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Single-step electron tunnelling reactions can transport
charges over distances of 15–20 Å in proteins.
Longer-range transfer requires multi-step tunnelling
processes along redox chains, often referred to as
hopping. Long-range hopping via oxidized radicals of
tryptophan and tyrosine, which has been identified
in several natural enzymes, has been demonstrated
in artificial constructs of the blue copper protein
azurin. Tryptophan and tyrosine serve as hopping
way stations in high-potential charge transport
processes. It may be no coincidence that these two
residues occur with greater-than-average frequency
in O2- and H2O2-reactive enzymes. We suggest
that appropriately placed tyrosine and/or tryptophan
residues prevent damage from high-potential reactive
intermediates by reduction followed by transfer of the
oxidizing equivalent to less harmful sites or out of the
protein altogether.

1. Background
It is well established that multi-step tunnelling, called
hopping, is required for functional charge transport in
many redox enzymes (examples include ribonucleotide
reductase [1–9], photosystem II [10–12], DNA photolyase
[13–21], MauG [22–25] and cytochrome c peroxidase
[26,27]). Here, we advance the hypothesis that many
such enzymes, most especially those that generate
high-potential intermediates during turnover, could
be irreversibly damaged if the intermediates are not
inactivated in some way. We suggest that appropriately
placed tyrosine (Tyr) and/or tryptophan (Trp) residues
can prevent such damage by rapid reduction of the
intermediates followed by transfer of the oxidizing
equivalent to less harmful sites or out of the protein
altogether [28]. A protective role of this sort will not
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be apparent in catalytic rates and binding constants; the enzyme survival time is more likely to
be an indicator of this function.

The blue copper protein Pseudomonas aeruginosa azurin has been a test-bed for mechanistic
investigations of Trp and Tyr radical formation in biological electron transfer (ET) reactions
[29–33]. Our initial investigations revealed that CuI oxidation by a photoexcited ReI-diimine
(ReI(CO)3(dmp), dmp= 4,7-dimethyl-1,10-phenanthroline) covalently bound at His124 on a
His124Gly123Trp122Met121 β-strand (ReHis124Trp122CuI-azurin) occurs in a few nanoseconds, fully
two orders of magnitude faster than documented for single-step electron tunnelling at a 19 Å
donor–acceptor distance [29]. We attributed the accelerated ET to a two-step hopping mechanism
involving a Trp•+ radical intermediate. In recent work, we examined ET in ReHis126Trp122CuI-
azurin, which has three redox sites at well-defined distances in the protein fold (Re–
Trp122(indole)= 13.1 Å, dmp–Trp122(indole)= 10.0 Å, Re–Cu= 25.6 Å) [32]. Near-UV excitation
of the Re chromophore leads to prompt CuI oxidation (less than 50 ns), followed by slow back-
ET (more than 0.2 μs) to regenerate CuI and ground-state ReI. Spectroscopic measurements
performed with varying protein concentrations suggest that the photoinduced ET reactions occur
in protein dimers, (ReHis126Trp122CuI)2, and that forward ET is accelerated by intermolecular
electron hopping through the interfacial tryptophan: ∗Re‖← Trp122←CuI (‖ denotes a protein–
protein interface). Solution mass spectrometry confirms a broad oligomer distribution with
prevalent monomers and dimers, and the crystal structure of the CuII form reveals two
ReHis126Trp122CuII molecules oriented such that redox cofactors Re(dmp) and Trp122-indole on
different protein molecules are located in the interface at much shorter intermolecular distances
(Re–Trp122(indole)= 6.9 Å, dmp–Trp122(indole)= 3.5 Å and Re–Cu= 14.0 Å) than within single
protein folds. Whereas forward ET is accelerated by hopping through Trp122, ReI(dmp•−)‖→CuII

ET is sluggish, probably due to poor electronic coupling across the protein–protein interface as
well as the absence of an energetically accessible radical intermediate. These findings provided
new insights into the factors that regulate Trp•+ radical formation in protein ET reactions
involving high-potential oxidants.

