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GoSlo-SR-5-6 is a novel large-conductance Ca2+-activated K+ (BK)
channel agonist that shifts the activation V1/2 of these channels in
excess of −100 mV when applied at a concentration of 10 μM.
Although the structure–activity relationship of this family of mol-
ecules has been established, little is known about how they
open BK channels. To help address this, we used a combination
of electrophysiology, mutagenesis, and mathematical modeling
to investigate the molecular mechanisms underlying the effect
of GoSlo-SR-5-6. Our data demonstrate that the effects of this
agonist are practically abolished when three point mutations are
made: L227A in the S4/S5 linker in combination with S317R and
I326A in the S6C region. Our data suggest that GoSlo-SR-5-6 inter-
acts with the transmembrane domain of the channel to enhance
pore opening. The Horrigan–Aldrich model suggests that GoSlo-
SR-5-6 works by stabilizing the open conformation of the channel
and the activated state of the voltage sensors, yet decouples the
voltage sensors from the pore gate.
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Large-conductance Ca2+-activated K+ (BK) channels are pore-
forming transmembrane proteins and are allosterically modu-

lated by voltage and Ca2+ (1–5). The BKα subunits form tetramers,
and both regulatory β- (6) and γ-subunits (7) can associate with
the pore-forming α-subunits. Although the accessory subunits
are not required for functional BK channels, they alter the sensi-
tivity of the channels to Ca2+, voltage, and various channel agonists.
Uniquely for K+ channels, each BKα subunit comprises seven
transmembrane (S0–S6) domains, which contain voltage-sensing
residues in S1–S4 (8–10) and the pore gate domain is located in
S5–S6 (11). The transmembrane domain is attached to a large
intracellular domain, which comprises two regulators of conduc-
tance for K+ (RCK) domains (12). The RCK1 domain contains
a high-affinity Ca2+-binding site and a low-affinity cation-binding
site, which senses Mg2+ and high concentrations of Ca2+ (13, 14).
Another high-affinity Ca2+-binding site, called the Ca2+ bowl
(13–16), is found in the RCK2 domain. Ca2+ binding through these
domains is transduced to the transmembrane domain via the
S6/RCK1 linker (12, 17). Recent evidence (18) supports the idea
that the cytosolic domain of this channel is responsible for sensing
Ca2+, because truncated BK channels lacking the C terminus are
insensitive to Ca2+.
BK channels play a number of important roles that govern the

excitability of neuronal and smooth muscle cells. In bladder
smooth muscle, for example, they contribute significantly to the
repolarization phase of the action potential and thus modulate
the contractile activity of this tissue (19). Interestingly, BKα
knockout mice (20) display a functionally incontinent phenotype,
presumably due to detrusor overactivity. Furthermore, a number
of studies (21, 22) have suggested that the expression of BK
channels is reduced in patients suffering from neurogenic detrusor
overactivity. These results suggest that BK channel activators could
represent a novel therapeutic approach for treating overactive
bladder. However, despite the development of a large number

of BK channel openers over the last two decades (23–29), they
have failed to progress through clinical trials, because they
showed poor efficacy, presumably due to their lack of effect at
physiological membrane potentials, combined with a reduction
in BK channels in patients with overactive bladder (30).
Recently, we synthesized a novel group of BK channel openers

called the GoSlo-SR family (31). GoSlo-SR-5-6 (GoSlo) (10 μM)
shifted the voltage dependence of activation in excess of −100 mV.
Although the structure–activity relationships of these com-
pounds has been established (31, 32), little is known about their
mode of action on BK channels, other than GoSlo does not
require the β1-subunit to mediate its effects (33).
The purpose of the present study was to examine the molec-

ular mechanisms underlying the excitatory effects of GoSlo on
BK channels expressed in HEK cells. Recently, a number of
studies have demonstrated that BK channel openers such as
Cym04, NS1619, and omega-3 fatty acids mediate their effects, at
least partially, through an interaction with the S6/RCK1 linker
(34) or the S6 segment (35) of the BK channel. Our results demon-
strate that GoSlo mediates its effects by interactions with S6 and
the S4/S5 linker (S4S5L), and this was reduced by combined 317,
326, and 227 mutations. The Horrigan–Aldrich (HA) allosteric
model of BK channel gating (5) suggests that GoSlo enhanced the
equilibrium constants for both pore opening and voltage sensor
activation but reduced the voltage sensor/gate coupling.

