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Acting as a bridge between the heterogeneous and
homogeneous realms, the use of discrete, well-
defined, solid-state organometallic complexes for
synthesis and catalysis is a remarkably undeveloped
field. Here, we present a review of this topic, focusing
on describing the key transformations that can be
observed at a transition-metal centre, as well as the
use of well-defined organometallic complexes in the
solid state as catalysts. There is a particular focus
upon gas–solid reactivity/catalysis and single-crystal-
to-single-crystal transformations.

1. Introduction
Organometallic chemistry, rigorously defined by the
chemical synthesis and reactivity of molecules with
metal–carbon bonds, is a vibrant area of research
with a large variety of practical applications [1]. For
example, organometallic complexes are commonly used
as catalysts for the production of commodity chemicals,
materials such as polymers, and in fine chemical
synthesis and medicinal chemistry discovery [1,2]. The
majority of discoveries in the area have been performed
in the solution phase, with studies in the solid state
generally often reserved only for structural analysis; for
example, single-crystal X-ray crystallography and, to a
significantly lesser extent, solid-state nuclear magnetic
resonance spectroscopy. By contrast to the solution
phase, studies on the synthesis of, and catalysis using,
organometallic complexes in the solid phase have
attracted significantly less attention, even though there
are potential benefits to this approach, such as: improved
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Figure 1. Molecular, heterogeneous and well-defined solid-state organometallic motifs.

selectivities in synthesis that comes from spatially confined environments, improved isolated
yields of products and the attenuation of decomposition pathways allowing for products that
might be kinetically unstable in solution to be observed in the solid state.

Heterogeneous catalysis using the surfaces of metals or ionic platform materials is a well-
researched area of chemistry with many industrial uses [3–5]. However, the mechanism of the
binding, catalytic steps and product release may be multifarious or difficult to resolve when using
such an extended material. There may also be a limited number of ‘active sites’ for catalysis.
By contrast, homogeneous catalysis tends to be significantly more well defined, allowing for
the mechanistic pathways to be readily probed using a wide variety of analytical and kinetic
techniques, and often uses a single active metal centre that can be tuned by modifying the
supporting ligand set, often with exquisite control with regard to reactivity and selectivity
[1,6]. This greater degree of molecular control using a single-site catalyst can thus allow for
stereoselective or regiospecific reactivity to be more readily tuned [7,8]. Moreover, the solvent (or
sometimes ligand, for example M · · · H−C agostic interactions [9]) can play a role in stabilizing
the active site(s) on the metal often necessary for reactivity, by forming weak interactions that
are readily replaced by incoming substrates, so-called ‘virtual’ [10] or operationally unsaturated
vacant sites [11].

Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete,
well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably
undeveloped field (figure 1) [12–14]. In principle, if using reagents in the gas phase that
can penetrate the lattice (i.e. a solid–gas reaction), or when in contact with a solvent that
will not dissolve the organometallic species but solvates substrates and products, the active
organometallic species can partake in the same processes observed in the solution phase, such
as ligand substitution, oxidative addition, reductive elimination and insertion reactions. These
resulting single-site catalysts thus bring together the benefits of heterogeneous catalysis (i.e.
recyclability and easy removal from the reaction mixture) with the potential for intimate control
over the transformations that the metal–ligand environment promotes in a homogeneous system
[15,16]; for example, the high degrees of selectivity and mechanistic control associated with
a well-defined metal–ligand environment, while harnessing the particular benefits of a solid-
state environment. Further advantages of such an approach in catalysis include the simple
separation of products from the catalyst [17,18], while avoiding the use of solvents in such
solid–gas processes has potential economic and environmental benefits. Finally, and perhaps
most excitingly, such a methodology potentially allows for the study of organometallic species
without the complications of unwanted reactivity with the solvent. Such species, if being both low
coordinate and of low electron count, could well be intermediates in catalytic processes that are
often implicated but not observed in solution-phase chemistry. Solid-state reactivity using well-
defined single-site organometallic complexes thus potentially allows for the isolation of otherwise
unstable complexes, kinetically trapped in the solid state.
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2. Scope of this review
In this review, we discuss selected examples of solid-state organometallic synthetic chemistry and
catalysis, focusing on describing the key transformations that can be observed, as well as the use
of well-defined organometallic complexes in the solid state as catalysts. In particular, we focus on
gas–solid reactivity, as this presents the ideal opportunity to explore transformations and catalysis
while retaining the crystalline integrity (i.e. single-crystal-to-single-crystal transformations)—
which is important for both structural studies (i.e. molecular structures by single-crystal
X-ray diffraction) and reactivity (well-defined voids and channels in the lattice to allow
for reactivity). We do not attempt to comprehensively review the solid-state organometallic
chemistry associated with simple ligand substitution reactions where crystallinity is lost [12],
isomerization reactions [19] or mechanochemical transformations [12,19–23]. In addition, the
vibrant field of metal–organic framework materials and the encapsulation of active species
inside the cavities of these materials is only discussed in passing where appropriate [24,25].
Likewise, we do not cover photocrystallographic techniques that allow for the determination
of molecular structures of metastable species generated in the crystal photochemically. This
technique has been used, for example, to study linkage isomerization in transition-metal
complexes with nitrosyl, dinitrogen, sulfur dioxide and nitrite ligands, when photoactivated
by light of an appropriate wavelength [26]; or photoinduced spin-crossover transitions, the
structural consequences of which can be measured by photocrystallography [27]. Related
to this is the development of ‘crystalline molecular flasks’ [28,29] in which self-assembled
cages (e.g. from Pd2+ ions and triazene ligands) can be used to encapsulate and stabilize
highly reactive complexes formed by photo-irradiation, such as the photodissociated complex
(η5-C5H5Me)Mn(CO)2 [30].

