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DNA replicases routinely stall at lesions encountered on the
template strand, and translesion DNA synthesis (TLS) is used to
rescue progression of stalled replisomes. This process requires
specialized polymerases that perform translesion DNA synthesis.
Although prokaryotes and eukaryotes possess canonical TLS poly-
merases (Y-family Pols) capable of traversing blocking DNA lesions,
most archaea lack these enzymes. Here, we report that archaeal
replicative primases (Pri S, primase small subunit) can also perform
TLS. Archaeal Pri S can bypass common oxidative DNA lesions,
such as 8-Oxo-2’-deoxyguanosines and UV light-induced DNA
damage, faithfully bypassing cyclobutane pyrimidine dimers.
Although it is well documented that archaeal replicases specif-
ically arrest at deoxyuracils (dUs) due to recognition and bind-
ing to the lesions, a replication restart mechanism has not been
identified. Here, we report that Pri S efficiently replicates past
dUs, even in the presence of stalled replicase complexes, thus
providing a mechanism for maintaining replication bypass
of these DNA lesions. Together, these findings establish that
some replicative primases, previously considered to be solely
involved in priming replication, are also TLS proficient and there-
fore may play important roles in damage tolerance at replica-
tion forks.
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The DNA replication machinery rapidly and accurately copies
genomes but is prone to stalling at lesions and physical bar-

riers (1). A variety of cellular pathways have evolved to restart
stalled replication forks. These include translesion DNA syn-
thesis (TLS) that is performed by specialized polymerases that
synthesize short tracts of DNA opposite lesions, thus enabling
reinitiation of replication (2). Error-free bypass mechanisms, me-
diated by homologous recombination, use an alternative undamaged
template to rescue stalled replication forks (3). Stalled replisomes
can also be rescued by repriming downstream of the blockage,
leaving a gap opposite the lesion (4, 5).
Eukaryotes and prokaryotes encode distinct TLS polymerases

required for DNA damage tolerance (e.g., Y-family Pols). Al-
though much of our understanding of TLS mechanisms has come
from studies of archaeal Y-family DNA polymerases, the ma-
jority of archaeal species lack canonical TLS enzymes (Fig. 1A)
(6), surprising given the otherwise high degree of conservation
between eukaryotic and archaeal replisomes. Many archaea do
not appear to encode nucleotide excision repair or photolyase
pathways that remove UV light-induced damage (6). These
anomalies pose the question as to how archaea, lacking canonical
TLS or lesion repair pathways, tolerate the presence of lesions
that stall replication. This is particularly pertinent to archaea
because of the harsh environmental conditions under which
many species reside, including extreme temperatures, which
promote increased levels of DNA damage.
Archaeal replicases (B- and D-family Pols) specifically arrest

at deoxyuracil (dU) (7, 8). This unique feature is limited to
replicases from archaea (9). Two important questions regarding
dU-induced stalling of archaeal replisomes remain unanswered.
First, why do archaea stall replication in response to the template

strand dU? Second, how are archaeal genomes containing dU
copied? This stalling mechanism may have evolved to prevent
promutagenic bypass of the template strand dU, resulting in C–T
transition (7, 9). The mechanism used by archaea to resume
replication after dU-induced replisome stalling has not been
identified.
In this study, we report that archaeal replicative primases (pri-

mase small subunit, Pri S) can perform translesion DNA synthesis
on damaged DNA templates. Pri S can bypass common DNA
lesions, such as oxidative and UV damages, faithfully bypassing
cyclobutane pyrimidine dimers (CPDs). Additionally, we report
that Pri S can replicate past template strand dUs, even in the
presence of stalled replicative polymerase B and proliferating
cell nuclear antigen (Pol B/PCNA) complexes, thus providing
a specific mechanism for maintaining timely replication of DNA
containing dU lesions. Together, these findings establish that the
archaeal primase is not only required for de novo primer syn-
thesis during initiation of DNA replication but also actively
participates during the elongation step by assisting the major
DNA replicases in traversing DNA lesions.

