to determine the relative contribution of

environmental drivers to temporal variations in disease mani-

festation, support a wide variety of data types, and may offer

a platform for developing early-warning systems based on

disease and host surveillance [127–129]. Models may differ

in their choice of health outcome measure, definitions of

exposure or methods of quantifying associations and how

different combinations of these components lead to different

uncertainties in model estimates. Health outcomes are

usually VBD morbidity and mortality, with the latter likely

to result from the greatest exposure and/or most vulnerable

populations (although the quality of recording, reporting

and causal assessment may not be straightforward). Studies

of diseases with low fatality may not provide enough cases

to achieve the required statistical power. Morbidity outcomes

often include a wide range of health conditions and, owing to

the repeated nature of potentially observable events, provide
a wider range of associations with exposure. The current use

of morbidity outcomes is often limited by utilization of medi-

cal records, emergency room visits, drug prescription and

hospital admissions; these data are typically protected

under privacy laws and regulations and thus are frequently

difficult to access. Many studies implicitly or explicitly

assume that (i) the selected measures of exposure are relevant

for the study population, (ii) meteorological and climatologi-

cal characteristics are reliable proxies for individual exposure

and (ii) the selected outcomes are relevant to the selected

exposure measure; if violated, a statistical model may be

misspecified.

Statistical models based on time-series typically explore

the associations between meteorological parameters (most

commonly, ambient temperature and rainfall) and health out-

comes related to VBDs in selected geographical areas. The

classic time-series models and regression models have been

widely used to analyse surveillance data [130]. Similar

models are also applied to study the health effects of

environmental exposures and meteorological conditions

[127,131,132]. While illustrating the shape and magnitude of

relationships between meteorological parameters and health

outcomes, reported results of time-series models are often

presented in a non-uniform way, which, in general, compli-

cates comparisons between different studies and inhibits

wider generalization. Findings from regression models

adapted to counts of health outcomes are typically presented

as the change in health outcome per unit change in exposure,

or as relative risks/rate ratios and their confidence intervals,

to quantify the association between exposure and health out-

comes and the degree of uncertainty. For models employing a

time-series approach, temporal data resolution dictates the

sensitivity of models to rapid change and long-term effects.

Daily time-series offer the highest resolution, although

weekly or monthly data are the standard for many surveil-

lance systems, which reduces model capability to detect

short-term changes. Furthermore, major meteorological epi-

sodes may also coincide with social events governed by the

local calendar, thus amplifying or dampening the effects of

environmental exposures.

Developing an understanding of short-term lags in the

effect of exposure and manifestation of the selected health out-

come is crucial for correctly capturing true associations

[133,134]. These lags might be driven by complex life cycle pro-

cesses and/or social determinants such as a lack of timely

utilization of health care facilities. This aspect is typically

handled by including lagged terms in statistical models,

although the selection of terms is rarely justified. By the

nature of VBDs, seasonal oscillations in health conditions are

often observed and manifest via systematic, or repetitive, per-

iodic fluctuations within a predetermined period. Seasonality

is characterized by timing (position of extrema on the seasonal

curve), magnitude (difference between maxima and minima)

and duration. Seasonal patterns of health events measured

by their frequency or observed counts per time unit may

vary by type of health condition, location and population of

interest [128]. In order to account for seasonality, studies

may be stratified by summer/winter, warm/cold, dry/wet

season or by considering periodic fluctuations. Explicit adjust-

ment for trend, seasonality and other periodic factors may also

be applied. Periodicities in meteorological factors and disease

incidences are not necessarily aligned nor synchronized; none-

theless, the detected time difference between peak timing of
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exposure and disease incidence is informative and enables pre-

dictions of the potential impacts of environmental drivers on

disease manifestation [128].
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(ii) Mathematical models
Global atmospheric climate models (such as those within

coupled Earth system models used in the latest IPCC report

[135]) are typically mechanistic models that resolve the large-

scale atmospheric flow field, along with a host of related

meteorological variables such as temperature and water

vapour, and incorporate a robust treatment of cloud physics

parametrizations and chemical tracers [136,137]. These

models are configured for interactive coupling to global land

surface models that include heterogeneous representations of

plant functional types and soil moisture distribution.

Climate models, like all models that represent physical

systems, contain both known and unknown uncertainties of

several types including, but not limited to, structural, algo-

rithmic and parametric. Statistical uncertainty has also been

identified [138,139], but structural (or systematic) uncertainty,

which here refers to the underlying physics and understand-

ing of model behaviour, is less well understood. In large-scale

mechanistic models of climate change, the understanding

and improvement of climate models through better data

collection [140] and reduced spatial and temporal error

[141,142], together with an analysis of model sensitivities

through sampling algorithms, are emerging areas of interest.

Some early work to connect mechanistic models with statisti-

cal models and combine information about uncertainty

(e.g. stochastic parametrization [143]) has also been under-

taken. For climate change models, some of the forecast skill

can be attributed to model initialization, as demonstrated

with near-term prediction experiments [144].

Numerous mathematical models have been designed and

used to quantitatively and qualitatively gain insights into the

transmission dynamics and control of VBDs in human popu-

lations [145], with the earliest work dating back to the

pioneering studies of Ross and Macdonald on malaria [146];

however, only a few of these models have incorporated the

effects of climate and/or climate change [9,13,124,147–151].

Recent models have included statistical and stochastic

models [16,147,148,152–154], approaches based on compart-

mental nonlinear ordinary and partial differential equations

[9,149,155–157] and nonlinear difference equation models

[13,158]. In addition, more complex network models (both

static and dynamic), spatially explicit R0 models, agent-

based/simulation models and cellular automata models

have also been considered [159–161], but their use is not as

widespread in this area.

Malaria, by virtue of causing the greatest global burden of

disease of all VBDs [162], has dominated modelling studies in

the context of climate change impacts on transmission

[87,154,156,163–167]. By examining the relationship between

malaria and climate in 25 African countries using a semi-para-

metric economic model, Egbendewe-Mondzozo et al. [16]

showed that a marginal change in temperature and

precipitation levels would lead to a significant change in the

number of malaria cases for most countries considered by

the end of the century. Modelling of how the EIP of

P. falciparum is expected to vary over time and space across

Africa (depending on DTR) was considered in [87]. It was

shown in [89] that vector competence tails off at higher
temperatures, even though parasite development rate

increases. Using a model that incorporates empirically derived

nonlinear thermal responses of Anopheles vectors, Mordecai

et al. [91] predict that the optimal temperature for malaria

transmission is 258C (and that it significantly decreases

beyond 288C).

