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This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by
George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance
both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of
the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is
traced from the origins of statistical mechanics and Boltzman’s ergodic hypothesis to the Ehrenfests’ quasi-ergodic hypothesis, and then to the
ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these
papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has
thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics.

George D. Birkhoff (1) and John von
Neumann (2) published separate and vir-
tually simultaneous path-breaking papers
in which the two authors proved slightly
different versions of what came to be known
(as a result of these papers) as the ergodic
theorem. The techniques that they used were
strikingly different, but they arrived at very
similar results. The ergodic theorem, when
applied say to a mechanical system such as
one might meet in statistical mechanics or in
celestial mechanics, allows one to conclude
remarkable results about the average behavior
of the system over long periods of time, pro-
vided that the system is metrically transitive

(a concept to be defined below). First of all,
these two papers provided a key insight into
a 60-y-old fundamental problem of statistical
mechanics, namely the rationale for the hy-
pothesis that time averages can be set equal to
phase averages, but also initiated a new field of
mathematical research called ergodic theory,
which has thrived for more than 80 y. Sub-
sequent research in ergodic theory since 1932
has further expanded the connection between
the ergodic theorem and this core hypothesis
of statistical mechanics.
The justification for this hypothesis is

a problem that the originators of statistical
mechanics, J. C. Maxwell (3) and L. Boltzmann
(4), wrestled with beginning in the 1870s as
did other early workers, but without math-
ematical success. J. W. Gibbs in his 1902
work (5) argued for his version of the hy-
pothesis based on the fact that using it gives
results consistent with experiments. The
1931–1932 ergodic theorem applied to the
phase space of a mechanical system that
arises in statistical mechanics and to the
one-parameter group of homeomorphisms
representing the time evolution of the system
asserts that for almost all orbits, the time
average of an integrable function on phase
space is equal to its phase average, provided
that the one-parameter group is metrically
transitive. Hence, the ergodic theorem trans-
forms the question of equality of time and
phase averages into the question of whether
the one-parameter group representing the
time evolution of the system is metrically
transitive.
To be more specific about statistical me-

chanics systems, consider a typical situation
in gas dynamics where one has a macroscopic
quantity of a dilute gas enclosed in a finite

container. The molecules are in motion,
colliding with each other and with the hard
walls of the container. The molecules can be
assumed for instance to be hard spheres
(billiard balls) bouncing off each other or
alternately may be assumed to be polyatomic
molecules with internal structure and where
collisions are governed by short-range re-
pelling potentials. One may also choose to
include the effects of external forces, such as
gravity on the molecules. We assume that the
phase spaceM consists of a surface of constant
energy. This assumption, together with the
finite extent of the container, ensures that M
is compact and that the invariant measure de-
rived from Liouville’s theorem is finite. The
equations of motion, say in Hamiltonian form,
can be written in local coordinates as a first-
order system of ordinary differential equations

dxi=dt =Xiðx1; . . . xnÞ:

First, the number of variables in the equa-
tions is enormous, perhaps on the order of
Avogadro’s number, and the equations are
quite complex. The system is perfectly deter-
ministic in principle; hence, given the initial
positions and momenta of all of the mole-
cules at an initial time, the system evolves

George D. Birkhoff. Image courtesy of the
American Mathematical Society (www.
ams.org).
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deterministically. However, there is no chance
of knowing these initial conditions exactly
and little chance of integrating these equations
to find the solutions. Given therefore that we
only have partial information about the sys-
tem, a statistical approach to the analysis of
such systems is appropriate and necessary.
Maxwell (6) and Boltzmann (7) began such
a project, which was further developed and
elaborated by Gibbs (5).
The system of differential equations above

generates a flow, which we denote PtðxÞ
where x= ðx1; . . . xnÞ is a point in the phase
space M representing the system at time
t = 0. PtðxÞ is the position to which the sys-
tem moves after time t so that PtðxÞ is the
solution of the differential equation with initial
value x at time t = 0. Pt is a homeomorphism
ofM onto itself defined for all t (as the system
is time reversible) and satisfies the group prop-
erty PtPs = Pt+s. It also preserves the Liouville
measure μ, which is finite in this case.
Now if f is an integrable function on the

phase space M, one may argue that if one
makes a physical measurement of f on a sys-
tem that is in state x∈M, what one gets, at
least for all but a negligible number of states
x, is a time average

1=2T
ZT

−T

f ðPtðxÞÞdt:

This is a time average of the values of f
over a part of the path of the solution of
the equations with value x at time t = 0.
The argument that it is reasonable to assume

that a physical measurement takes a short
period to perform, but this short time period
is a long period for the physical system be-
cause, for instance, each molecule will on
average experience billions of collisions per
second in a typical gas. In fact, this line of
reasoning leads to the idea that the result of
the measurement is best represented by the
limit as T tends to infinity of the time average
above. The first problem is, of course, to
know that this limit exists, except of course
for a negligible set of x. Then the assumption
of equality of time averages and phase aver-
ages would assert that the limit of the time
average above is independent of x and equal
to the phase average

Z

M

f ðvÞdμðvÞ;

for all but a neglible set of x∈M where μ is
the Liouville invariant measure. The signifi-
cant and useful point is this phase average
can be calculated in many cases, whereas
the time average cannot be calculated.
Another way of phrasing this equality is

to use for f the indicator function of a
measurable subset A of M (a function that
is equal to 1 on A and 0 outside of A). Then
the time averages above record the fraction of
time that the orbit spends in A, and the basic
hypothesis of statistical mechanics asserts
that this is equal for almost all orbits to the
Liouville measure of A (assuming that the
measure of the total space M has been nor-
malized to 1). However, another way of ex-
pressing this equality is to assert that for all
but a negligible set of states of the gas, the
observed value of a function f will be equal
to the average value of f taken over M that
is an average value of f taken over an en-
semble (to use Gibbs’s language) of all pos-
sible states with the same energy. The
constant energy surface M with its invari-
ant volume element here is what Gibbs
called the microcanonical ensemble.
The ergodic theorems of Birkhoff and von

Neumann assert first of all of the existence of
the time limit for T→∞ for any one param-
eter measure preserving group, and then, as-
suming that Pt is metrically transitive, they
assert the equality

lim
T→∞

ð2TÞ−1
ZT

−T

f ðPtðxÞÞdt =
Z

M

f ðvÞdμðvÞ:

The difference between the two theorems
is that Birkhoff proved that the convergence
of the functions of x on the left side is point-
wise almost everywhere (the limit in general

can be identified as the conditional expecta-
tion of f onto the sigma field of invariant sets,
to use the language of probability theory). In
the case of metric transitivity, this function
is just the constant function equal to the
integral of f over M. von Neumann proved
that these functions of x converge in mean
square [that is in L2ðM; μÞ] to the orthogonal
projection of the function f onto the closed
subspace of invariant functions, which in the
metrically transitive case is one dimensional
consisting of the constant functions. Birkhoff
assumes the function f is bounded and mea-
surable, whereas von Neumann assumes the
more general condition that the function f is
square integrable. Although both theorems
were originally formulated and proved for
measure preserving one parameter groups
generated by first-order differential equations
on compact manifolds, subsequent work has
shown using the same arguments that these
results are valid for a much broader class of
dynamical systems including one-parameter
families of measure preserving transforma-
tions of a finite measure space, which may
not necessarily be defined by systems of dif-
ferential equations. Later work also showed
that Birkhoff’s theorem holds for an integra-
ble function f. Thus, these theorems are the-
orems about one-parameter groups of au-
tomorphisms of measure spaces with no
mention of topology. The theorems also
clarify what is meant by the informal term
in statistical mechanics, negligble set, namely,
it is a set of μ that measures zero. It should
be added that the time average does not have
to be taken from −T to T, but can be taken
over any intervals from T1 to T2, as long as
the difference T2 −T1 tends to infinity.
Before moving on to subsequent develop-

ments in ergodic theory, it is worth pausing
to examine the sequence of events leading to
the proofs and publication of the two ergodic
theorems: the pointwise ergodic theorem of
Birkhoff and the mean ergodic theorem of
von Neumann. Much of this was laid out
in a subsequent paper of Birkhoff and
Koopman (8) in the March 1932 issue of the
PNAS. von Neumann was very much aware
of the results of M. H. Stone (9) on spectral
theory of one-parameter groups of unitary
operators and the results of Koopman (10)
that used Stone’s results to analyze one-
parameter groups of measure preserving
transformations. Koopman had indeed sug-
gested to von Neumann that he might use
these results to resolve the problem of equal-
ity of time and phase averages, and von
Neumann writes that Andre Weil had made
the very same suggestion to him. von Neu-
mann seized on the notion of metric transi-
tivity, introduced, somewhat ironically, by