Work by theorists has shed much light on the main factors controlling biological ET reactions
[34,35]: and, in our experimental programme, we have found semiclassical ET theory [36] to
be particularly useful in analyses of results. Notably, given a particular spatial arrangement
of redox cofactors, we can predict driving force dependences of the relative time constants
for single-step (τss = 1/kss) and multi-step (τhop) electron transport [31]. Alternatively, given
the redox and reorganization energetics, we can predict the hopping propensity for different
cofactor arrangements [33]. We considered azurins labelled with Ru(bpy)2(im)(HisX)2+ (bpy=
2,2′-bipyridine; im= imidazole; HisX = surface histidine) labelled at three surface sites (RuHis107,
RuHis124 and RuHis126) and examined the hopping advantage (τss/τhop) for a protein with a
generalized intermediate (Int) situated between a diimine-RuIII oxidant and CuI [33]. In all cases,
the greatest hopping advantage occurs in systems where the Int–RuIII distance (r1) is up to 5 Å
shorter than the Int–CuI distance (r2). The hopping advantage increases as systems orient nearer a
linear donor–Int–acceptor configuration, owing to minimized intermediate tunnelling distances.
The smallest predicted hopping advantage is in RuHis124-azurin, which has the shortest Ru–
Cu distance of the three proteins. The hopping advantage is nearly lost as �G◦ for the first
step (RuIII← Int) rises above +0.15 eV. Isoergic initial steps provide a wide distribution of
arrangements, where advantages as great as 104 are possible (for a fixed donor–acceptor distance
of 23.7 or 25.4 Å). A slightly exergonic Int→RuIII step provides an even larger distribution of
arrangements for productive hopping, which will be the case as long as the driving force for the
first step is not more favourable than that for overall transfer.

We tested these predictions experimentally in three Ru–His-labelled azurins using
nitrotyrosinate (NO2TyrO−) as a redox intermediate (RuHis107(NO2TyrOH)109; RuHis124

(NO2TyrOH)122; and RuHis126(NO2TyrOH)122; E◦′(NO2TyrO•/−) ≈ 1.02 V versus NHE) [33]. The
first two systems have cofactor placements that are close to the predicted optimum; the last
system has a larger first-step distance, which is predicted to decrease the hopping advantage.
The phenol pKa of 3-nitrotyrosine (7.2) permitted us to work at near-neutral pH, rather than the
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Figure 1. (a) Space-filling structural model of the haem domain of CYP102A1 (PDB #2IJ2) highlighting the surface locations
of terminal residues in two potential radical transfer pathways (Tyr334 and Tyr305). (b) Space-filling model of the residues
comprising CYP102A1 putative radical transfer pathways. Blue spheres represent structurally resolved water molecules. (Online
version in colour.)

high pH (more than 10) required for hopping with tyrosinate. ET via nitrotyrosinate avoids the
complexities associated with the proton-coupled redox reactions of tyrosine [37–39]. We found
specific rates of CuI oxidation more than 10 times greater than those of single-step ET in the
corresponding azurins lacking NO2TyrOH, confirming that NO2TyrO− accelerates long-range ET.
In this case, the proposed reaction sequence is [RuIII-NO2TyrO−-CuI]→ [RuII-NO2TyrO•-CuI]→
[RuII-NO2TyrO−-CuII], although the nitrotyrosyl radical intermediate was not detected by
transient spectroscopy in any of the proteins investigated. The results are in excellent agreement
with hopping maps developed using semiclassical ET theory and parameters derived from our
body of protein ET measurements [31,33,40–42].