Results and Discussion
Archaeal Primases Replicate Past 8-Oxo-2’-Deoxyguanosines. To ad-
dress which enzymes are responsible for lesion bypass synthesis
in archaea, we first considered which polymerases are present in
all archaeal species that could facilitate tolerance of commonly
occurring replicase-stalling lesions. One candidate is the repli-
cative primase, a specialized DNA polymerase involved in de
novo primer synthesis. In archaea and eukaryotes, the small
catalytic subunit primase (Pri S) a member of the archaeo-
eukaryotic primase (AEP) family (10), together with the large
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subunit (Pri L), is requisite for the initiation of DNA replication
(11). Although Pri S has been considered to function exclusively
in RNA primer synthesis during replication, archaeal Pri S and
related plasmid-borne primases possess both primase and poly-
merase activities (12–14). In contrast to eukaryotic primases, ar-
chaeal Pri S possesses robust DNA polymerase activity (12). It also
has terminal transferase activity, suggesting less stringent recog-
nition of DNA substrates (14, 15) and potential involvement in
DNA repair processes (16). Notably, closely related prokaryotic
and archaeal AEPs, primase-polymerase domain of ligase D
(PolDom/LigD) are polymerases involved in the repair of DNA
breaks and possess a variety of DNA polymerization activities,
including TLS (17, 18). PrimPol, a novel eukaryotic primase, was
recently shown to assist in the bypass of lesions encountered
during replication (19). Together, these enzymes belong to a
growing class of primase polymerases known as PrimPols to
reflect their enzymatic activities and origins.
To examine the potential TLS activities of archaeal primases,

we cloned, expressed, and purified the catalytically active small
primase subunit (Afu-Pri S), heterodimeric primase (Afu-Pri
S/L), and the major replicases (Afu-Pol B and Pol D) from
Archaeoglobus fulgidus (Afu) and the primase holoenzyme (Pfu-
Pri S/L) from Pyrococcus furiosus (Pfu) (SI Appendix, Fig. S1A).
The structural features of the Afu enzymes studied here are il-
lustrated in Fig. 1B. First, we tested the DNA template-dependent
polymerase activity of Afu replicative polymerases (Afu-Pol B and
Afu-Pol D), primase subunit (Afu-Pri S), and the heterodimeric
primase complex (Afu-Pri S/L). All enzymes exhibited robust and
error-free DNA polymerase activity (Fig. 1 C and D). Notably,
when we assayed for reverse transcriptase activity, this activity was
observed for both primases but not the replicative polymerases (SI
Appendix, Fig. S3C). Again, this suggests that archaeal primases
have relaxed substrate specificity, a feature characteristic of TLS
polymerases.
The most frequent type of DNA damage is induced by oxidative

stress, resulting in the formation of 8-oxo-2′-deoxyguanosine
(8-oxo dG) (20). Most replicative DNA polymerases misrecognize
8-oxo dG, resulting in incorrect deoxyadenosine (dA) incorpo-
ration opposite to this lesion (21). We tested whether Afu

polymerases and primases were promutagenic while traversing
8-oxo dG and observed that all of these enzymes could bypass
8-oxo dG, showing marked stalling before and after the lesion
(Fig. 2A). A similar profile of bypass past 8-oxo dG was observed
for Pfu-Pri S/L (SI Appendix, Fig. S1B). Next, we investigated the
fidelity of 8-oxo dG bypass by Afu and Pfu enzymes using single
nucleotide incorporation assays. Family-B DNA polymerase
(Afu-Pol B) displayed error-prone bypass of 8-oxo dG, incor-
porating dA opposite the lesion (Fig. 2B). Notably, Afu-Pol D
and both primases (Afu-Pri S/L and Pfu-Pri S/L) incorporated
the correct deoxycytosine (dC) and incorrect deoxyadenosine
(dA) opposite the damage with comparable efficiency (Fig. 2B and
SI Appendix, Fig. S1C). Thermophilic archaea are subjected to
increased levels of oxidative stress, promoting depurination of
8-oxo dG to abasic site (Ab) and oxidation of thymine to thymine
glycol (Tg). However, all of the tested enzymes were strongly
blocked by Ab or Tg lesions (SI Appendix, Fig. S3 A and B, re-
spectively), in common with PrimPol (19).