This is not the first time the general area of solid-state organometallic chemistry has been
reviewed. An excellent in-depth account by Coville & Cheng [12] presented the area of solid-state
organometallic chemistry in 1998 with updates with regard to isomerization reactions [19] and
organometallic reactions that occur in the melt [31]. A recent (2011), short, highlight article by van
der Boom [32] describes molecular single-crystal-to-single-crystal transformations in coordination
chemistry. Our intention is that this review builds on these contributions, in particular bringing
together both recent and older publications on solid–gas reactivity.

3. General considerations
For reactivity to occur in the solid state, the reagents must be able to penetrate the extended
structure and access the metal sites; and this suggests that porosity within the extended solid
structure will aid reaction [13,33]. The idea of a ‘reaction cavity’ was pioneered by Cohen &
Schmidt [34], who proposed that reactions in the solid state occur with the least amount of
molecular movement possible. There is, however, good evidence of limited molecular movement
within the solid state from X-ray diffraction studies, in particular the rotation of CH3, CF3 and
C5H5 groups [35]. The nevertheless constrained environments within a solid structure open up
the possibilities of added reaction selectivity, potentially different from that observed in solution.
For example, if a reaction cavity could be designed to be chiral then asymmetric reactivity may
also be possible [36]. As solid-state reactions proceed, the products will replace the reagents.
This generally occurs from the surface downwards, and Kaupp [37] has proposed the idea of
‘phase rebuilding’ where reaction direction is determined by crystallographic faces, and lattice
reconstruction occurs over thousands of angstroms at a time. The kinetics of solid-state reactions
have proved difficult to measure owing to their inherent complexity, as the reaction may take
place at different rates upon the surface and within the interior of a crystalline material. For
example, Caulton and co-workers [38] proposed that changes in molecular shape on reaction
induce strain in a crystalline material, which in turn promotes micro-cracking. Such cracks will
expose more of the interior of the crystal to the gaseous reagent and increase reaction rate. When



4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140187

.........................................................

Scheme 1. Solid-state gas exchange reactions facilitated by labile N2 ligands.

Scheme 2. Solid–gas reactivity of a dimeric species to afford monomeric complexes.

little change in shape occurs the crystals may become ‘passivated’ by a surface layer of the
product, slowing further reactivity.

4. Stoichiometric solid–gas reactions
A very early example of solid-state organometallic synthesis using solid–gas techniques was
reported in the 1960s when the oxidative addition of various HX gases (HF, HCl, HBr, HI
and H2S) to Vaska-type complexes IrX′(CO)(PPh3)2 (X′=Cl, Br, I, SCN) was reported to form
trans-Ir(PPh3)2(X′)(CO)(H)(X) [39]. Similarly, addition of I2 to Pt(acac)2 (acac = acetylacetonate)
forms the oxidative addition product trans-PtI2(acac)2 [40]. More recently, Brammer and co-
workers [41–43] have shown that the reaction of trans-[CuCl2(n-X-C5H4N)2] (n = 3, 4; X=Cl, Br)
with HCl gas to form [n-X-C5H4NH]2[CuCl4] requires breaking of two Cu−N bonds to form
Cu−Cl bonds and N−H bonds. These reactions have been monitored by powder diffraction,
including in situ powder synchrotron diffraction [41], showing that microcrystalline products
are formed.

Organometallic stoichiometric reactions with gaseous reagents were extensively studied by
Bianchini in the 1990s. For example, the displacement of labile N2 from [{κ4-P(C2H4PPh2)3}
Co(N2)][BPh4] by various gases was studied in a solid–gas reaction (scheme 1) [44]. It was
proposed that small gaseous reagents could penetrate the crystal lattice of [BPh4]− anions by
dissolving in the hydrophobic regions formed by the tetraphos ligand backbone and anion phenyl
groups. As is shown later (§5), displacement of a labile N2 also occurs in single-crystal-to-single-
crystal transformations.