2. Protecting P450s?
The cytochromes P450 are members of a superfamily of haem oxygenases that perform two broad
functional roles: xenobiotic metabolism and biosynthesis [43,44]. In mammals, these functions
include drug metabolism, conversion of lipophilic molecules to more polar products for enhanced
elimination, steroid biosynthesis and conversion of polyunsaturated fatty acids to biologically
active products [43,45]. P450s are monooxygenases that incorporate one oxygen atom from O2
into the substrate while the second is reduced to H2O [43,44]. Substrate binding triggers reduction
of the ferric enzyme to the ferrous state by a reductase with reducing equivalents originating
in NAD(P)H. Oxygen binding, followed by delivery of a second electron, induces O−O bond
cleavage, producing H2O and a ferryl-porphyrin cation radical (Cmpd-1). Cmpd-1 transfers
an O atom to substrate, regenerating the ferric haem [43]. The UniProtKB/Swiss-Prot database
indicates that P450s are rich in aromatic amino acids: 90% of the sequences in the P450 family
(956 sequences) have above-average occurrence of Phe residues; and 68% of the sequences have
more Trp residues than average. Phe residues are unlikely to participate as real intermediates
in ET reactions, but their role in enhanced superexchange coupling for long-range ET remains
unresolved [46–48]. Cytochrome P450 BM3 (CYP102A1) is frequently used as a soluble surrogate
for human microsomal P450 s [44]. A Trp96 residue is found within 5 Å of the haem in the structure
of CYP102A1 [49] (figure 1), and sequence alignment (UniProtKB) in the P450 family suggests
that Trp is conserved at this position in more than 75% of the members of this group. The most
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Figure 2. Occurrence frequencies relative to the UniProtKB/Swiss-Prot database average of aromatic residues (Phe, Trp and
Tyr) in different enzyme classes. (Online version in colour.)

common alternative residue at this position is His. Interestingly, of the 698 sequences with Trp
at this position, all but five derive from eukaryotic sources, whereas about half of the proteins
with His at this position derive from bacterial or archaeal sources. The strong conservation of
the Trp96 residue has been noted previously [50]. An ET mediator role for this residue had been
suggested, but replacement of Trp96 with Ala, Phe or Tyr has little impact on catalytic turnover
kinetics [50]. To the best of our knowledge, no role other than structural has been reported for this
highly conserved Trp residue in P450 [44].

The oxygenation chemistry catalysed by some P450s is tightly coupled to substrate
hydroxylation: one mole of product is produced for each mole of O2 consumed. In many enzymes,
particularly the eukaryotic proteins with broad substrate specificities, hydroxylation is much less
efficiently coupled to O2 reduction (frequently less than 10%) [51–53]. When the enzyme does
not transfer an O atom to substrate, it can produce reactive oxygen species (ROS: O−2 , H2O2) or a
second H2O molecule [54]. The production of ROS can lead to rapid degradation of the enzyme.
In the case of oxidase chemistry (formation of 2H2O from O2), two reducing equivalents must
be delivered by sources other than the substrate. Uncoupled P450 catalysis leads to oxidation
of bilirubin and uroporphyrinogen [55,56]. The physiological consequences of this uncoupling
could involve uroporphyria and lowered plasma bilirubin concentrations [56]. Halogenated P450
substrates, including environmental toxins such as polyhalogenated biphenyls, are associated
with inhibition of monooxygenase activity and uncoupled O2 consumption [55,56]. We suggest
that redox-active Tyr and/or Trp residues in P450, quite possibly analogues of Trp96, protect the
enzyme from oxidative degradation during uncoupled catalysis.

3. Parting shots
Across the six enzyme classes (oxidoreductases, transferases, hydrolases, lyases, isomerases and
ligases) defined by the Enzyme Data Bank of the Swiss Institute of Bioinformatics, greater than
half of the oxidoreductases have Tyr and Trp frequencies above the database average (figure 2).
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For the remaining five classes, most proteins have Trp frequencies below the database average,
and only among the ligases does a majority of proteins have Tyr frequencies substantially above
the database average. Refinement of this analysis reveals that, of the O2-reactive oxidoreductases,
66% have Tyr frequencies above the database average and 81% have above-average Trp
frequencies. Could the direct participation of Tyr and Trp residues in enzymatic redox chemistry
be far more common than currently recognized? We think so!

Funding statement. Our work on biological electron transfer processes is supported by the National Institutes of
Health (DK-019038) and the Arnold and Mabel Beckman Foundation.
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