Archaeal Primases Replicate DNA Templates Containing Deoxyuracils.
Hydrolytic deamination of deoxycytosine (dC) to dU frequently
occurs in DNA (20) and is greatly accelerated by temperature.
Therefore, thermophiles are at increased risk from this type of
damage (22). Archaeal replicative polymerases (Pol B and D)
evolved specifically to avoid replicating past dU and Pol B pos-
sesses a uracil-binding pocket (Fig. 1B) that scans the template
for this lesion in advance of the replicase (23). When detected,
the deaminated base is bound tightly and replication arrests four
bases before dU (23). Notably, Pol B/PCNA binds dU tightly
enough to prevent the lesion being removed by base excision
repair enzymes (24). This suggests that the uracil-binding pocket
may be important for protecting the integrity of dU-containing
DNA during replication. DNA synthesis by Pol D is also mark-
edly inhibited by dU on the template strand (8). To determine if
dU inhibition was also evident in Afu replicases, we measured
whether Afu-Pol B and D could traverse dU and observed that
they both profoundly arrested at this lesion (Fig. 2C). Next, we
assayed for synthesis opposite dU by Afu-Pri S and Afu-Pri S/L
and observed that the primase readily bypassed dU (Fig. 2C).
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Bypass of dUs was also observed for Pfu-Pri S/L (SI Appendix,
Fig. S1B). Next, we measured the fidelity of the dU bypass using
single nucleotide incorporation assay opposite the lesion. Ar-
chaeal primases, specifically incorporated dA opposite dU, in-
dicating that bypass synthesis is promutagenic (Fig. 2D and SI
Appendix, Fig. S1D).

Afu Replicative Primase Catalyzes Error-Free Bypass of Cyclobutane
Pyrimidine Dimers. Theremophilic archaea, including Archae-
oglobus and Pyrococcus, tolerate high doses of UV light (25, 26),
notable given their apparent lack of recognizable lesion repair or
bypass mechanisms. UV induces DNA lesions, particularly cross-
links between adjacent pyrimidine bases including: cyclobutane
pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) mod-
ifications (27). These UV photoproducts distort DNA and
act as potent replication blocking lesions (2, 21). Similar repli-
case stalling lesions can occur at significant rates in organisms
not exposed to light, e.g., produced by cross-linking with alde-
hyde (28). Cross-linking rates are accelerated by oxidative stress;
therefore, this type of DNA damage may be abundant in ther-
mophilic archaea. First, we tested whether Afu-Pri S has TLS ac-
tivity on templates containing CPDs. Whereas the replicative
polymerases were incapable of bypassing CPDs, both Afu-Pri S and
Afu-Pri S/L performed TLS across this UV-induced lesion (Fig.
2C), establishing that Afu replicative primase can also catalyze
bypass of the CPDs. Second, we evaluated the fidelity of the CPD
bypass, measuring single base incorporations opposite the damage.
Afu-Pri S/L incorporated two dAs opposite both the 3′ and 5′
templating thymines of the CPD (Fig. 2F), establishing that ar-
chaeal primase catalyses error-free TLS past this UV damage.
Notably, the bypass fidelity of Afu-Pri S/L mirrors the TLS activity
of Pol η, a eukaryotic Y-family polymerase involved in error-free
bypass of CPD (2). In contrast, Pfu primase (Pfu-Pri S/L) was

unable to traverse the CPD, incorporating a single correct incoming
base (dA) opposite the first (3′) base of the dimer (SI Appendix,
Fig. S1 B and E). Next, we measured the capacity of archaeal
enzymes to replicate past the 6-4PPs. The archaeal enzymes were
unable to bypass this UV damage (SI Appendix, Fig. S3D). Al-
though PrimPol can bypass this lesion (19), 6-4PPs cannot be tra-
versed by other TLS DNA polymerases (2, 27). Bypass often
requires the collaborative effort of two specialized enzymes, where
the first performs insertion opposite the 6-4PP (an “inserter”
polymerase) and the second extends the primer bearing 3′ terminal
base aligned with the dimer (an “extender” polymerase) (2, 21).
We therefore measured if the archaeal enzymes display TLS “ex-
tender” abilities on UV lesions and observed that both primases
could extend primers containing 3′ terminal bases annealed to the
CPDs and 6-4PPs (SI Appendix, Figs. S1G, S2 A and B, and S4 B
and D); see SI Appendix, SI Results for details.