An interesting case of ligand displacement, in as much as that cleavage of a dimer is
occurring in the solid state, comes from the reaction shown in scheme 2 in which Werner
and co-workers [45] reported that addition of CO or ethene to a chloride-bridged Rh(I) dimer
resulted in the generation of monomeric species, where two dative Rh–Cl bonds had been
cleaved by CO or ethene. Other examples of ligand of displacement in the solid state have
been reported. Werner and co-workers reported that addition of CO to a Rh-complex that
contains a hemilabile [46,47] phosphine–ether ligand results in displacement of one Rh–ether
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Scheme 3. Hemilable ligand displacement in the solid state.

Scheme 4. CO2 fixation using an Ir-hydroxide.

linkage, whereas a dicarbonyl will form in the analogous solution-phase reaction (scheme 3) [45].
Addition of CO to Rh(PPh3)3(OAr) (e.g. Ar = C6Cl5) in the solid state results in an intermediate,
tentatively described as five-coordinate Rh(PPh3)3(OAr)(CO), from which washing of the solid
with ether removes PPh3 to afford trans-Rh(PPh3)2(OAr)(CO) [48]. Related five-coordinate species
can be isolated from addition of CO in the solid state to square planar complexes such as
[Ir(COD)(PPh3)(PhCN)][ClO4] to give, for example, [Ir(COD)(PPh3)(CO)2][ClO4] via loss of
PhCN [49]. Milstein and co-workers [50] have shown that CO can bind reversibly to a 16-electron
Rh(I) nitrosyl pincer complex, in which an equilibrium is established between a five-coordinate,
CO-bound, and four-coordinate, CO-free, complex. Concomitant with this addition of CO is the
change in NO binding mode from linear to bent, as measured by infrared (IR) spectroscopy.

The reversible addition of CO2 to the rhodium and iridium complexes M(CO)(PPh3)2(OH)
was reported by Flynn & Vaska [51], although the nature of the M · · · CO2 interaction was not
clarified. Very recently, Nolan and co-workers [52] have reported that CO2 rapidly (2 min) inserts
into the O−H bond of Ir(COD)(IPr)OH (IPr = 1,3-di-isopropyl-imidazolin-2-ylidene) in a solid–
gas reaction to form a bimetallic carbonate, [Ir(COD)(IPr)]2(μ, κ1 : κ2-CO3), scheme 4, with the
concomitant elimination of water [IPr = 1, 3-bis(isopropyl)imidazol-2-ylidene)].

A related carbonate complex that comes from the aerobic oxidation of (η5-C5Me5)Co(IPr)(CO)
to form a carbonato complex (η5-C5Me5)Co(IPr)(κ2-CO3) was reported by Radius and co-workers
[53]. This process occurs rapidly in air, both in solution and in the solid phase (scheme 5).

Addition of alkynes and alkenes to a metal complex may result in olefin oligomerization
through C−H and C−C coupling processes, common transformations in solution-phase
organometallic chemistry [1]. Bianchini et al. [54,55] demonstrated that addition of C2H2 to
[Ir(triphos)(C2H4)(H)2][BPh4] [triphos = (Ph2PCH2)3CCH3] in the solid state leads to various
products, including benzene and butadiene complexes (scheme 6a). Siedle & Newmark
[56] have demonstrated trimerization of C2H2 with [Ir(H)2(PPh3)2]3[PW12O40] to form a
benzene complex, whereas C−H activation of propene with the same organometallic starting
material forms an allyl complex (scheme 6b). Related transformations in which bound
ethene in a Rh(I) tripyrazolylhydroborate complex undergoes C−H and C−C bond-forming
processes to form allylic species have been reported by Carmona and co-workers [57].
C−Br activation in an η2-azobenzene ligand coordinated to a {Pt(PEt3)2} fragment occurs
in the solid state to give the corresponding Pt-aryl-halide [58]. The oxidative addition of a
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Scheme 5. Aerobic oxidation to a carbonyl to form carbonate complex.

(a)

(b)

Scheme 6. (a,b) Reaction of cationic iridium complexes with alkenes and alkynes in the solid state resulting in C–C couplings
and/or C–H activation.

C−Cl bond is reported in the solid-state transformation of the zwitterionic Rh(I) η6-arene
complex [Rh(iBu2PCH2CH2PiBu2){(η6-C6H3Cl2)BArCl

3 }] (ArCl = 3, 5-C6H3Cl2) into the dimeric
Rh(III) complex [Rh(iBu2PCH2CH2PiBu2)(Cl){(C6H3Cl)BArCl

3 }]2 [59]. Interestingly, this process
generates two isomers in the solid state, whereas the same process in solution only accesses the
thermodynamic isomer. Bond isomerizations in the solid state, involving C−C cleavage, between
Ru-alkynylketones and Ru-vinylidenes have been followed using IR spectroscopy, and kinetic
data were obtained for this transformation. This is a very rare example of such an analysis
of reactivity in solid-state organometallic chemistry, and, from these data, the authors propose
a mechanism controlling the reaction that invokes nucleation and nuclei growth rather than
diffusion, chemical reaction or phase boundary-controlled steps [60].