John von Neumann. Image courtesy of the
Shelby White and Leon Levy Archives Center,
Institute for Advanced Study, Princeton.
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Birkhoff and Smith (11) a few years earlier
in 1928, and proved his mean ergodic theo-
rem under the hypothesis of metric transi-
tivity. See the article by Mackey (12) for
more details.
According to Birkhoff and Koopman, von

Neumann communicated his result person-
ally to both of them on October 22, 1931, and
pointed out to them that his result raised the
important question of whether a pointwise
result might be valid. Birkhoff then went to
work and, by different methods, quickly es-
tablished his pointwise ergodic theorem. He
submitted his paper to PNAS on December 1,
1931, for appearance in the December 1931
issue. One presumes that he sent copies to
Koopman and von Neumann, who would
have noticed that Birkhoff had not given von
Neumann adequate credit and recognition
for his result. von Neumann evidently
planned to include his ergodic theorem and
its proof in a much longer paper he was
writing for the Annals of Mathematics, but
he then apparently quickly drafted a short
paper for PNAS with his proof of the mean
ergodic theorem and submitted it to PNAS
on December 10, 1931. It appeared in the
January 1932 issue. One suspects that these
events led Koopman and Birkhoff to write
and publish their paper in PNAS 2 months
later, which set matters straight and clearly
acknowledged von Neumann’s priority. It
should also be noted that E. Hopf (13) pre-
sented a slightly different proof of the mean
ergodic theorem and some improvements
on the Birkhoff theorem in a paper, which
appeared in the January 1932 issue of
PNAS. For whatever reason, the Birkhoff
paper and its result has over time become
the better known of the two papers, but
in light of these historical details, the
von Neumann paper deserves at least
equal billing.
There are also ergodic theorems for a single

measure-preserving map P and its iterates Pn.
They assert the existence of the time limit
below and that it converges to the phase av-
erage if P is metrically transitive; that is

lim
N→∞

ðN + 1Þ−1
XN
n=0

f ðPnxÞ=
Z

M

f ðvÞdμðvÞ:

The convergence is pointwise for almost all
x for integrable f, and in the mean for f
square summable. One way to conceive of
metric transitivity and the ergodic theorem
for a single transformation is that for almost
all points x, the n iterates under P of x is
distributed in some sense evenly through-
out the space so that taking the average of
a function f over these points gives a result

that is a good approximation to the inte-
gral of f over the space and that the more
iterates one includes in the average, the
better the approximation. Therefore, it is
like a numerical integration scheme.
Finally, we need to define metric transitiv-

ity, a concept, as previously noted, that was
introduced by Birkhoff and Smith (11). A
one-parameter group of measure preserving
transformation PtðxÞ (or a single transforma-
tion P) on a measure space M is metrically
transitive provided that any μ measurable set
invariant under Pt for all t (or P) must have
zero measure or its complement must have
zero measure. This means that the flow is
indecomposable or irreducible in the sense
that one cannot decompose it into a union
of two disjoint subflows. It also means that
there are no measurable functions invariant
under the flow (or the transformation P).
It is heuristically reasonable to argue,

owing to the molecular chaos in gas dynam-
ics, that there are no nonconstant continuous
invariants or so-called first integrals of the
motion. However, more is required for metric
transitivity—namely no nonconstant measur-
able invariants of the motion. In the example
from gas dynamics, the total energy is clearly
an invariant of the motion, but we have re-
stricted the flow to a surface of constant en-
ergy. In addition, total momentum is nor-
mally preserved, but although momentum
is preserved in collisions between molecules,
collisions with the walls do not preserve mo-
mentum, so this possible invariant of the mo-
tion disappears. Although the term metric
transitivity is still in use, current terminology,
due to von Neumann, is that any flow or
single transformation with this property is
simply called ergodic.
It is worth observing that metric transitiv-

ity is a necessary and sufficient condition for
the validity of the ergodic theorem. To see
this, assume the ergodic theorem holds and
then apply the statement of the theorem to
the indicator function f of a supposed invari-
ant measurable set A—that is, f is equal 1 on
A and 0 on the complement of A; the left side
of time averages is always equal to f, but the
right side is a constant function. Hence, f is
a constant function, and the alleged invariant
set is of measure zero or its complement is of
measure zero.
It is interesting to look back at the early

history of statistical mechanics to see how the
founders of the subject handled the topic of
time averages and space averages. Boltzmann
(4) coined the terms ergoden or ergodische
(which we translate as ergodic) from the
Greek eργoν (energy) and oδoσ (path) or
energy path. He put forth what he called
the ergodic hypothesis, which postulated that