Afu Primase Rescues Pol B Stalled at the Template Strand Deoxyuracil.
Although archaeal replicases bind dU with nanomolar affinity
(29), a restart mechanism has not yet been identified. To address
whether the replicative primase plays a role in restarting arrested
replisomes, we assayed TLS activities of Afu-Pri S/L on short
templates (30 nt), containing a single dU, preincubated with the
Pol B/PCNA complex (Fig. 3A). We observed that Pri S/L
retained robust TLS bypass activity on dU-containing templates,
even in the presence of stalled replisome components. These data
indicate that Pri S/L has an innate capacity to access the 3′ end of
the primer, even when Pol B/PCNA complex has stalled at dU.
This is a notable observation given that Pol B/PCNA stalling at dU
abrogates detection and removal of deaminated bases by DNA
glycosylases (24).
As Pri S/L assists in the bypass of replication blocking lesions,

we next investigated whether archaeal primases function as a
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component of the replication machinery, required to maintain
progression on templates containing multiple lesions. To address
this possibility, we assayed the capacity of Afu-Pol B and Pol
B/PCNA to replicate DNA templates (77 nt) containing multiple
8-oxo dG lesions, in the presence or absence of Pri S/L (Fig. 3 B
and C). Although Pol B and Pol B/PCNA fully extended primers
on templates containing multiple 8-oxo dG, a regular pausing
pattern in close proximity to the lesions was observed, compared
with nondamaged template extension (Fig. 3 B and C, Left and
Middle). This indicates that a significant slowing of the replicase
was occurring. Overall, levels of DNA synthesis were enhanced
by the addition of PCNA on nondamaged templates but not on
templates containing multiple 8-oxo dGs. However, addition of
Pri S/L restored rates of primer extension to those observed on
undamaged primer templates (Fig. 3 B and 3C, Right).
Next, we examined the capacity of Afu-Pol B to replicate

DNA templates containing multiple dUs. In contrast with tem-
plates containing multiple 8-oxo dGs, Pol B alone or assisted by
PCNA was unable to traverse multiple dUs (Fig. 3D, Left and
Middle). Again, addition of Pri S/L restored efficient DNA syn-
thesis on this heavily damaged template (Fig. 3D, Right), indicating

that the archaeal primase and polymerase may collaborate to
maintain efficient replication fork progression on DNA containing
multiple dU “roadblocks.” To address whether the primase facili-
tates the maintenance of robust and processive DNA replication
on much longer DNA templates, a ∼1-kb-long DNA template was
prepared containing multiple dUs (∼20 lesions per template). As
anticipated, Afu-Pol B alone or assisted by PCNA displayed highly
processive synthesis on the undamaged template (Fig. 3E) and
profound stalling on dU-containing templates (Fig. 3F, Left and
Middle). However, addition of Afu-Pri S/L again rescued DNA
synthesis by Afu-Pol B/PCNA complex (Fig. 3F, Right). Together,
these data provide evidence that primases, in addition to their role
in initiation of DNA synthesis, also actively participate in the
elongation phase of DNA replication by performing TLS bypass
of lesions thus preventing the archaeal replisome from arresting
(Fig. 4). This interplay between replicase and primase appears to be
important for processive synthesis to ensure timely DNA replication.