Developing more realistic models of the climate-driven

nature of Anopheles population dynamics has also increased

in recent years; Lunde et al. [156] compared six tempera-

ture-dependent mortality models for An. gambiae sensu
stricto, whereas White et al. [168] and Parham et al. [158]

developed validated models for assessing the effects of

environmental variables (including rainfall, wind speed,

temperature, relative humidity and density-dependence) on

vector abundance by fitting to longitudinal mosquito catch

data. Similarly, Beck-Johnson et al. [122] developed a stage-

structured, temperature-dependent, deterministic delay-

differential equation model to investigate the population

dynamics of Anopheles mosquitoes, with a notable finding

that, by incorporating the full mosquito life cycle in the

model, mosquito abundance is more sensitive to temperature

than suggested by studies owing to the strong influence of

the juvenile stages (whose vital rates are also temperature-

dependent). Recent experimental findings, such as the

dependence of adult An. gambiae s.s. life-history parameters

on their experiences as juveniles [169] and the significant

differences observed by Lyons et al. [170] in temperature-

dependent survival and developmental rates in An. gambiae
s.s., An. arabiensis and An. funestus populations (the three

most important vectors of human malaria in Africa [126]),

are also key developments and emphasize the importance

of empirical data in developing more reliable parametrization

of mechanistic vector, and hence VBD, models.
4. The impact of vector – pathogen – host
ecology and behaviour on vector-borne
diseases

Independent of the modelling methods employed, certain

features of VBDs make efforts to capture them mathemat-

ically distinct from epidemiological models of either direct-

transmission infectious diseases (such as influenza) or

diseases driven primarily by environmental contamination

(such as cholera); such features are discussed in this section.

(a) Time scales
One ubiquitous aspect of VBDs that distinguishes their study

from efforts to model and gain insights into more general sys-

tems within infectious disease epidemiology is the inherent

dependence on multiple interacting scales of effect. Each of

the individual component biological systems (host, vector

and pathogen) suggests its own, implicit temporal scale

through the duration of stages/states of development. Mos-

quito larval development, for example, takes place at

timescales varying from days to weeks [171,172], whereas

human health interventions such as vaccination programmes

may vary from days to weeks to months [173,174]. Modelling

efforts must therefore include methods by which to couple

the timescales of these processes in biologically relevant

ways that capture the dynamics, but without creating artifi-

cial restrictions or producing erroneous model artefacts.
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Capturing these temporal scales successfully is made more

complicated by the fact that the duration of life stages/

states (excluding disease-specific states) in hosts most often

progress unaltered by vector or pathogen, but disease vectors

have been shown to be susceptible to alteration in their basic

survival, developmental and fecundity rates by the microbes

and pathogens they carry [175,176]. Furthermore, pathogen

states/stages are predominantly driven by their epidemiolo-

gical dynamics within and among hosts and vectors and, in

some cases, progress to a different developmental stage

only upon successful completion of the cycle between vectors

and (sometimes multiple species of) hosts [177].

When broadening the scope of questions asked with these

models from just the current examination of epidemiological

patterns to explore how climate change may alter the behav-

iour of this entire system in the future, yet another timescale

must be incorporated, as the processes of climate change act

on time frames of years to centuries or more. While many

models make timescale integration among these systems

implicit in the values of parameters for continuous inter-

actions, the continuous progress of climate change and the

discrete nature of many of these stages make this a potential

stumbling point in the accuracy and utility of generalizing the

insights from such methods (because conditions are expected

to shift), thereby potentially causing the interacting com-

ponents to affect one another at rates that themselves

change with time.

We therefore recommend that models address these issues

explicitly, rather than implicitly, selecting rate values that

seem to couple the timescales appropriately across systems

and choosing timescales based on those factors that are most rel-

evant to the driving question being asked; many of these scales

may be interdependent. For the pathogen, we believe three com-

ponents may be most relevant in determining the timescale

most appropriate for that system: replication in the host, dur-

ation of persistence in the vector and evolution of the

pathogen (which itself may depend on the other two). For the

vector, we believe that demographic vital rates (both free

from, and under the influence of, the pathogen) and host-

biting rates (which are known to drive demographic rates in

some systems) will be most relevant. For hosts (especially

humans), we believe that demographic rates and the timescales

of medical interventions are particularly relevant. The timescale

of medical interventions is often difficult to determine and may

include: time after introduction until a medical community

might detect an outbreak (which will itself depend on the

methods of surveillance, which may be more or less sensitive

over time and space as an outbreak progresses), time until treat-

ment or prophylaxis is available by either development,

production, distribution and/or time until such measures are

effective, probability of an outbreak based on the metrics dis-

cussed in §2b and the time for implementation and

effectiveness of control strategies for vectors (such as spraying).

Each of these poses their own challenges in how to best capture

them within a mathematical modelling framework, but may be

critical in capturing both current VBD dynamics and being able

to employ such models to study how climate change may alter

these dynamics in the future.
(b) Spatial scales
In dealing with the equally important question of spatial

scales, one must decide the level/scale of understanding of
climate change required that will be most appropriate to con-

nect with biological features/processes. The assessment of

VBD risk may be undertaken on a variety of geographical

scales, varying from a village to an entire country, region or

globally. The varying geographical and measurement (resol-

ution) scales have immense implications for spatial analysis,

such as scaling mismatches (when interpreting events at

one scale against data measured at another) [150]. Features

to be considered include both climatic (e.g. mean tempera-

ture) and meteorological (e.g. humidity or precipitation)

features and their associated variability, ecological scales for

hosts and vectors, changes in habitat (including both total

area and patterns/trends of fluctuation in locations and con-

nectivity) and shifting/expanding regions of infection as it

radiates into (potentially) novel areas. For many of these,

measurements taken during any state other than the current

norm may be of great value for testing how well models per-

form in predicting the system under perturbation. For that

reason, we expect and recommend that extreme weather

events (e.g. floods, tsunamis and hurricanes) may provide

an unfortunate boon to researchers (and may, for example,

cause significant changes to spatio-temporal vector popu-

lation dynamics), if we are able to gather relevant metrics

in their wake.

(c) The impact of pathogen/host interactions on disease
dynamics and evolution

Pathogen/host interactions are key factors in the evolution of

infectious diseases. External or environmental phenomena

impact behavioural, physiological, reproductive and ecologi-

cal characteristics of individuals and populations. Among the

components that may be altered and play a significant role in

disease transmission are the pathogen life cycle and evolution

processes, host susceptibility to infection, within-host/

pathogen competition (if infections involve more than one

strain or coinfection with multiple pathogens is likely), patho-

gen resistance to treatment, characteristics of the vector life

cycle (potentially altered by pathogen-induced changes in be-

haviour and/or reproductive physiology), physiologically

induced or purposefully adopted behavioural patterns of

the host that alter (either increasing or decreasing) risks of

exposure to infection, social/cultural/economic/behavioural

factors in (human) host compliance with public health efforts

and vector feeding behaviour as exemplified by preferential

feeding patterns.

(d) Data gaps
Parametrization is a key challenge in modelling complex bio-

logical systems and awareness of the limitations in both the

modelling framework and data quality (and availability) is

an important requirement. Given that a model is a response

to a certain set of precise, relevant and well-formulated ques-

tions about the phenomena under consideration, key

concerns are, for example, the quality and type of empirical

measurements necessary to parametrize the model, the

identification and sensitivity of parameters to measurement

error (and other uncertainties) and the availability and qual-

ity of empirical data needed (but published elsewhere). Data

may be roughly classified into a few categories related to the

source. Here, we propose the following, which is intended

only as a rough guide to organize the complex set of variables



1.   requirements and scope—to identify the key
      climate-related risks, end-user requirements,
      scope, and context

2.   feasibility—to explore data availability and
      feasibility of the requirements

3.   baseline climate risk—to assess the key
      climate risks for the current climate

4.   future climate risk—to assess how the key
      climate risks could change under scenarios of
      climate change

5.   adaptation options—to work with the end-
      users to explore adaptation options

6.   appropriate communication—to provide
      appropriate communications of the risks to end
      users and stakeholders

7.   monitor and review—to support future updates
      and improvements to the assessment utilizing the
      latest information
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that are, in fact, interrelated: ecological field measurements

relevant to both vectors and hosts, laboratory experiments

to investigate single-system and multi-system (i.e. one or

more components of pathogen, vector and host) effects and

rates, economic variables (e.g. land use, economic indices),

sociological (e.g. education level, human movement, trans-

portation), medical (e.g. reporting, vaccination, hospital

availability) and political (e.g. border issues).