Reversible hydrogen addition to metal complexes is of considerable interest with regard to
processes such as hydrogenation, hydrodesulfurization and hydrogen storage applications [1].
The reversible addition of three molecules of hydrogen to [(Ph2PCH2CH2PPh2)Rh{κ, η2

P,C=C
PCyp2(η2-C5H7)}][BArF

4] (Cyp=C5H9, ArF = 3, 5-C6H3(CF3)2) to form [(Ph2PCH2CH2PPh2)
Rh(PCyp3)(H)2(H2)][BArF

4] has been reported, in which a dihydrogen ligand is coordinated,
and the phosphine–alkene ligand has been hydrogenated [61]. In the solid phase, the product
loses two molecules of hydrogen under application of a vacuum to form a red intermediate
proposed to be the Rh(I) complex [Rh(Ph2PCH2CH2PPh2)(PCyp3)][BArF

4], in which an agostic
interaction from the phosphine is proposed. This red intermediate then slowly loses a further
equivalent of H2 via an alkyl dehydrogenation (C−H activation and β-elimination) to reform
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Scheme 7. Reversible addition of hydrogen and C–H activation in solution and the solid state. L= agostic or solvent
interactions.

Scheme 8. Reversible H2 addition to [Rh6(PiPr3)6(H)12][BArF4]2. R= iPr.

[(Ph2PCH2CH2PPh2)Rh{κ, η2
P,C=CPCyp2(η2-C5H7)][BArF

4]. In solution, no red Rh(I) intermediate
is observed, and removal of the dihydrogen ligand under vacuum results, instead, in a Rh(III)
dihydride (scheme 7).

The simple reversible addition of dihydrogen to monometallic [62] and multi-metallic cluster
[63–66] species in the solid state has been reported by a number of groups. In these instances, the
H2-free complexes are often electronically unsaturated and stabilized by bulky ligands around
the metal centre(s). An example shown in scheme 8 is the reversible addition of two molecules of
H2 to the cluster [Rh6(PiPr3)6H12][BArF

4] to give [Rh6(PiPr3)6H16][BArF
4] [67]. Related coordinate

unsaturation in clusters enabled via loss of a weakly bound ligand in the solid state (such as
NCMe) allows for solid–gas reactivity of Os3(CO)11L (L=NCMe) with CO, NH3 and H2 [68].

Deliberate installation of coordinate and electronic unsaturation at a metal centre means
that solid–gas reactions can be made particularly facile. Caulton and co-workers have reported
that 16-electron Ru(CO)2(PtBu2Me)2 adds H2, Cl2 or O2 to give the corresponding 18-electron
complexes cis,cis,trans-Ru(H)2(CO)2(PtBu2Me)2, cis,cis,trans-Ru(Cl)2(CO)2(PtBu2Me)2 and Ru(η2-
O2)(CO)2(PtBu2Me)2, respectively. Interestingly, reaction with HSiMe3 gave the dihydride
Ru(H)2(CO)2(PtBu2Me)2 dissolved in liquid Me3SiSiMe3, formed by a dehydrocoupling process.
Reaction with CO is particularly slow, and this is postulated to be due to the fact that
the product, Ru(CO)3(PtBu2Me)2, is a similar size to the organometallic reactant, and this
results in surface passivation rather than the fracturing of the crystal (and concomitant
faster ingress of gas) that is suggested to occur when product and starting material
geometries are different [38]. The electronically and coordinatively unsaturated complex
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Scheme 9. SC–SC transitions using Ir–pincer complexes. ArF = 2,4,6-C6H2(CF3)3.

[(η5-C5Me5)Ru(Me2NCH2CH2NMe2)][BArF
4] adds H2, N2, O2, CO and ethylene in the solid state,

with the latter shown to be reversible. These new complexes (except the CO adduct) were unstable
in solution and were characterized by elemental analysis [69].

5. Single-crystal-to-single-crystal transformations
A single-crystal-to-single-crystal (SC−SC) transition is one in which crystallinity is retained
throughout a reaction, allowing the product to be characterized directly by single-crystal X-ray
crystallography without recourse to recrystallization from solution [32]. For crystallinity to be
retained, only a very small structural reorganization can be tolerated to avoid the break-up of the
lattice. Crystal size also probably affects reaction time in SC−SC transitions because of surface
area to volume ratio implications. Molecular designs that enable such transitions to take place
involve use of bulky ligands or anions which dominate the packing and thus can create a rigid,
porous, structure in which smaller movements around the metal centre are made possible [13,70].
SC−SC reactions present excellent possibilities for selectivity to be controlled within a solid-state
environment, as the reaction cavity necessarily must remain well defined throughout to preserve
crystallinity.