Concluding Remarks
It has been widely assumed that AEP-like primases evolved as
replication enzymes relatively late in evolution, based on their
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initial discovery in eukaryotic organisms. However, it is now
apparent that both the evolutionary origins and roles of enzymes
belonging to the AEP superfamily must be significantly reeval-
uated. Primordial AEPs first originated in prokaryotes and
bacteriophage to perform a diverse range of roles in DNA me-
tabolism, including DNA repair (17, 18). Indeed, many bacterial
species possess multiple AEP enzymes, in addition to possession
of a replicative DnaG primase, suggesting an early diversification
of functions within the AEP superfamily. During evolution of
archaea from the last universal common ancestor (LUCA), both
DnaG and AEPs were maintained but the essential role of DnaG
as the replicative primase was superseded by AEP primases (30).
Presumably, these enzymes offered particular advantages to
these newly evolving organisms, including the capacity to tra-
verse DNA lesions. Recently, a second AEP (PrimPol) has been
identified in higher eukaryotes (10), whose primase and poly-
merase functions emulate those described here for archaeal
replicative primases (19, 31). PrimPol was probably acquired
from large cytoplasmic viruses during the early evolution of the
eukarya (10), where it superseded Pri S’s lesion bypass role
during replication. This potentially allowed eukaryotic Pri S to
assume more specialized roles in primer synthesis. This de-
marcation of the primase/polymerase activities between PrimPol
and Pri S probably reflects the additional replication require-
ments for much larger genomes, such as more regulated lagging-
strand synthesis.
Although some archaeal species possess canonical Y-family

DNA polymerases (Dpo4), specialized in traversing DNA
lesions, a recent study has reported that Sulfolobus strains lack-
ing Dpo4 display no increased sensitivity to DNA damaging
agents, including UV (32). This strain also exhibited no difference
in rates of spontaneous mutagenesis, suggesting that other TLS
pathways assist in bypassing replication-blocking lesions. Notably
in this regard, although expression of the DNA replication genes is

down-regulated after exposure of Sulfulobus cells to UV, Pri S/L
was up-regulated after irradiation, supporting its proposed role
in TLS (33). In addition, ethyl methanesulfonate (EMS) and UV
treatments of Pyrococcus strains, which also lack canonical TLS
polymerases, resulted in a strongly induced mutagenesis, with
spontaneous mutation frequencies increased ∼150-fold after
EMS treatment and ∼400-fold after UV exposure (26). The ob-
served DNA damage induced mutagenesis indicates the possible
existence of an active TLS pathway operating in these organisms.
This predication is also supported by fractionation studies of
whole cell extracts from P. furiosus that identified distinct
polymerase activities in three major fractions (34). Notably, one of
these fractions contained apparent TLS activity and, although the
polymerase responsible for this was not identified, it was fully
coincident with the elution of the Pri S/L complex. Together, with
the findings presented here, these studies add support to our
model postulating that archaeal replicative primases are involved
in synthesis past DNA lesions during replication.
Since the discovery of canonical TLS polymerases, it has been

widely assumed that these enzymes are largely responsible for
TLS during replication (2). However, this study identifies that
replicative primases can also act as proficient TLS polymerases
that assist replicases in bypassing blocking DNA lesions during
replication. As these enzymes are core replisomal factors, it
argues that in many organisms the replisome is inherently TLS
proficient and other damage tolerance mechanisms may provide
additional assistance in a postreplicative manner. This discovery
has major implications for our understanding of additional roles
of DNA primases during replication and the subsequent evolu-
tion of related PrimPol-centric TLS pathways in eukaryotic cells
(19, 31). Although this report has focused on the TLS activities of
archaeal Pri S/L, these enzymes are also proficient DNA primases
and therefore their ability to reprime replication postlesion (Fig. 4),

Fig. 4. Collaboration of the core components of the archaeal replisome results in bypass of DNA lesions. Top shows polymerizing replicase (Pol B, blue)
with sliding clamp (PCNA, gray). The complex encounters blocking DNA lesion (red triangle) resulting in Pol B idling, which allows recruitment of the
primase (Pri S/L, yellow). Depending on the type of the lesion, Pri S/L employs either primase or translesion synthesis (TLS) activity. Left illustrates
a scenario where the blocking lesion is relatively large (i.e., large aromatic organic compound or protein covalently attached to DNA) and Pri S/L syn-
thesizes a short primer (orange) after the damage so that the Pol B/PCNA complex can restart replication downstream from the block. Alternatively, when
the blocking lesion is small (e.g., 8-oxo dG, dU, or CPD), TLS (green) is performed by Pri S/L so that the Pol B/PCNA complex resumes DNA synthesis. The
fidelity of TLS performed by Afu-Pri S/L is shown.
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proposed for other organisms (4, 5, 19, 35), is also likely to
be important.