In the context of VBDs and climate/climate change, there

are certain well-defined measurement and data needs that are

still lacking or require replication because of inherent techni-

cal difficulties in their acquisition; these include good

knowledge of basic population dynamic parameters (such

as population densities) and the number of intermediate

and alternative hosts, vector competence for the main

vector species involved in disease transmission (including

all component parameters in the definition of competence),

efficacy and cost of prevention measures (e.g. bednets/

vaccines, prophylactics, vector repellents), meteorological

indices and associated temporal patterns, habitat fragmenta-

tion changes over time, latency and cross-immune time spans

in diseases that involve multiple pathogen strains and the

impact of health metrics on disease progression in vectors

and hosts. Other examples are also discussed in §2a,b.
5. Potential climate risk assessment framework
for assessing vector-borne diseases risk

As our understanding of the climate system and ability to

model future scenarios of climate change have improved

and as society has become increasingly aware of the costs

and benefits of using climate information to better manage

climate-related risks, there has been a rapid increase in

demand for climate data, future projections and assessment

tools to enable appropriate climate risk management

decisions to be made. As discussed above, the characteristics

and behaviour of VBDs typically vary across space and time

and among species. They are influenced by multiple direct

and indirect forcings and complex interactions with the
environment, pathogen and host. Given such complexity, it

is clear that climate is only one of many influences on such

systems. Thus, in order to manage the risks that VBDs pose

to humans as a result of climate change, it is important to

assess the potential impacts within the wider context of the

current risks of VBDs on humans, key (climate and other) dri-

vers and interactions affecting VBDs in humans and potential

adaptation and decision support options to reduce and

manage the risks [178].

A variety of conceptual frameworks have been developed

to guide the assessment of climate change risks for a range of

applications [179–182]. Many of these are generic and flexible

enough to be applied to climate change and VBD risks in

humans. Here, we highlight one particular framework,

namely the Climate Impacts and Risk assessment Framework

(CIRF; http://www.metoffice.gov.uk/publicsector/hazard-

manager/CIRF) and demonstrate its potential application to

guide the systematic assessment of VBD risks. The CIRF

(figure 1) is a seven-step iterative process used by the UK

Meteorological Office to guide the assessment and manage-

ment of weather- and climate-related risks. Important

features of the CIRF are the looped structure to encourage

continuous cycles of improvement and the emphasis on fre-

quent communication among researchers, intermediaries

and end-users throughout each of the seven steps. In the

CIRF, risk is considered to be a combination of multiple

hazards (typically environmental factors, e.g. climate) and

vulnerabilities (typically exposure or social factors/age).

A brief overview of the key features and relevant guidance

for each of the steps is provided below.
(a) Step 1: requirements and scope
At the outset of any climate-related risk assessment, it is

important to understand the requirements, scope and context

for the assessment. This typically involves a literature review

to summarize current understanding and communications

with various information providers (such as scientists

and/or communication experts) and information users

(such as end-users and stakeholders). Early engagement of

http://www.metoffice.gov.uk/publicsector/hazardmanager/CIRF
http://www.metoffice.gov.uk/publicsector/hazardmanager/CIRF
http://www.metoffice.gov.uk/publicsector/hazardmanager/CIRF
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end-users and stakeholders involved in the management of

risks identified is vital in order to comprehend their require-

ments, understand the scope of the assessment and

encourage best use of the outputs and recommendations.

This often requires specialists in communication [183],

employing various methods, including surveys, interviews,

workshops, focus groups, working groups, presentations,

displays and online feedback [184].

At the end of this step, those involved in the assessment

should have developed a broad understanding of the key

weather- and climate-related risks involved and the main dri-

vers and interactions influencing those risks. Constructing a

system diagram is one useful way to identify the drivers

and interactions involved in a specific risk. Figure 2 illustrates

one such diagram, focusing on the risk of DENV transmission

in humans across the Eastern Mediterranean and Middle East

(EMME) region. This is constructed around the disease tri-

angle (host, pathogen, environment; [185]), including the

vector, and identifies the main drivers and influences

affecting the suitability of the environment, potential for

transmission and susceptibility of the human host to DENV.

Many of the key influences and interactions affecting

VBDs of humans are highlighted earlier in this review,

together with the complexities involved in considering how

interactions between climate change, biological, economic

and social factors occur and may combine to influence

future VBD transmission patterns [178,186–189].
(b) Step 2: feasibility
This step involves scoping of the datasets, models, techniques

and communications that would be needed to meet the

requirements (detailed in Step 1). The main aim here is to

assess if the specified requirements can be met with available

data, knowledge and technology. This step also provides

opportunity for major uncertainties, caveats, assumptions

and gaps in knowledge and data to be identified and

discussed with all end-users, stakeholders and information/

data providers. In terms of VBD risk, many examples exist

of background on gaps, uncertainties and emerging areas of
understanding on risk from a range of VBDs that would be

useful for this step [187,188,190–192]. Sections 2 and 4

consider appropriate metrics for monitoring VBD risk, con-

siderations regarding appropriate spatial scales (see also

Proestos et al. [193]) and limitations in modelling risk,

whereas §3 also provides a useful overview on the advan-

tages and limitations of different modelling paradigms for

assessing VBD risk.

(c) Step 3: baseline climate risk
Prior to assessing the risks associated with future climate

change, it is necessary to provide a baseline of the current

risks. This may involve quantitative assessment and vali-

dation using historic records, appropriate models (see §3)

and ensemble techniques for quantifying uncertainty and/

or qualitative assessment based on, for example, expert elici-

tation [194]. For VBD risk, a wide range of models (statistical

and mathematical), incorporating various environmental and

other constraints, are available for this purpose. For example,

prior to exploring future climate change projections of

dengue risk, Rogers [189] uses disease and vector databases,

together with a relatively high-resolution historic dataset of

monthly climate variables, to provide baseline global climate

risk maps for dengue, exploring uncertainties through use of

multiple dengue or vector species models and spatial

resolution considerations.

(d) Step 4: future climate risk
Future potential climate risks should be assessed relative

to the baseline risk in Step 3 using comparable metrics,

models and uncertainty measures (where appropriate).

Such an assessment requires suitable ‘what-if’ scenarios of

future potential changes in climate and other key drivers of

risk, such as population and land-use changes. These may

be tailored for the specific requirement (e.g. to study the

implications of a specific adaptation option; see Step 5) or,

more typically, standard scenarios of greenhouse gas and

socio-economic changes in the future, such as the special

report on emissions scenarios (SRES) [106] or representative
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concentration pathways [195], are used to drive global cli-

mate or earth system models.