If gaseous reagents require access to the interior of the crystal then empty or partially filled
channels throughout the lattice may be necessary [33]. This was suggested by Brookhart and co-
workers [13], who noted the channels of disordered toluene throughout the crystalline lattice of
(POCOP)IrL (POCOP = 1, 3-[OP{2, 4, 6-C6H2(CF3)3}2]2C6H3, L=N2, CO, NH3, C2H4, O2). They
reported a series of SC−SC gas transfer reactions using this system (scheme 9). Interestingly, the
precursor complex studied (L=N2) is stable under vacuum, but readily reacts with more strongly
binding gases, which suggests that an associative mechanism for gas exchange is operating within
the interior of the crystal. These SC−SC transformations presumably occur as the packing in the
lattice is dominated by the large tris-(CF3) substituted aryl groups on the pincer ligand, meaning
that changes in the ancillary ligands around Ir (e.g. CO for N2) result in minimal structural
reorganization.

Such transitions can also be reversible. van Koten and co-workers [71,72] reported the
reversible addition of SO2 to (NCN)PtCl (NCN=C6H2-5-(OH)-1,3-(CH2NMe2)2), which induced
significant changes in the geometry of the metal centre, from square planar to pseudo-
square pyramidal, and remarkably such a large structural change does not result in the
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Scheme 10. Sequential SC–SC gas transfer transitions. AriPr = 2,6-iPr2C6H3.

loss of crystallinity, albeit these processes occur in the microcrystalline powder state and the
transformations are monitored by powder diffraction techniques and IR spectroscopy rather than
by single-crystal X-ray diffraction (crystals suitable for such analysis were grown independently).
The authors speculate that these processes are likely to involve local solutions of the reactants that
recrystallize at a comparable rate to solute formation. They proposed that this material could be
used as a gas-triggered switch, with SO2 uptake signalled either by colour change or by crystal
expansion. SC−SC transitions may also occur sequentially. In an elegant example, Crudden and
co-workers [70] presented a double SC−SC gas exchange reaction using the (SIPr)2RhCl(L) system
(SIPr = N,N′-(2,6-iPr2C6H3)2C3H4N2, L=N2, O2 or CO; scheme 10). First, N2 is replaced with
O2 to give a dioxygen adduct, and then O2 is replaced with CO, without crystal degradation at
either stage.

Alcohol uptake (i.e. MeOH, EtOH and iPrOH) by the non-porous coordination polymer
[Ag4(O2C(CF2)2CF3)4(TMP)3]n (A) is reversible in a SC−SC transformation by a solid–vapour
process (TMP = 2,3,5,6-tetramethylpyrazine). In an elegant sequence of substitution reactions,
consecutive alcohols are introduced into the lattice: A-EtOH → A-MeOH → A-iPrOH →
A-EtOH without loss of single crystallinity. These ligand substitution reactions are accommodated
by changes in coordination geometry at specific Ag(I) centres, and specifically alcohol insertion
occurs into one-quarter of the Ag−O carboxylate bonds [73,74]. As this material does not have
significant porosity, a mechanism is proposed in which concerted motion of the disordered
fluoroalkyl chains allows for the transport of the alcohol molecules within the crystals. Powder
X-ray crystallography techniques were also used to follow these transformations.

SC−SC transitions can also take place in a suspension of non-solvating liquid, for
example in polymeric platform materials. McKeown and co-workers [33] reported such
SC−SC transitions using Fe(MeOH)2(phthalocyanine). Large interconnected voids (8 nm3) run
through these structures that are defined by a cubic assembly of six of the phthalocyanine
groups. These voids allow liquid penetration, and axial ligands can be reversibly, and rapidly,
displaced by a variety of exogeneous ligands (scheme 11). Interestingly, monodentate ligands
bind preferentially to an axial binding site within this cubic assembly, whereas bidentate
ligands selectively bind to link neighbouring cubic assemblies together. Selective exchange
between water and methanol has been observed as a SC−SC transformation in the trinuclear
iron complexes [Fe3(μ3-O)(μ2-CH3COO)6(C5H5NO)2(L)][ClO4] (L=H2O, MeOH) [75], whereas
heterolytic dissociation of water at a bis(μ-oxo)divanadiumpolyoxometallate, which models the
interactions of water with metal oxide surfaces, was found to occur as a SC−SC transformation.

In the absence of added reagents, SC−SC transitions can occur in the form of a
simple phase change within the crystal lattice. Balch and co-workers [77] reported a
reversible phase change when acetone or dichloromethane vapour is passed over a crystal of
β-Au2(μ-Ph2PCH2CH2PPh2)2I2 · (OCMe)2, even though no additional solvent incorporation is
observed. Two equivalents of acetone are present in both phases. The reverse reaction occurs if
the crystal is left in air (scheme 12).
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(a) (b)

Scheme 11. (a) Porous phthalocyanine–derivative complex (PNC[vL–Fe–cL]) which can undergo SC–SC ligand (L) exchanges
when immersed in organic solvents. AriPr = 2,6-iPr2C6H3. (b) Example of two sequential ligand exchanges, displaying the
linking of two metal centres by a bidentate ligand (phthalocyanine derivative simplified to a flat square).

Scheme 12. Phase change SC–SC transition driven by drying in air and reversible by exposure to CH2Cl2 or acetone vapour.