Effects of GoSlo on Rabbit BKα Subunits Expressed in HEK Cells
We first examined the effects of GoSlo on inside-out patches
of membrane from HEK cells expressing rabbit BK α-subunits
(rWT). Fig. 1A shows control currents evoked from a holding
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potential of −60 mV through a range of potentials to +100 mV in
20-mV increments, before repolarizing to −80 mV. GoSlo (Fig.
1B, 10 μM, structure Inset) shifted the activation V1/2 by more
than −100 mV, decreased the activation time constant, and in-
creased the deactivation time constant (Fig. S1). To quantify the
effects of the drug on V1/2, we plotted GV curves (Fig. 1C) from
the IV relationship obtained in 100 nM Ca2+ in the absence and
presence of GoSlo and compared its effects to increasing [Ca2+]i
to 1 and 10 μM Ca2+. These data were fitted with the Boltzmann
equation (solid lines), and in 13 experiments, summarized in Fig.
1C, GoSlo shifted the activation V1/2 from 173 ± 2 to 50 ± 2 mV,
which was similar to the effects of 1 μM Ca2+ (V1/2 = 57 ± 3 mV;
Fig. S1C). In the presence of 10 μM Ca2+, the response to GoSlo
was reduced (ΔV1/2 = −63 ± 6 mV; n = 7). In the absence of
divalent cations in the pipette solution the Ca2+ sensitivity of the
BK currents was higher than that reported in other studies (Fig. S2).

Functional Ca2+ or Mg2+ Sensors Not Required for GoSlo
Effects
We first investigated the involvement of the two high-affinity
Ca2+-binding sites (Fig. 2A) on the GoSlo response. The Ca2+
and GoSlo responses of channels expressing mutations shown to
reduce calcium binding at the RCK1 site, D367A (13), the RCK2
site, 5D5N (15, 16), or both sites, M513I:D898A (16), were
recorded and compared with rWT (Fig. S1) and are summarized
in Fig. 1D. Although the Ca2+ sensitivity of all mutants were
reduced (Fig. S1C), the response to GoSlo was unaltered (Fig.
1D). Similarly, mutations of the Mg2+ sensors [E374A, E374A:
E399N (36)] failed to reduce the response to GoSlo, suggesting
that functional Ca2+ or Mg2+ sensors were not essential for its
effects. We next deleted the C terminus of the BK channel [distal
to residue 342 (18)] to narrow down the site for GoSlo inter-
action to the cytosolic or transmembrane domains. As recently
demonstrated (18), these truncated channels were insensitive to
Ca2+ (Fig. 1E), but were activated by GoSlo, which shifted ac-
tivation V1/2 more than −100 mV (Fig. 1F; n = 5). GoSlo effects
were blocked by penitrem A (n = 8; Fig. S3).

Are S6/RCK1 Linkers Involved in the GoSlo Response?
Following the recent demonstration (34) that Cym04 and NS1619
open BK channels through interactions with the S6/RCK1 linker
region (shown in orange in Fig. 2A), we examined the effects
of GoSlo on the Slo1_9A splice variant. This contains an alter-
native exon 9, differing in 13 aa in the S6/RCK1 linker regions
(37). Fig. 2B shows the amino acid sequence from residue 317 in
the C-terminal half of S6 (S6C) to residue 342 at the distal end of
the S6/RCK1 linker of BKα. This is designated 999 (34), because
it contains the original exon 9, whereas the sequence of the
Slo1_9a splice variant is designated AAA, which signifies alter-
native exon 9. The residues that differ between WT and Slo1_9a
are represented in black. We first examined the effects of 10 μM
GoSlo on the hWT channel and found that, in 100 nM Ca2+, the
ΔV1/2 was not significantly different (−104 ± 6 mV; n = 9) to that
recorded in rWT or native rabbit bladder BK channels (31).
Fig. 2Di shows typical currents evoked from hWT channels by
a step to +100 mV in the presence of 100 nM Ca2+, 10 μM Ca2+,
and 100 nM Ca2+ plus 10 μM GoSlo (blue trace), and is sum-
marized in Fig. 2Dii. In contrast, the effects of 10 μM GoSlo
were reduced in Slo1_9a (Fig. 2 Ei and Eii) where ΔV1/2 was
−43 ± 6 mV (Fig. 2C; P < 0.001, ANOVA).
Given the reduction in the effect of GoSlo on Slo1_9a, we

produced a series of chimeras in which S6C, the proximal linker,
and the distal linker were independently exchanged between
hWT and Slo1_9a (Fig. 2B). The Ca2+ sensitivity and effect of
GoSlo on each chimera are shown in Fig. S4 A and B. When we
compared the effect of GoSlo on these chimeras, a clear pattern
was evident (Fig. 2C), in which the decrease in the effect of
GoSlo was only dependent on the presence of the variant se-
quence (A) in the S6 segment (A99, ΔV1/2 = −53 ± 10 mV, n = 6,
P < 0.001), regardless of whether the other regions were also
altered (AA9, ΔV1/2 = −38 ± 5 mV, n = 6, P < 0.001; A9A,