In this issue, Rogers [189] uses climate outputs from a

single global climate model, HadCM3, driven by a range of

SRES emissions scenarios, as climate determinants for esti-

mates of future dengue risks, whereas Levi et al. [196]

consider how climate warming may affect the phenology of

ticks and Campbell et al. [197] analyse how the distribution

of two key disease vectors of dengue and chikungunya may

be affected by potential climatic changes. As spatial resolution

can be an important influence of VBD risk estimates, studies

[187,192,193] have, for example, used climate data from rela-

tively high-resolution regional climate models for their

various VBD risk projections.

(e) Step 5: adaptation options
Decision support for end-users and other stakeholders is a

key feature of risk management and integral to the CIRF.

This step is intended to further focus the results of the climate

risk assessments, possibly through specific analyses of adap-

tation scenarios in Step 5, in order to help end-users evaluate

the costs and benefits of potential adaptation options and

facilitate practical decision-making.

( f ) Step 6: appropriate communication
Communicating and disseminating risk information can

be very challenging. Although communications along the

‘climate information chains’ between information providers

and end-users are important to avoid misunderstandings

and respond to changing needs throughout the CIRF,

this step provides a focus for considering what form of

communicating climate risk information would be most

appropriate for the requirements (identified in Step 1).

This may take the form of short-term (minutes to seasons)

early-warning systems (via web, television, radio, text or

email alerts) and real-time information updates, or longer-

term baseline and future potential vulnerability, hazard or

combined risk maps [178,189]. Both short- and longer-

term communications are useful to help manage VBD

risks. For example, decision-makers should be encouraged

to include risk maps for mosquito vectors within their strat-

egies, as these would provide useful guidance for managing

the potential for vector establishment, proliferation and

potential activity periods.

(g) Step 7: monitor and review
The final step in the CIRF encourages ongoing monitoring

and reviewing of procedures, enabling continual improve-

ments to be made based on the most up-to-date data, tools

and techniques. The importance of monitoring and appro-

priate communication tools for managing VBD risk is

highlighted by the WHO and partner agencies through one

of their key programme aims, namely to promote climate

risk management through improved surveillance, meteorolo-

gically informed early warning systems and spatial risk

mapping [178].

The iterative risk management framework outlined here pro-

vides us a flexible structure to guide the assessment of risks in a

logical order, but where steps may be omitted if irrelevant to the

specific focus. It is well suited to address the calls made by

Hoberg & Brooks [198] for more proactive and evolutionary
risk management of emerging infectious diseases and may be

combined with more responsive disaster risk management

activities to coordinate both reactive and proactive approaches

to managing VBD and other interacting risks.
6. Conclusion
The next generation of risk assessment methods should ide-

ally take into account the complexity of VBD transmission

dynamics, including the effects of broader societal contexts

in which pathogen transmission occurs, if more reliable

evaluations of the effects of climate change on VBDs are to

be undertaken. Although mathematical models can provide

us with powerful tools for incorporating and examining the

impact of linked biological and societal variables on trans-

mission as a result of climate change, several challenges

need to first be overcome.

The first regards the mismatch of spatial scales of available

climate prediction and socio-economic data with the more

locally scaled ecological and biological variables underlying

the typically focal transmission of VBDs [1,4,17,35,199].

Although regional climate models may overcome some of the

problems connected with scale [200], it is possible that there is

a lower limit to the spatial resolution of reliable climate and

social data (typically available down to only district-level

scales in most countries) available for analysis, which will limit

the application of models at finer resolutions. A key need is there-

fore estimation of the error that such data aggregation will

induce into model predictions and what this implies for the

use of dynamic modelling approaches for evaluating the impacts

of future climate change on transmission. This also includes

identifying the most appropriate spatial resolution for applying

such frameworks. Currently, disease modelling is still largely

based on single interacting species frameworks, which ignore

the complex interdependence between all diseases observed

within a population at a certain time. In addition, while recent

progress has been made in more realistically quantifying and

modelling the effects of climate (for example, fluctuating daily

temperatures) on pathogen transmission, extensive research

gaps remain in our understanding of the effect of climate on

the interactions between VBDs and their invertebrate hosts.

This is particularly true for tick-borne diseases. Existing research

has demonstrated that these interactions are complex, often non-

linear and vector–pathogen specific, highlighting the need for

further empirical work in order to improve the parametrization

of VBD transmission models.

Thus, a second need is to develop models that take account

of multiple co-occurring diseases and how climate change may

affect co-transmission patterns [17]. While several workers

have developed models of VBD transmission via several

vector hosts and have shown how ecosystem change-induced

alterations to vector biodiversity may influence pathogen

transmission [201–203], more direct coupling of climate

variables with vector population dynamics, as well as with

within-host interactions with other infections, is yet to be

systematically undertaken.

A third major need is for more information on how best to

address cross-scale issues. Here, exploration of the concept of

panarchy and how such ecological thinking and methods

(which focus on how fast and slow, small and big events

and processes across regions may transform socio-ecological

systems through evolution, adaptation and societal learning



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130551

12
[204,205]) can be incorporated into disease modelling frame-

works will prove illuminating and potentially transformative.

Finally, as always, there is a major need to gain a better

understanding of the pathways and functional forms through

which human activities, particularly deforestation, road build-

ing, transportation, urbanization, irrigation, dam building and

agricultural extensions and culture, can impact disease trans-

mission processes. This knowledge will be crucial to the

development of better models describing how societal

change may accentuate or dampen the effects of climate

change on VBD transmission. Such activities must also include

the effects of public health interventions, eco-evolutionary

response by pathogens, vectors and hosts to climate- and

human-induced ecological change and the impact of human

reflexivity in response to perceived or predicted threats and

risks. These challenges may appear daunting, but we suggest

that with increased computational power, advances in climate

modelling, the development of new ecological theories of

cross-scaled climate-dependent dynamics and increased publi-

cation of multi-sectoral data on human economic and public

health interventions, these difficulties may be overcome and

the next generation of modelling frameworks will be able to

make considerable advances on this important global issue.
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5. Rodó X et al. 2013 Climate change and infectious
diseases: can we meet the needs for better
prediction? Clim. Change 118, 625 – 640. (doi:10.
1007/s10584-013-0744-1)

6. Garms R, Walsh JF, Davies JB. 1979 Studies on the
reinvasion of the onchocerciasis control programme
in the Volta River Basin by Simulium damnosum s.I.
with emphasis on the south-western areas.
Tropenmed. Parasitol. 30, 345 – 362.