Brill, Rheingold and co-workers [78] of (η5-C5H5)Co(S2C6H4) in the single-crystal phase at
room temperature could be reversed upon warming to 423 K while still maintaining crystallinity
(scheme 13). The dimeric species is thermodynamically favoured in the crystalline lattice at room
temperature, but the monomer is favoured thermodynamically in solution, presumably owing to
a dominant entropy term in solution.

Another SC−SC transformation that occurs without additional reagent is the reversible C−C
activation in [Ir(BINOR−S)(PiPr3)][BArF

4], which contains a rare example of an agostic M · · · C −C
bond (BINOR-S = 1,2,4,5,6,8-dimetheno-s-indacene). In this complex, reversible C−C cleavage
occurs to form an equilibrium mixture, in the crystalline phase, of dynamically disordered
C−C activated [Ir(V)] and C−C agostic [Ir(III)] complexes—the ratio of which changes with
temperature. Interestingly, the [Ir(BINOR-S)(PiPr3)][BArF

4] complex is itself made from a solid-
state organometallic reaction, where cyclodimerization of two norbornadiene ligands occurs to
yield the BINOR-S ligand (scheme 14) [79].

SC−SC reactions present possibilities for directly forming reactive complexes, which may
not be accessible cleanly using solution routes. C−N oxidative cleavage in the PNP pincer
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Scheme 13. Reversible dimerization in a single crystal.

Scheme 14. Formation of a BINOR-S complex and reversible SC–SC C–C cleavage.

Scheme 15. Formation (NO)–Fe–porphyrin complexes by SC–SC transitions.

complex RhCl[(iPr2P(C6H3Me))2NMe] to give Rh(Me)Cl[(iPr2P(C6H3Me))2N] occurs in the
solid state in a SC−SC transformation [80]. Saliently, when performed in the bulk, this
preparative route is cleaner than that in solution [81]. Richter-Addo and co-workers [82] were
able to crystallographically characterize biologically important porphyrin complexes which
bind NO. Examples include (TPP)Fe(NO)(OC(=O)CF3), [(TPP)Fe(NO)(H2O)][(TPP)Fe(H2O)]
[OC(=O)CF3]2 [83] (TPP = tetraphenylporphyrin) and [(oep)Fe(NO)(S-2,6-(CF3CONH)2C6H3)]
[84] (oep = octaethylporphyrinato dianion). These complexes were formed by addition of NO
gas to the unsaturated precursors in the solid state. This transformation was not possible using
solution crystallization methods, as in solution a mixture of by-products form instead (scheme 15)
[82–84].

Perhaps the most dramatic exploitation of solid-state SC−SC transformations in stabilizing
highly reactive complexes comes from the addition of H2 to the complex [Rh(NBD)(iBu2PCH2
CH2PiBu2)][BArF

4] (NBD=C7H8, ArF = 3,5-C6H3(CF3)2) that results in the isolation and structural
characterization of a transition-metal sigma–alkane complex in which the hydrogenated organic
fragment (NBA = C7H12) binds to the metal through two Rh· · · H−C sigma interactions
[Rh(η2,η2-NBA)(iBu2PCH2CH2PiBu2)][BArF

4] (scheme 16) [85]. Such alkane complexes are
exceedingly rare, with only two examples having been previously characterized in the solid
state by single-crystal X-ray diffraction, in which there is a close approach of the alkane
H−C bond to a metal centre [86,87]. Ultimately, this alkane complex undergoes a further
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Scheme 16. Formation of an alkane complex in the solid state.

transformation, in the solid state, to form a complex in which the alkane ligand has been lost
and the [BArF

4]− anion coordinates. An intermediate, mono-hydrogenated, species was proposed
[Rh(η2(CH), η2-(C=C)(NBE))(iBu2PCH2CH2PiBu2)][BArF

4] (NBE = C7H10), which also adds H2
in the solid state to give the alkane complex, as shown by solid state NMR spectroscopy.

(a) Overview of the structural changes associated with single-crystal-to-single-crystal
transformations

Selected examples of SC−SC transitions are displayed in table 1 with their respective
crystallographic volume change (z = 1 equivalent). Minimal structural changes are apparently
necessary to allow for SC−SC transitions, and most examples reported show less than 4%
volume change in the lattice volume. The outlier of van Koten and co-workers’ example of SO2
uptake is exceptional because it involves a very large percentage volume change (15.7%), with
expansion predominantly along one axis. However, this occurs in the microcrystalline phase
without loss of crystallinity as measured by powder diffraction, and SC−SC experiments were
not successful. Noteworthy is the 10% change in volume associated with reversible alcohol
addition in the Ag-carboxylates, this perhaps being associated with the fact that this material is a
coordination polymer in the solid state, which might allow for increased flexibility without loss of
crystallinity.