Materials and Methods
Materials. Deoxynucleotide triphosphates (dNTPs) and deoxyuracil tri-
phosphate (dUTP) were from by Roche and Jena Bioscience, respectively.
Enzymes were provided by New England Biolabs.

Cloning of Archaeal Genes. A. fulgidus and P. furiosus genes were PCR am-
plified and cloned using standard molecular biology techniques. All of the
PCR primers (Eurofins MWG Operon) sequences used in this study are listed
in SI Appendix, Table S1.

Expression and Purification of Archaeal Proteins. Archaeal proteins were
produced in Escherichia coli Rosetta strain (Novagene) grown at 37 °C.
Typical purification procedure is composed of three chromatography steps:
immobilized metal affinity, ion exchange, and gel filtration. Afu-PCNA was
expressed and purified as previously described (36).

Synthetic Primer Templates. The oligodeoxynucleotides and oligoribonucleo-
tides used to prepare primer templates were purchased from ATDBio and
Eurofins MWGOperon, respectively. All primers were fluorescently labeled to aid
visualization. Primer templates were annealed by heating equimolar amounts of
the oligomers in 10 mM Tris, pH 7.5, 50 mM NaCl, and 0.5 mM EDTA at 95 °C for
5 min, followed by cooling slowly to room temperature. All primer-template
sequences used in this study are listed in SI Appendix, Table S2.

Enzymatic Preparation of Long Single-Stranded DNA Templates. Approxi-
mately 1-kb-long single-stranded DNA (ssDNA) templates were prepared
using PCR followed by strand-specific exonucleolytic degradation. Reaction
mixtures contained primers listed in SI Appendix, Table S1. One of the pri-
mers was 5′ end phosphorylated to direct strand-specific degradation. The
PCR comprised 50 μL of 1× Taq reaction, 200 μM of the four dNTPs, 1 μM of

the forward and reverse primer, 50 ng of pUC18, and 20 units/mL of Taq
DNA polymerase. To prepare ssDNA containing dUs, 20 μM of dUTP was
added to the PCR mixture. A total of 30 PCR cycles (30 s at 95 °C, 35 s at 55 °C,
and 1 min at 72 °C) were used. DNA was resolved and purified on 1%
agarose/ethidium bromide gel. PCR product was excised and electroeluted.
Recovered dsDNA was ethanol precipitated and the 5′ phosphorylated
strand degraded using λ-exonuclease. ssDNA templates were annealed with
20-nt-long primer to yield nondamaged and dU-containing primer tem-
plates (SI Appendix, Table S3).

Primer Extension and Single Nucleotide Incorporation Assays. Reactions were
performed in 20 μL volume containing 20 mM Tris, pH 8.8, 10 mM KCl,
10 mM (NH4)2SO2, 2 mM MgSO4, and 20 nM primer template. The poly-
merization was monitored for variety of archaeal enzymes, including 50 nM
replicases and 50 nM of primases. Some of the reactions were supplemented
with PCNA (200 nM). For running start extensions, 50 μM of each of the four
dNTPs was used. In cases of single dNTP addition, 50 μM of the particular
dNTP under investigation was added. All reactions were carried out at 50 °C
and quenched by addition of an equal volume of 95% (vol/vol) formamide/
5% (vol/vol) water containing 20 mM EDTA. Primer extensions were carried
out for the time indicated in legends of Figs. 1–3 and SI Appendix, Figs. S1–S5.
All single nucleotide incorporations were terminated after 5 min. Polymeri-
zation products were resolved on 15% (wt/vol) denaturing polyacrylamide
gels containing 7 M urea. The gels were visualized using fluorescent scanner
Fuji FLA-150.
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