ΔV1/2 = −54 ± 10 mV, n = 6, P < 0.001). In contrast, the effect of
NS1619 (30 μM; Fig. S4C) was unaffected in the A99 chimera
but was reduced by ∼50% in the AA9 and 9A9 chimeras (34),
consistent with the idea that the site of interaction of GoSlo with
BK channels is different to NS1619.
We next examined the effects of mutating the three residues in

S6 of the rWT channel that differ in Slo1_9a (S317, I323, and
E324; Fig. 2B). Although the response to GoSlo was not signif-
icantly reduced in E324 or I323 mutants (Fig. 3 B and C), the
S317R mutant was less responsive to GoSlo (Fig. 3Ai). This
mutant activated with a V1/2 of 200 ± 2 mV (Fig. 3Aii; n = 10),
and in 10 μM GoSlo, the ΔV1/2 was −80 ± 8 mV (Fig. 3C). In-
terestingly, the response to GoSlo in the S317A mutant (ΔV1/2 =
−115 ± 9 mV) was similar to rWT, suggesting that R317 altered
either the efficacy or potency of GoSlo. When R317 was mutated
back to S317, on the otherwise-unaltered Slo1_9a, the effects of
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GoSlo were significantly restored, but mutation of either of the
other two S6 residues in Slo1_9a had no significant effect (Fig. S5).

What Other Residues Are Involved in the Response to GoSlo?
Having established that the S317R mutation diminished the ef-
fect of GoSlo, we were interested in the location of S317 in the
BK protein and potential interactions involving its side chain.
Because the crystal structure of the transmembrane portion of
the BK channel is unresolved, we used the structure of the
Kv1.2/2.1 paddle-chimera (ref. 38; Protein Data Bank ID code
2R9R). We selected residues from regions in the 2R9R structure
predicted to pack against L400, the equivalent residue to S317 in
BK channels. Fig. 4Ai shows the 2R9R structure, with four color-
coded α-subunits. The region within the white box is expanded
(Fig. 4Aii), to show a portion of the channel in which subunits 2
and 4 are to the foreground. The residue number of 2R9R is
shown along with the equivalent residue in the BK channel in
parentheses. Marked in gray sticks are the only three residues
from adjacent segments (L313, V406, F409) that were identified
to be within the 4-Å cutoff of the L400 side chains. The equiv-
alent residues from the BK channel are S317 (in S6C of subunit
2, colored in cyan), residues I323 and I326 in S6C of the adjacent

α-subunit (subunit 4, shown in red), and residue L227 on the
S4S5L of the adjacent subunit. We individually mutated each of
these residues in rWT and examined the effects of GoSlo. The
I323A mutant did not significantly affect the response to GoSlo
(Fig. 3 B and C); however, theΔV1/2 induced by GoSlo was reduced
significantly in the L227A and I326A mutants (Fig. 4 B–E). It was
further reduced in the double mutants S317R:I326A (Fig. 4C) and
S317R:L227A, where the mean ΔV1/2 was reduced to −56 ± 4 and
−65 ± 3 mV, respectively, in GoSlo (P < 0.01; Fig. 4E).
We also examined the effect of GoSlo on channels with the

triple mutation L227A:S317R:I326A and compared these with
rWT channels. In rWT, GoSlo produced a concentration-
dependent enhancement of the current evoked by a step from
−60 to +100 mV (Fig. 5A). Summary activation curves for each
concentration of drug (300 nM to 30 μM) are shown in Fig. 5B
(n = 7–12). The ΔV1/2 in each concentration of drug was plotted
in Fig. 5C to yield an EC50 of ∼3 μM. Even though the Ca2+

sensitivity of the triple mutant was not decreased compared with
rWT (Fig. S6A), it was much less responsive to GoSlo (Fig. 5 D–
F) because the ΔV1/2 in 10 μM GoSlo was −15 ± 4 mV (n = 11).
Due to the limited solubility of GoSlo, we were unable to obtain
a full concentration effect curve (Fig. 5F), so it was unclear if
potency or efficacy was reduced. Interestingly, the effects of
NS1619 (30 μM) were unaltered in this mutant (ΔV1/2 = −40 ±
3 mV; n = 5) compared with rWT (ΔV1/2 = −42 ± 3 mV; n = 6).