6. Catalysis in the solid state

(a) Heterogeneous organometallic catalysts
The heterogenization of single-site catalysts brings together the benefits of heterogeneous
catalysis (i.e. recyclability and ease of removal from the reaction mixture) with the potential for
intimate control over transformations that occur at the metal centre that is provided by the local
ligand environment in a homogeneous system [15,16]. There are a number of strategies that can be
used to facilitate the heterogenization of well-defined organometallic catalyst systems, including
surface-supported organometallic chemistry in which a platform material such as silica, zeolites
or metal oxides support directly, or indirectly via linker groups, the organometallic complex
[88–98]. Metal organic frameworks (MOFs) are also particularly attractive as one-, two- and
three-dimensional assemblies can be created in which the metal atoms often act as the geometry-
enforcing linkage points, but can also be envisaged as potential active sites for catalysis [24].
In addition, a MOF may simply act as a reaction cavity, with the organometallic species as a
host/guest material [99]. Within the context of this review that concentrates on the reactivity of
well-defined organometallic complexes in the solid state these materials, as they are often not well
defined at the metal centre of interest, are not included here.

(b) Self-supported organometallic catalysis
Self-supported catalysts invoke an active metal centre in which the ligand environment also
acts as the platform microporous material [100]. The advantage in many of these systems,
compared with heterogenized organometallic catalysts, is that they are well defined at the
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Scheme 17. A coordination polymer with Pd capable of catalysing heterogeneous Suzuki–Miyaura cross coupling in water.

Scheme 18. Amicroporous organometallic framework based upon rhodium alkene coordination.

metal–centre and thus more amenable to structural and spectroscopic investigation. Early
reports of self-supported catalysts include the linkage polymers of [RhCl(CO)(1,4-(CN)2C6H4)]n

which can hydrogenate and isomerize 1-hexene, with no leaching of complexes into solution
[101]. The active rhodium site was created by photolytic dissociation of the CO ligand. A
similar system was formed with two bridging ligands per metal, enabling a well-defined
three-dimensional-stacked layer structure to form. The surface and corner positions of this
structure are likely to contain unsaturated metal centres which are catalytically active; however,
the interior sites are proposed to be totally inactive [102,103]. Multi-dentate oxime, thiourea,
phosphine and NHC ligands have been used to form frameworks with Pd-centres for use
in Suzuki–Miyaura C−C coupling reactions [104–107]. For example, Karimi & Akhavan [107]
reported a coordination polymer of palladium with a linking bidentate NHC ligand, which
is insoluble in water, resulting in C−C coupling catalysis that could be performed using
water as the substrate and product solvent (scheme 17). Although the authors used the
mercury test, which probes for nanoparticle formation, which showed no loss in activity,
it is difficult to unequivocally prove that nanoparticles are in no way involved for such
systems.

More complex microporous structures can also be formed with a mixture of metal
sites. For instance, copper, nickel or palladium porphyrin moieties can be combined with
rhodium–polycarboxylate linkages in which both metal sites may exhibit cooperative effects
for hydrogenation reactions [108,109]. Kaskel and co-workers [110] have recently reported
the formation of a microporous organometallic network based upon a rhodium alkene
fragment linked to a rigid tetraphenylsilane backbone (scheme 18). While an accurate
structural determination has proved difficult, the framework appeared to be air-stable unlike
its homogeneous analogue [Rh(NBD)2][BF4]. This material catalysed transfer hydrogenation
reactions.
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Scheme 19. Catalytic ethene hydrogenation in the solid state versus solution.

(c) Solid-state organometallic catalysis without a support
Solid-state catalysis using well-defined organometallic complexes that are not incorporated
into a platform material is a relatively undeveloped field. Bianchini et al. [14] introduced the
concept with simple ethene hydrogenation reactions using [(triphos)Ir(H)2(C2H4)][BPh4] at 343 K
(scheme 19). The catalyst was active in the solid state, in a mechanism proposed to operate via
hydride migration to form an Ir−(C2H5) species, which can react with further H2 followed by
reductive elimination of ethane. In solution, the same species was not catalytically active, because
a coordinatively saturated dimeric bridging hydride species rapidly forms in the presence of
H2 which was inactive for further reactions. Although some of the inactive dimeric species is
also formed in the solid-state reaction, it appears to form at a slower rate than in solution. This
highlights the ability of the solid state to maintain the integrity of the reactive species by playing
a role in protecting them from deactivation pathways that require structural reorganization.
The [BPh4]− anions are proposed to create a hydrophobic lattice structure ideal for allowing
the passage of small hydrocarbon gases. The catalytic trimerization of ethyne to form benzene
was also investigated by Bianchini and co-workers, who showed that a η4-benzene complex
(formed itself from a solid–gas reaction) is an active pre-catalyst active at 373 K in the solid state
(scheme 20) [55].