7. Paaijmans KP, Imbahale SS, Thomas MB, Takken W.
2010 Relevant microclimate for determining the
development rate of malaria mosquitoes and
possible implications of climate change. Malar. J. 9,
196. (doi:10.1186/1475-2875-9-196)

8. Parham PE, Michael E. 2010 Modelling climate
change and malaria transmission. Adv. Exp. Med.
Biol. 673, 184 – 199. (doi:10.1007/978-1-4419-6064-
1_13)

9. Parham PE, Michael E. 2010 Modeling the effects of
weather and climate change on malaria
transmission. Environ. Health Perspect. 118,
620 – 626. (doi:10.1289/ehp.0901256)

10. Yang HM, Macoris ML, Galvani KC, Andrighetti MT,
Wanderley DM. 2009 Assessing the effects of
temperature on dengue transmission. Epidemiol.
Infect. 137, 1179 – 1187. (doi:10.1017/
S0950268809002052)

11. Yang HM, Macoris ML, Galvani KC, Andrighetti MT,
Wanderley DM. 2009 Assessing the effects of
temperature on the population of Aedes aegypti,
the vector of dengue. Epidemiol. Infect. 137,
1188 – 1202. (doi:10.1017/S0950268809002040)

12. Martens WJ. 1998 Health impacts of climate change
and ozone depletion: an ecoepidemiologic
modeling approach. Environ. Health Perspect.
106(Suppl. 1), 241 – 251. (doi:10.1289/ehp.
98106s1241)

13. Hoshen MB, Morse AP. 2004 A weather-driven
model of malaria transmission. Malar. J. 3, 32.
(doi:10.1186/1475-2875-3-32)

14. Bezirtzoglou C, Dekas K, Charvalos E. 2011 Climate
changes, environment and infection: facts, scenarios
and growing awareness from the public health
community within Europe. Anaerobe 17, 337 – 340.
(doi:10.1016/j.anaerobe.2011.05.016)

15. Brisbois BW, Ali SH. 2010 Climate change, vector-
borne disease and interdisciplinary research: social
science perspectives on an environment and health
controversy. Ecohealth 7, 425 – 438. (doi:10.1007/
s10393-010-0354-6)

16. Egbendewe-Mondzozo A, Musumba M, McCarl BA,
Wu X. 2011 Climate change and vector-borne
diseases: an economic impact analysis of malaria in
Africa. Int. J. Environ. Res. Public Health 8,
913 – 930. (doi:10.3390/ijerph8030913)

17. Froment A. 2009 Biodiversity and health: the place
of parasitic and infectious diseases. In Biodiversity
change and human health (eds Osvaldo E. Sala,
Laura A. Meyerson and Camille Parmesan), pp.
211 – 227. Washington, DC: Island Press.

18. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow
RW. 2005 Urbanization, malaria transmission and
disease burden in Africa. Nat. Rev. Microbiol. 3,
81 – 90. (doi:10.1038/nrmicro1069)

19. Martens WJ, Slooff R, Jackson EK. 1997 Climate
change, human health, and sustainable development.
Bull. World Health Organ. 75, 583 – 588.

20. Mills JN, Gage KL, Khan AS. 2010 Potential
influence of climate change on vector-borne and
zoonotic diseases: a review and proposed research
plan. Environ. Health Perspect. 118, 1507 – 1514.
(doi:10.1289/ehp.0901389)

21. Qi Q, Guerra CA, Moyes CL, Elyazar IR, Gething PW,
Hay SI, Tatem AJ. 2012 The effects of
urbanization on global Plasmodium vivax malaria
transmission. Malar. J. 11, 403. (doi:10.1186/1475-
2875-11-403)

22. Reiter P. 2001 Climate change and mosquito-borne
disease. Environ. Health Perspect. 109(Suppl. 1),
141 – 161. (doi:10.2307/3434853)

http://dx.doi.org/10.1890/08-0079.1
http://dx.doi.org/10.1016/j.tree.2011.03.002
http://dx.doi.org/10.1016/j.tree.2011.03.002
http://dx.doi.org/10.1128/CMR.17.1.136-173.2004
http://dx.doi.org/10.1128/CMR.17.1.136-173.2004
http://dx.doi.org/10.1242/jeb.037564
http://dx.doi.org/10.1007/s10584-013-0744-1
http://dx.doi.org/10.1007/s10584-013-0744-1
http://dx.doi.org/10.1186/1475-2875-9-196
http://dx.doi.org/10.1007/978-1-4419-6064-1_13
http://dx.doi.org/10.1007/978-1-4419-6064-1_13
http://dx.doi.org/10.1289/ehp.0901256
http://dx.doi.org/10.1017/S0950268809002052
http://dx.doi.org/10.1017/S0950268809002052
http://dx.doi.org/10.1017/S0950268809002040
http://dx.doi.org/10.1289/ehp.98106s1241
http://dx.doi.org/10.1289/ehp.98106s1241
http://dx.doi.org/10.1186/1475-2875-3-32
http://dx.doi.org/10.1016/j.anaerobe.2011.05.016
http://dx.doi.org/10.1007/s10393-010-0354-6
http://dx.doi.org/10.1007/s10393-010-0354-6
http://dx.doi.org/10.3390/ijerph8030913
http://dx.doi.org/10.1038/nrmicro1069
http://dx.doi.org/10.1289/ehp.0901389
http://dx.doi.org/10.1186/1475-2875-11-403
http://dx.doi.org/10.1186/1475-2875-11-403
http://dx.doi.org/10.2307/3434853


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130551

13
23. Tatem AJ, Gething PW, Smith DL, Hay SI. 2013
Urbanization and the global malaria recession.
Malar. J. 12, 133. (doi:10.1186/1475-2875-12-133)

24. Tusting LS, Willey B, Lucas H, Thompson J, Kafy HT,
Smith R, Lindsay SW. 2013 Socioeconomic
development as an intervention against malaria: a
systematic review and meta-analysis. Lancet 382,
963 – 972. (doi:10.1016/S0140-6736(13)60851-X)

25. Yang HM, Ferreira MU. 2000 Assessing the effects of
global warming and local social and economic
conditions on the malaria transmission. Rev. Saude
Publ. 34, 214 – 222. (doi:10.1590/S0034-
89102000000300002)

26. Martens P, Moser SC. 2001 Health impacts of
climate change. Science 292, 1065 – 1066. (doi:10.
1126/science.292.5519.1065)

27. McMichael AJ, Woodruff RE. 2005 Detecting the
health effects of environmental change: scientific
and political challenge. Ecohealth 2, 1 – 3. (doi:10.
1007/s10393-004-0152-0)

28. Casman EA, Dowlatabadi H (eds). 2002 The
contextual determinants of malaria. Resources for
the future. Washington, DC: Routledge.

29. Tol RS, Dowlatabadi H. 2001 Vector-borne diseases,
development and climate change. Integr. Assess. 2,
173 – 181. (doi:10.1023/A:1013390516078)

30. Lafferty KD. 2009 Calling for an ecological
approach to studying climate change and infectious
diseases. Ecology 90, 932 – 933. (doi:10.1890/08-
1767.1)

31. Funtowicz SO, Ravetz JR. 1992 Three types of risk
assessment and the emergence of post-normal
science. In Social theories of risk (eds
Sheldon Krimsky and Dominic Golding, pp. 251 –
274. Wesport, CT: Praeger Publishers.

32. Funtowicz SO, Ravetz JR. 1994 Uncertainty,
complexity and post-normal science. Environ.
Toxicol. Chem. 13, 1881 – 1885. (doi:10.1002/etc.
5620131203)

33. Horwitz P, Wilcox BA. 2005 Parasites, ecosystems
and sustainability: an ecological and complex
systems perspective. Int. J. Parasitol. 35, 725 – 732.
(doi:10.1016/j.ijpara.2005.03.002)

34. Wilcox BA, Gubler DJ. 2005 Disease ecology and the
global emergence of zoonotic pathogens. Environ.
Health Prev. Med. 10, 263 – 272. (doi:10.1007/
BF02897701)

35. Cumming G. 2005 Ecology in global scenarios.
Ecosyst. Hum. Well-being 45, 45 – 70.

36. Reiter P. 2008 Climate change and mosquito-borne
disease: knowing the horse before hitching the cart.
Rev. Sci. Tech. 27, 383 – 398.