Investigating the Molecular Mechanism of Action of GoSlo
We used the HA allosteric model (5) shown in Fig. 6A to help
cast light on how GoSlo activated BK channels, as detailed in SI
Text. As shown in Fig. 6B, the model can be simplified to sub-
scheme 1 in the absence of Ca2+. A typical record of single-
channel currents obtained from a patch in the absence and
presence of 10 μM GoSlo and in 1 μM Ca2+ is shown in Fig. 6C.
Under control conditions, the open probability (PO) decreased as
the patch was hyperpolarized, but GoSlo increased PO markedly,
and was more effective than Ca2+ at these voltages. Fig. 6E
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shows summary PO–V relationships in which GoSlo enhanced PO
at all voltages, but its effects were greatest at negative potentials.
For example at −140 mV, PO increased ∼1,700-fold, whereas
application of 1 μM Ca2+ only enhanced PO 33-fold. These data
were fitted with the HA model (Eq. S3) to yield the solid lines in
Fig. 6E, and the values obtained by these fits are summarized in
Table S1. In GoSlo, there was little change in ZJ, but the charge
associated with pore opening (ZL) was reduced to 0.18e, as
evidenced by the reduced voltage sensitivity of the C–O transi-
tion at positive potentials (Fig. S7C). Both L0 (700-fold) and J0
(eightfold) were significantly increased, whereas the allosteric
coupling factor D was reduced by ∼60%, suggesting that GoSlo
mediates it effects predominantly by shifting the C–O equilib-
rium to stabilize the open state (↑L0) and also stabilizes voltage
sensor activation (↑J0). If GoSlo activates the voltage sensors and
decouples them from channel opening, a very specific series of
changes should be observed in mean activation charge displace-
ment vs. voltage (Qa–V) relationship. Thus, the peak Qa ampli-
tude (QaMAX) and its width would be reduced as a consequence
of ↓D (10) and the Qa–V relationship should be shifted negatively,

due to the shift in the R–A equilibrium. Fig. 6G shows a Qa–V plot
calculated from the logarithmic slope of the PO–V data (39), fitted
with Eq. S6, and suggests that all three predictions held.
When we repeated these experiments on the triple mutant,

GoSlo only modestly increased PO (Fig. 6D). As shown in Fig.
6F, when the summary PO–V data were fitted with the HA
equation, the mutant channels appeared similar to the WT, al-
though the allosteric coupling factor (D) was ∼20% smaller
compared with WT. In GoSlo, PO only increased ∼15-fold at
negative potentials, but D was reduced from 11 ± 0.3 to 7 ± 0.1
and J0 increased from 0.08 to 0.17 in GoSlo. As Fig. 6H suggests,
the mutant QaMAX was smaller than WT, consistent with the
reduction in D. In the presence of GoSlo, QaMAX was reduced
further and the Qa–V relationship was narrower, as expected
with a further reduction in D. However, the hyperpolarizing shift
in the Qa–V relationship was decreased (Table S2), consistent
with a reduced shift in voltage sensor activation.

Discussion
The results presented suggest that the effects of GoSlo (i) do not
require functional Ca2+- or Mg2+-binding sites, (ii) remain when
the cytosolic domain of the channel is deleted, (iii) are signifi-
cantly reduced in the Slo1_9a splice variant, (iv) are reduced in
the S6C mutants S317R and I326A, (v) are decreased in the
S4S5L mutant L227A, (vi) are ablated in the S4S5L/S6 triple
mutant, and (vii) are mediated predominantly by shifting the
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and Cii) GV curves (n = 6) in 100 nM Ca2+ before (open circles) and during
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show Boltzmann fits to the data. (D) Plot of the activation V1/2 for each
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Fig. 5. The triple mutant practically abolishes the response to GoSlo. Cur-
rents from rWT (A) and the triple mutant (D) were evoked by a step to
+100 mV in the absence (black trace) and presence of increasing concen-
trations of drug (blue traces). The concentration dependence of the currents
to GoSlo in the rWT (B) and triple mutant (E) was assessed from −100 to
+200 mV to generate the respective GV curves. The ΔV1/2 in each [drug] was
plotted in C and fitted with the Langmuir equation to yield an EC50 of 3.2 μM
for the rWT. We were unable to obtain a full concentration effect curve in
this mutant, although the efficacy of the drug appears reduced compared
with rWT (F). Numbers in parentheses represent the number of replicates.
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pore-gating equilibrium (L0) toward the open state. These
results support the idea that GoSlo mediates its effects through
an interaction with residues in the transmembrane domain of
the channel.
Over the last few years, a number of studies have examined the