Siedle & Newmark [56] reported the room temperature catalytic activity of iridium phosphine
cations partnered with Keggin-type trianions, [Ir(H)2(PPh3)2]3[PW12O40] (scheme 21), with the
hydrogenation of ethene, propene and 1-hexene demonstrated. The isomerization of 1-hexene to
a mixture of cis- and trans-2-hexenes and 3-hexenes was also reported, presumably via reversible
C−H activation accessing an allyl-iridium–hydride intermediate. The authors do not comment
on the rates of reaction. Similar to the findings of Bianchini, addition of excess ethyne forms
benzene in catalytic quantities, with an iridium–benzene complex expected to act as the pre-
catalyst, although the reaction is reported to be slow. The catalytic dimerization of CF2=CFCl
to cis- and trans-1,2-dichlorohexafluorocyclobutane complexes was also reported.

Limbach and co-workers [111] have reported on the solid-state catalysed hydrogenation of
ethene using Vaska’s complex, Ir(CO)Cl(PPh3)2, by following the reaction products by gas-phase
1H NMR spectroscopy. In solution, the product of H2 addition (which presumably related to the
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Scheme 20. Trimerization of ethyne using a solid-state catalyst.

Scheme 21. Catalytic reactions using [Ir(H)2(PPh3)2]3[PW12O40].

Scheme 22. Reaction of Vaska’s complex with H2 in the solid state and solution.

active catalyst) is a cis-dihydride/trans-phosphine species. In the solid state, this is not formed,
and it was proposed that this was due to ligand reorientation being inhibited. The authors thus
suggested a different pathway for hydrogenation in the solid state and solution (scheme 22) that
invokes a dihydrogen intermediate as the active species in the solid state.

Brookhart et al. [13] have reported the hydrogenation of ethene using single crystals of
(POCOP)Ir(N2), as monitored by gas-phase NMR spectroscopy. At 298 K, the reaction requires
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Scheme 23. Hydrogenation of ethene using single crystals, and the selective hydrogenation of ethene in the presence of
propene using surface-passivated single crystals.

5 h to reach 95% conversion, but at 348 K 99% conversion occurs within 30 min. At this
higher temperature, lattice-incorporated toluene is lost, and this is proposed to be responsible
for the higher activity. (POCOP)Ir(C2H4) is the suggested resting state. Remarkable selective
catalytic hydrogenation inside single crystals was also presented. By passivating the surface sites
of crystals of (POCOP)Ir(N2) with a layer of (POCOP)Ir(CO), an incomplete crystal-to-crystal
transition occurs. The resulting material can selectively hydrogenate ethene in the presence of
propene, with a 25 : 1 preference at 348 K (scheme 23) [13]. It was proposed that the porous crystals
allow the smaller ethene and hydrogen molecules access to the active interior metal sites, whereas
the larger propene molecules cannot penetrate the surface. In the absence of surface passivation,
only a small selectivity is seen in favour of hydrogenation of ethene (1.8 : 1 ratio of ethane to
propane produced at 298 K), consistent with this.

Mul and co-workers [112] have reported upon the palladium-catalysed CO/C2H4 co-
polymerization reaction which is operated under gas phase or slurry conditions in industry.
The catalyst becomes incorporated into the growing polymer chain, and so its nature as a
heterogeneous or homogeneous catalyst is not well defined. Mul et al. chose to investigate the
mechanism by using microcrystalline (Ph2PCH2CH2CH2PPh2)Pd(CH3)(OTf) deposited onto a
gold surface. They were able to probe the first few turnovers of reaction using polarization
modulation reflection–absorption IR spectroscopy (scheme 24). The findings suggest that ethene
insertion into the Pd–acyl bond is actually CO-assisted. The incoming CO is able to displace the
chelating ketone group more easily than ethene, but can itself then exchange with ethene. This
subtlety had not been previously revealed by solution studies.

Dorta et al. [113] formed a variety of chiral crystalline organometallic complexes with either
chiral phosphine ligands or chiral counterions, with the idea to investigate asymmetric catalysis.
Unfortunately, this was not achieved, in this instance, and this interesting area has yet to be
successfully developed.

7. Conclusion and future outlook
We hope that this review has shown that solid-state organometallic chemistry can offer significant
advantages over the solution phase, especially when kinetic stability, or overall reaction
selectivity, are different in the solid state compared with solution. Particularly exciting is the
opportunity presented for SC−SC transformations in the solid state, as this methodology not
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Scheme 24. The proposed mechanism for the copolymerization of CO and ethene using a palladium catalyst in the solid state.

only provides synthetic routes to new complexes but also enables direct structural analysis
by single-crystal X-ray diffraction. However, for such transformations to proceed there is a
requirement for minimal structural reorganization, and the appropriate design of systems that
allow for this (e.g. large anions or bulky ligand groups) thus needs to be considered. An exciting
prospect exists, which has not been developed to a significant extent, for such transformations to
also result in catalytic processes. One example we suggest here is the selective transformation
of hydrocarbons (alkane upgrading), where both solid–gas reactivity and selectivity from the
local spatially well-defined environment will be important in producing effective and efficient
catalysis. It will be fascinating to see how the field evolves as more examples of solid-state
organometallic transformations are reported.
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