37. Soskolne CL, Broemling N. 2002 Eco-epidemiology:
on the need to measure health effects from global
change. Glob. Change Hum. Health 3, 58 – 66.
(doi:10.1023/A:1019692414126)

38. Xun WW, Khan AE, Michael E, Vineis P. 2010
Climate change epidemiology: methodological
challenges. Int. J. Public Health 55, 85 – 96. (doi:10.
1007/s00038-009-0091-1)

39. Adger WN. 2006 Vulnerability. Glob. Environ.
Change 16, 268 – 281. (doi:10.1016/j.gloenvcha.
2006.02.006)
40. Wu S, Pan T, He S. 2012 Climate change risk
research: a case study on flood disaster risk in China.
Adv. Clim. Change Res. 3, 92 – 98. (doi:10.3724/SP.J.
1248.2012.00092)

41. Turner BL et al. 2003 A framework for vulnerability
analysis in sustainability science. Proc. Natl Acad.
Sci. USA 100, 8074 – 8079. (doi:10.1073/pnas.
1231335100)

42. Beven KJ. 2004 Towards environmental models of
everywhere: advances in modelling and data
assimilation. Hydrology: science and practice for the
21st century. In Proc. British Hydrological Society Int.
Conf. Imperial College, London, July 2004 (eds
B Webb, N Arnell, C Onof, N McIntyre, R Gurney,
C Kirby), pp. 244 – 250. London, UK: British
Hydrological Society.

43. Bomblies A, Duchemin JB, Eltahir EA. 2009 A
mechanistic approach for accurate simulation of
village scale malaria transmission. Malar. J. 8, 223.
(doi:10.1186/1475-2875-8-223)

44. Bouden M, Moulin B, Gosselin P. 2008 The
geosimulation of West Nile virus propagation: a
multi-agent and climate sensitive tool for risk
management in public health. Int. J. Health Geogr.
7, 35. (doi:10.1186/1476-072X-7-35)

45. Chaves LF, Kaneko A, Pascual M. 2009 Random, top-
down, or bottom-up coexistence of parasites:
malaria population dynamics in multi-parasitic
settings. Ecology 90, 2414 – 2425. (doi:10.1890/08-
1022.1)

46. Chikaki E, Ishikawa H. 2009 A dengue transmission
model in Thailand considering sequential infections
with all four serotypes. J. Infect. Dev. Ctries. 3,
711 – 722. (doi:10.3855/jidc.616)

47. Chiyaka C, Garira W, Dube S. 2009 Effects of
treatment and drug resistance on the transmission
dynamics of malaria in endemic areas. Theor.
Popul. Biol. 75, 14 – 29. (doi:10.1016/j.tpb.2008.
10.002)

48. Coutinho FA, Burattini MN, Lopez LF, Massad E.
2006 Threshold conditions for a non-autonomous
epidemic system describing the population
dynamics of dengue. Bull. Math. Biol. 68,
2263 – 2282. (doi:10.1007/s11538-006-9108-6)

49. Cruz-Pacheco G, Esteva L, Montano-Hirose JA,
Vargas C. 2005 Modelling the dynamics of West Nile
virus. Bull. Math. Biol. 67, 1157 – 1172. (doi:10.
1016/j.bulm.2004.11.008)

50. de Castro Medeiros LC, Castilho CA, Braga C, de
Souza WV, Regis L, Monteiro AM. 2011 Modeling
the dynamic transmission of dengue fever:
investigating disease persistence. PLoS. Negl. Trop.
Dis. 5, e942. (doi:10.1371/journal.pntd.0000942)

51. Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI,
Beier JC. 2003 An individual-based model of
Plasmodium falciparum malaria transmission on the
coast of Kenya. Trans. R. Soc. Trop. Med. Hyg. 97,
43 – 50. (doi:10.1016/S0035-9203(03)90018-6)

52. Morin CW, Comrie AC. 2010 Modeled response of
the West Nile virus vector Culex quinquefasciatus to
changing climate using the dynamic mosquito
simulation model. Int. J. Biometeorol. 54, 517 – 529.
(doi:10.1007/s00484-010-0349-6)
53. Otero M, Schweigmann N, Solari HG. 2008 A
stochastic spatial dynamical model for Aedes
aegypti. Bull. Math. Biol. 70, 1297 – 1325. (doi:10.
1007/s11538-008-9300-y)

54. Otero M, Solari HG. 2010 Stochastic eco-
epidemiological model of dengue disease
transmission by Aedes aegypti mosquito. Math.
Biosci. 223, 32 – 46. (doi:10.1016/j.mbs.2009.
10.005)

55. Pinho STR, Ferreira CP, Esteva L, Barreto FR, Morato
e Silva VC, Teixeira MGL. 2010 Modelling the
dynamics of dengue real epidemics. Phil. Trans. R.
Soc. A 368, 5679 – 5693. (doi:10.1098/rsta.2010.
0278)

56. Ruiz D, Poveda G, Velez ID, Quinones ML, Rua GL,
Velasquez LE, Zuluaga JS. 2006 Modelling
entomological – climatic interactions of Plasmodium
falciparum malaria transmission in two Colombian
endemic – regions: contributions to a national
malaria early warning system. Malar. J. 5, 66.
(doi:10.1186/1475-2875-5-66)

57. Schaeffer B, Mondet B, Touzeau S. 2008 Using a
climate-dependent model to predict mosquito
abundance: application to Aedes (Stegomyia)
africanus and Aedes (Diceromyia) furcifer (Diptera:
Culicidae). Infect. Genet. Evol. 8, 422 – 432. (doi:10.
1016/j.meegid.2007.07.002)

58. Ye Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn
R. 2009 Local scale prediction of Plasmodium
falciparum malaria transmission in an endemic
region using temperature and rainfall. Glob. Health
Action 2. (doi:10.3402/gha.v2i0.1923)

59. Laporta GZ, Lopez de Prado PI, Kraenkel RA,
Coutinho RM, Sallum MA. 2013 Biodiversity can
help prevent malaria outbreaks in tropical forests.
PLoS Negl. Trop. Dis. 7, e2139. (doi:10.1371/journal.
pntd.0002139)

60. Dobson A. 2009 Climate variability, global change,
immunity, and the dynamics of infectious diseases.
Ecology 90, 920 – 927. (doi:10.1890/08-0736.1)

61. Eggo RM, Cauchemez S, Ferguson NM. 2011 Spatial
dynamics of the 1918 influenza pandemic in
England, Wales and the United States. J. R. Soc.
Interface 8, 233 – 243. (doi:10.1098/rsif.2010.0216)

62. Bonds MH, Keenan DC, Rohani P, Sachs JD. 2010
Poverty trap formed by the ecology of infectious
diseases. Proc. R. Soc. B 277, 1185 – 1192. (doi:10.
1098/rspb.2009.1778)