molecular mechanisms underlying the excitatory effects of dif-
ferent BK channel modulators (34, 35). A recent study (34)
showed that Cym04 and NS1619 were less effective at opening
Slo1_9a splice variant BK channels and provided evidence to
support a role of residue K330 in the proximal linker in medi-
ating the response to these compounds. The results from the
present study suggest that, although the effects of GoSlo are
significantly attenuated in the Slo1_9a splice variant, they were
only slightly reduced in chimeras containing the sequence for
Slo1_9a in either the proximal or distal linkers (9AA, 9A9). In
keeping with previous reports (34), the ΔV1/2 induced by NS1619
was reduced ∼50% in chimeras containing the Slo1_9a proximal
linker sequence (9A9, AA9). The effect of NS1619 was not al-
tered in the A99 chimera containing the S6C sequence from the
splice variant (Fig. S4C). In contrast, the effects of GoSlo were
significantly reduced in all chimeras possessing the Slo1_9a S6C
segment. Our results suggest that the presence of R317 in the
splice variant accounts for a significant proportion of the re-
duced effect, because the responsiveness of the Slo1_9a channels
to GoSlo was partially restored when the arginine was mutated
back to serine (Fig. S5). The involvement of S317 is certainly
unexpected, because one interpretation of cysteine modification
experiments (40) suggests that it may face into the pore in the
open channel (and thus is shifted in position relative to Kv
channels). If so, the side chain of S317 would only be available to
interact with GoSlo in the closed state. The fact that the S317A
mutant did not reduce the effect of GoSlo may suggest that the
S317R mutation is not involved directly in the binding of GoSlo,
but interferes with its binding to other, unidentified residues.
Alternatively, GoSlo may interact with backbone of S317, and
this may be inaccessible to GoSlo in the S317R mutant.
Having established that the substitution S317R diminished the

GoSlo effect, we used the 2R9R crystal structure (38) to identify
residues whose side chains may interact with the side chain of
residue 317. Although the applicability of the 2R9R model to BK
structure has been questioned, we were able to identify three
residues, which, when mutated together, ablated the response to
GoSlo. As Fig. 4Aii suggests, the corresponding residues in the
BK channel predicted to pack against the side chain of 317 are
I323 and I326, in S6C, and L227, in the S4S5L, all three of which
are in an adjacent subunit. Both I326A and L227A mutants were
significantly less sensitive to GoSlo, the effects of GoSlo were
further reduced (∼50%) in the double mutants (S317R:L227A;
S317R:I326A) and almost abolished in the triple mutant, where
the ΔV1/2 was reduced by >80%. Interestingly neither the effects
of increasing Ca2+ or NS1619 were reduced in this mutant,
suggesting that it selectively ablates the response to GoSlo.
We examined the molecular mechanisms of GoSlo using the

HA allosteric gating model (5) and found that the effects of
GoSlo could be modeled by enhancing L0 ∼700-fold, J0 ∼8-fold,
and reducing the allosteric coupling factor D by ∼60%. Thus, it
appears that GoSlo activated the channels primarily by shifting
the C–O equilibrium toward the open state. In addition, GoSlo
shifted the activation of the voltage sensors (ΔVHC ∼ −70 mV;
Eq. S7) but had little effect on the charge associated with voltage
sensor movement (ZJ). However, it did appear to reduce the
voltage sensitivity of the C–O transition, as evidenced by the
reduction in ZP (Fig. S7), perhaps suggesting that, in GoSlo,
when the voltage sensors are maximally activated, the C–O
transition is less voltage sensitive (Fig. S8). Although GoSlo
appeared to activate the voltage sensors, it is interesting to note
that it also reduced coupling between them and the pore, as
evidenced by (i) the reduced amplitude of QaMAX in drug and
(ii) the narrowing of the Qa–V curve relative to control. In the
triple mutant, the D factor was reduced compared with WT, and
interestingly, the kinetics of activation were both slower (Fig. S7B)
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Fig. 6. Using the HA model to assess the molecular mechanisms of action of
GoSlo. (A) The HA model in which C and O represent the closed and open states
of the channel and is governed by the equilibrium constant L. R and A represent
the resting and activated states of each of the four voltage sensors and is gov-
erned by the equilibrium constant J. X and XCa

2+ are the unbound and bound
states of the Ca2+ sensors, respectively, and K is the equilibrium constant. C and E
represent the allosteric factors that couple Ca2+ binding to channel opening and
voltage sensor activation, respectively, and allosteric factor D couples channel
opening and voltage sensor activation. (B) HA model applicable in the absence
of Ca2+. (C, E, and G) Typical records and summary data from rWT BK channels.
D, F, and H show experiments with the triple (L227A:I326A:317R) mutant. C
shows single-channel currents from a WT patch containing 180 channels and
held at −40, −80, and −120 mV in the absence of Ca2+ (left traces), the presence
of GoSlo (middle traces), and 1 μM Ca2+ (right trace). GoSlo was more effective
at increasing the PO than Ca2+ at negative voltages. Summary data in E shows
mean PO–V relationships in the absence (open circles) and presence (blue tri-
angles) of GoSlo (10 μM). Solid lines are fits obtained with Eq. S3, which yielded
L0 = 3.7 × 10−6, ZL = 0.28, J0 = 0.09, ZJ = 0.73, and D = 13.8 before, and L0 = 2.5 ×
10−3, ZL= 0.28, J0 = 0.7, ZJ= 0.71, andD = 5 in GoSlo. (G) MeanQa–V relationship
for rWT, whereQaMAX was 1.95 ± 0.14 at 30 mV in control compared with 1.17 ±
0.13 in GoSlo. (D) Currents from a patch containing 350 triple mutant channels
in the absence (Left), presence of GoSlo (Middle) and 1 μM Ca2+ (Right). F shows
PO in triple mutant before (black squares) and during GoSlo (red triangles).
Solid lines are fits obtained with Eq. S3, where L0 = 3.6 × 10−6, ZL = 0.3e, J0 =
0.08, ZJ = 0.7, and D = 11 in control, and L0 = 3.9 × 10−5, ZL = 0.28, J0 = 0.17, ZJ =
0.69, and D = 7 in GoSlo (red triangles). (H) Mean Qa–V relationship of the
mutant before (black squares) and during GoSlo (red triangles), where QaMAX

was reduced from 1.76 ± 0.07 at +50 mV to 1.4 ± 0.07 at +50 mV. Solid lines
represent fits to the data using Eq. S6 and yielding the values quoted in Table S2.
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and less voltage dependent (Fig. S7D, filled squares) than the
WT channel. It appears from our data that the voltage sensor
gating charge of this mutant is unaltered (Table S1) and that
the voltage sensors can activate, as evidenced by the similarity
in shape of the PO–V (Fig. 6) relationship in WT and the triple
mutant. A potential explanation for the reduction in the acti-
vation kinetics is that voltage sensor activation is significantly
slowed in this mutant, but this will require confirmation by
recording gating currents.
Our working hypothesis to explain the molecular mechanism

of action of GoSlo is that the bulky D ring of GoSlo inserts into
a hydrophobic pocket between the S4S5L and S6C and perturbs
the interaction between these two regions, resulting in channel
opening, voltage sensor activation, and reduced coupling be-
tween the voltage sensor and the gate. Reductions in hydro-
phobic interactions in this region certainly appear to enhance BK
channel activity, because the loss of the aliphatic side chain in the
L227A mutant significantly left shifted the GV relationship in
100 nM Ca2+ compared with rWT (Fig. 4D), as recently sug-
gested (41). This may also help to explain the observation that
increasing D ring diameter enhances the efficacy of GoSlo

compounds (32), perhaps as a result of forcing S4S5L and
S6C apart.
In conclusion, the results of this study demonstrate that GoSlo

is an efficacious BK channel opener that appears to interact with
residues in the S4S5L and S6C segments to promote channel
opening, primarily by stabilizing both the open state of the
channel and the activated state of the voltage sensors.

Materials and Methods
Experiments were performed on BKα subunits expressed in HEK cells and
studied with the inside-out configuration of the patch-clamp technique. The
concentrations of Ca2+ in each experiment applied to the cytosolic face of
the channel are shown in each figure. Standard molecular biology methods
were used for mutagenesis (42) and chimera generation. The HA model (5)
was used to elucidate the molecular mechanism. See SI Materials and
Methods for details. Data are expressed as the mean ± SEM.
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