63. LaDeau SL, Glass GE, Hobbs NT, Latimer A, Ostfeld
RS. 2011 Data-model fusion to better understand
emerging pathogens and improve infectious disease
forecasting. Ecol. Appl. 21, 1443 – 1460. (doi:10.
1890/09-1409.1)

64. Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S,
Clark JS, Schimel DS. 2011 Ecological forecasting
and data assimilation in a data-rich era. Ecol. Appl.
21, 1429 – 1442. (doi:10.1890/09-1275.1)

65. Bankes SC. 2002 Agent-based modeling: a
revolution? Proc. Natl Acad. Sci. USA 99(Suppl. 3),
7199 – 7200. (doi:10.1073/pnas.072081299)

66. Gao C, Wang H, Weng E, Lakshmivarahan S, Zhang
Y, Luo Y. 2011 Assimilation of multiple data sets
with the ensemble Kalman filter to improve

http://dx.doi.org/10.1186/1475-2875-12-133
http://dx.doi.org/10.1016/S0140-6736(13)60851-X
http://dx.doi.org/10.1590/S0034-89102000000300002
http://dx.doi.org/10.1590/S0034-89102000000300002
http://dx.doi.org/10.1126/science.292.5519.1065
http://dx.doi.org/10.1126/science.292.5519.1065
http://dx.doi.org/10.1007/s10393-004-0152-0
http://dx.doi.org/10.1007/s10393-004-0152-0
http://dx.doi.org/10.1023/A:1013390516078
http://dx.doi.org/10.1890/08-1767.1
http://dx.doi.org/10.1890/08-1767.1
http://dx.doi.org/10.1002/etc.5620131203
http://dx.doi.org/10.1002/etc.5620131203
http://dx.doi.org/10.1016/j.ijpara.2005.03.002
http://dx.doi.org/10.1007/BF02897701
http://dx.doi.org/10.1007/BF02897701
http://dx.doi.org/10.1023/A:1019692414126
http://dx.doi.org/10.1007/s00038-009-0091-1
http://dx.doi.org/10.1007/s00038-009-0091-1
http://dx.doi.org/10.1016/j.gloenvcha.2006.02.006
http://dx.doi.org/10.1016/j.gloenvcha.2006.02.006
http://dx.doi.org/10.3724/SP.J.1248.2012.00092
http://dx.doi.org/10.3724/SP.J.1248.2012.00092
http://dx.doi.org/10.1073/pnas.1231335100
http://dx.doi.org/10.1073/pnas.1231335100
http://dx.doi.org/10.1186/1475-2875-8-223
http://dx.doi.org/10.1186/1476-072X-7-35
http://dx.doi.org/10.1890/08-1022.1
http://dx.doi.org/10.1890/08-1022.1
http://dx.doi.org/10.3855/jidc.616
http://dx.doi.org/10.1016/j.tpb.2008.10.002
http://dx.doi.org/10.1016/j.tpb.2008.10.002
http://dx.doi.org/10.1007/s11538-006-9108-6
http://dx.doi.org/10.1016/j.bulm.2004.11.008
http://dx.doi.org/10.1016/j.bulm.2004.11.008
http://dx.doi.org/10.1371/journal.pntd.0000942
http://dx.doi.org/10.1016/S0035-9203(03)90018-6
http://dx.doi.org/10.1007/s00484-010-0349-6
http://dx.doi.org/10.1007/s11538-008-9300-y
http://dx.doi.org/10.1007/s11538-008-9300-y
http://dx.doi.org/10.1016/j.mbs.2009.10.005
http://dx.doi.org/10.1016/j.mbs.2009.10.005
http://dx.doi.org/10.1098/rsta.2010.0278
http://dx.doi.org/10.1098/rsta.2010.0278
http://dx.doi.org/10.1186/1475-2875-5-66
http://dx.doi.org/10.1016/j.meegid.2007.07.002
http://dx.doi.org/10.1016/j.meegid.2007.07.002
http://dx.doi.org/10.3402/gha.v2i0.1923
http://dx.doi.org/10.1371/journal.pntd.0002139
http://dx.doi.org/10.1371/journal.pntd.0002139
http://dx.doi.org/10.1890/08-0736.1
http://dx.doi.org/10.1098/rsif.2010.0216
http://dx.doi.org/10.1098/rspb.2009.1778
http://dx.doi.org/10.1098/rspb.2009.1778
http://dx.doi.org/10.1890/09-1409.1
http://dx.doi.org/10.1890/09-1409.1
http://dx.doi.org/10.1890/09-1275.1
http://dx.doi.org/10.1073/pnas.072081299


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130551

14
forecasts of forest carbon dynamics. Ecol. Appl. 21,
1461 – 1473. (doi:10.1890/09-1234.1)

67. Ruiz D, Brun C, Connor SJ, Omumbo JA, Lyon B,
Thomson MC. 2014 Testing a multi-malaria-model
ensemble against 30 years of data in the Kenyan
highlands. Malar. J. 13, 206. (doi:10.1186/1475-
2875-13-206)

68. Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy
D, Brooks A, Penny M, Tanner M. 2012
Ensemble modeling of the likely public health
impact of a pre-erythrocytic malaria vaccine. PLoS
Med. 9, e1001157. (doi:10.1371/journal.pmed.
1001157)

69. Vancini R, Wang G, Ferreira D, Hernandez R, Brown
DT. 2013 Alphavirus genome delivery occurs directly
at the plasma membrane in a time- and
temperature-dependent process. J. Virol. 87,
4352 – 4359. (doi:10.1128/JVI.03412-12)

70. Turell MJ, Rossi CA, Bailey CL. 1985 Effect of
extrinsic incubation temperature on the ability of
Aedes taeniorhynchus and Culex pipiens to transmit
rift valley fever virus. Am. J. Trop. Med. Hyg. 34,
1211 – 1218.

71. Adelman ZN et al. 2013 Cooler temperatures
destabilize RNA interference and increase
susceptibility of disease vector mosquitoes to viral
infection. PLoS Negl. Trop. Dis. 7, e2239. (doi:10.
1371/journal.pntd.0002239)

72. Westbrook CJ, Reiskind MH, Pesko KN, Greene KE,
Lounibos LP. 2010 Larval environmental
temperature and the susceptibility of Aedes
albopictus Skuse (Diptera: Culicidae) to chikungunya
virus. Vector Borne Zoonotic Dis. 10, 241 – 247.
(doi:10.1089/vbz.2009.0035)

73. Watts DM, Burke DS, Harrison BA, Whitmire RE,
Nisalak A. 1987 Effect of temperature on the vector
efficiency of Aedes aegypti for dengue 2 virus.
Am. J. Trop. Med. Hyg. 36, 143 – 152.

74. Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN.
2009 The effect of extrinsic incubation temperature
on development of dengue serotype 2 and 4 viruses
in Aedes aegypti (L.). Southeast Asian J. Trop. Med.
Public Health 40, 942 – 950.

75. Halstead SB. 2008 Dengue virus – mosquito
interactions. Annu. Rev. Entomol. 53, 273 – 291.
(doi:10.1146/annurev.ento.53.103106.093326)

76. Barbazan P, Guiserix M, Boonyuan W, Tuntaprasart
W, Pontier D, Gonzalez JP. 2010 Modelling the
effect of temperature on transmission of dengue.
Med. Vet. Entomol. 24, 66 – 73. (doi:10.1111/j.1365-
2915.2009.00848.x)

77. Carrington LB, Lambrechts L, Scott TW. 2013
Fluctuations at a low mean temperature accelerate
dengue virus transmission by Aedes aegypti. PLoS
Negl. Trop. Dis. 7, e2190. (doi:10.1371/journal.pntd.
0002190)

78. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB,
Kramer LD, Thomas MB, Scott TW. 2011 Impact of
daily temperature fluctuations on dengue virus
transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA
108, 7460 – 7465. (doi:10.1073/pnas.1101377108)

79. Reisen WK, Fang Y, Martinez VM. 2006 Effects of
temperature on the transmission of west nile virus
by Culex tarsalis (Diptera: Culicidae). J. Med.
Entomol. 43, 309 – 317. (doi:10.1603/0022-
2585(2006)043[0309:EOTOTT]2.0.CO;2)

80. Muturi EJ, Alto BW. 2011 Larval environmental
temperature and insecticide exposure alter Aedes
aegypti competence for arboviruses. Vector Borne
Zoonotic Dis. 11, 1157 – 1163. (doi:10.1089/vbz.
2010.0209)

81. Sinden RE et al. 2007 Progression of Plasmodium
berghei through Anopheles stephensi is density-
dependent. PLoS Pathog. 3, e195. (doi:10.1371/
journal.ppat.0030195)

82. Boyd MF. 1949 Epidemiology: factors related to the
definitive host. In Malariology: a comprehensive
survey of all aspects of this group of diseases from a
global standpoint (ed. MF Boyd), pp. 608 – 697.
Philadelphia, PA: W.B. Saunders Company.

83. Macdonald G. 1957 The epidemiology and control of
malaria. London, UK: Oxford University Press.

84. Dentinova TS. 1962 Age-grouping methods in
diptera of medical importance. Geneva, Switzerland:
World Health Organisation.

85. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read
AF, Thomas MB. 2010 Influence of climate on
malaria transmission depends on daily temperature
variation. Proc. Natl Acad. Sci. USA 107, 15 135 –
15 359. (doi:10.1073/pnas.1006422107)

86. Paaijmans KP, Read AF, Matthew TB. 2009
Understanding the link between malaria risk and
climate. Proc. Natl Acad. Sci. USA 106, 13 844 –
13 849. (doi:10.1073/pnas.0903423106).

87. Blanford JI, Blanford S, Crane RG, Mann ME,
Paaijmans KP, Schreiber KV, Thomas MB. 2013
Implications of temperature variation for malaria
parasite development across Africa. Sci. Rep. 3,
1300. (doi:10.1038/srep01300)

88. Zhao X, Chen F, Feng Z, Li X, Zhou XH. 2014
Characterizing the effect of temperature fluctuation on
the incidence of malaria: an epidemiological study in
south-west China using the varying coefficient
distributed lag non-linear model. Malar. J. 13, 192.
(doi:10.1186/1475-2875-13-192)

89. Paaijmans KP, Blanford S, Chan BH, Thomas MB.
2012 Warmer temperatures reduce the vectorial
capacity of malaria mosquitoes. Biol. Lett. 8,
465 – 468. (doi:10.1098/rsbl.2011.1075)

90. Paaijmans KP, Cator LJ, Thomas MB. 2013
Temperature-dependent pre-bloodmeal period and
temperature-driven asynchrony between parasite
development and mosquito biting rate reduce
malaria transmission intensity. PLoS ONE 8, e55777.
(doi:10.1371/journal.pone.0055777)

91. Mordecai EA et al. 2013 Optimal temperature for
malaria transmission is dramatically lower than
previously predicted. Ecol. Lett. 16, 22 – 30. (doi:10.
1111/ele.12015)

92. Murdock CC, Paaijmans KP, Cox-Foster D, Read AF,
Thomas MB. 2012 Rethinking vector immunology:
the role of environmental temperature in shaping
resistance. Nat. Rev. Microbiol. 10, 869 – 876.
(doi:10.1038/nrmicro2900)

93. Suwanchaichinda C, Paskewitz SM. 1998 Effects of
larval nutrition, adult body size, and adult
temperature on the ability of Anopheles gambiae
(Diptera: Culicidae) to melanize sephadex beads.
J. Med. Entomol. 35, 157 – 161.

94. Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer
JF, Read AF, Thomas MB. 2012 Complex effects of
temperature on mosquito immune function.
Proc. R. Soc. B 279, 3357 – 3366. (doi:10.1098/rspb.
2012.0638)

95. Murdock CC, Blanford S, Luckhart S, Thomas MB.
2014 Ambient temperature and dietary
supplementation interact to shape mosquito vector
competence for malaria. J. Insect Physiol. 67C,
37 – 44. (doi:10.1016/j.jinsphys.2014.05.020)

96. Crippa M, Rais O, Gern F, Gern L. 2002
Investigations on the mode and dynamics of
transmission and infectivity of Borrelia burgdorferi
sensu stricto and Borrelia afzelii in Ixodes ricinus
ticks. Vector Borne Zoonotic Dis. 2, 3 – 9. (doi:10.
1089/153036602760260724)

97. Estrada-Pena A, Ayllon N, de la Fuente J. 2012
Impact of climate trends on tick-borne pathogen
transmission. Front. Physiol. 3, 64. (doi:10.3389/
fphys.2012.00064)

98. Villar M et al. 2010 Expression of heat shock and
other stress response proteins in ticks and cultured
tick cells in response to Anaplasma spp. infection
and heat shock. Int. J. Proteomics 2010, 657261.
(doi:10.1155/2010/657261)

99. Parola P, Paddock CD, Raoult D. 2005 Tick-borne
rickettsioses around the world: emerging diseases
challenging old concepts. Clin. Microbiol. Rev. 18,
719 – 756. (doi:10.1128/CMR.18.4.719-756.2005)

100. Oteo JA, Portillo A. 2012 Tick-borne rickettsioses in
Europe. Ticks Tick Borne Dis 3, 271 – 278. (doi:10.
1016/j.ttbdis.2012.10.035)

101. Ready PD. 2013 Biology of phlebotomine sand flies
as vectors of disease agents. Annu. Rev. Entomol.
58, 227 – 250. (doi:10.1146/annurev-ento-120811-
153557)

102. Rioux JA, Aboulker JP, Lanotte G, Killick-Kendrick R,
Martini-Dumas A. 1985 Ecology of leishmaniasis in
the south of France. 21. Influence of temperature
on the development of Leishmania infantum Nicolle,
1908 in Phlebotomus ariasi Tonnoir 1921.
Experimental study]. Ann. Parasitol. Hum. Comp. 60,
221 – 229.

103. Hlavacova J, Votypka J, Volf P. 2013 The effect of
temperature on Leishmania (Kinetoplastida:
Trypanosomatidae) development in sand flies.
J. Med. Entomol. 50, 955 – 958. (doi:10.1603/
ME13053)

104. Gething PW, Smith DL, Patil AP, Tatem AJ, Snow
RW, Hay SI. 2010 Climate change and the global
malaria recession. Nature 465, 342 – 345. (doi:10.
1038/nature09098)
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