the mechanical system, say for gas dynamics,
starting from any point, under time evolution
Pt , would eventually pass through every state
on the energy surface. Maxwell and his fol-
lowers in England called this concept the
continuity of path (3). It is clear that under
this assumption, time averages are equal to
phase averages, but it is also equally clear to
us today that a system could be ergodic in
this sense only if phase space were one di-
mensional. Plancherel (14) and Rosenthal
(15) published proofs of this, and earlier,
Poincare (16) had expressed doubts about
Boltzmann’s ergodic hypothesis. Certainly
part of the problem Maxwell and Boltzmann
faced was that the mathematics necessary for
a proper discussion of the foundations of sta-
tistical mechanics, such as the measure the-
ory of Borel and Lebesgue, and elements of
modern topology had not been discovered
until the first decade of the 20th century and
were hence unavailable to them.
In their influential 1911 article, Ehrenfest

and Ehrenfest (17) summarized and dis-
cussed problems with the ergodic hypothesis
and then proposed instead the quasi-ergodic
hypothesis as a replacement. This hypothesis
states that some orbit of the flow will pass
arbitrarily close to every point of phase space,
or in other words this orbit is topologically
dense in the phase space. This hypothesis is
a far more plausible one than the old ergodic
hypothesis, and it does imply that any con-
tinuous function invariant under the flow
is constant. Some authors [von Plato (18)]
have argued that, despite what Boltzmann
had written down most of the time in his
articles about the ergodic hypothesis, that
he probably really meant something like what
was later termed the quasi-ergodic hypothe-
sis. However, the quasi-ergodic hypothesis
does not imply metric transitivity. For in-
stance, it is not even true that a minimal flow
(every orbit is dense) with an invariant mea-
sure is metrically transitive [see Furstenberg
(19)]. for examples. Therefore, although the
original ergodic hypothesis was too strong to
be plausible, the quasi-ergodic hypothesis was
too weak to establish equality of time and
phase averages. Further mathematical, prog-
ress had to await the concept of metric tran-
sitivity and the ergodic theorems of 1931 and
1932. For more details, see the survey article
of Mackey (20).
One reaction to the Birkhoff and von

Neumann ergodic theorems might be that
they do not really solve the problem of
equating time average and phase averages
but only reduce it to a possibly equally dif-
ficult problem of proving metric transitiv-
ity. For instance, how can one prove that
a one-parameter flow is metrically transitive
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and indeed how do you know metrically
transitive systems exist at all. At this point, let
us transfer to current terminology and simply
call metrically transitive transformations er-
godic, as von Neumann suggested.
As to the existence of ergodic transfor-

mations, Oxtoby and Ulam (21) showed that
on a compact polyhedron M equipped with
a finite Lebesgue–Stieljes measure, the set
of all ergodic measure preserving homeo-
morphisms is a dense Gδ, or a residual set,
among all measure preserving homeomor-
phisms. Hence, not only do ergodic maps
exist, but almost all measure preserving
homeomorphisms are ergodic in a topologi-
cal sense. However, there is a different an-
swer for Hamitonian dynamical systems.
Here almost all systems are nonergodic, in
the same sense as above (22). The space and
the topology are different in these two cases
so there is no contradiction.
von Neumann in his Annals of Mathemat-

ics paper (23) provides an intriguing and
powerful answer to the existence problem.
He shows that any one-parameter flow or
any single transformation on a finite measure
space can be written as a possibly continuous
sum of ergodic ones. To make this precise, let
ðM; μÞ be a finite measure space and form
the product ofM with the unit interval I with
Lebesgue measure I ×M =Mp. Let p be the
projection to the first factor I and denote the
part ofMp that lies over a point r in I byMr .
Then suppose that Pr

t is an ergodic flow on
Mr . Then assuming some regularity in r, one
can piece together these Pr

t into a measure
preserving flow Pp

t on Mp by setting
Pp
t ðr;mÞ= ½r; Pr

t ðmÞ�. This flow is clearly
nonergodic as it has many invariant sets,
namely J ×M for any measurable subset J
of I, but it is displayed as a continuous
sum of ergodic ones, the Pr

t . von Neumann’s
theorem states that any general measure
preserving flow has the structure like Pp

t
on Mp in which it is displayed as the (pos-
sibly) continuous sum of its ergodic com-
ponents Pr

t on Mr .
Irrational rotations on a torus provide

important examples of ergodic flows. We
represent points on a 2D torus T by pairs
of complex numbers ðw; zÞ each of abso-
lute value one, and we consider the flow
defined by

Ptðw; zÞ= ½expðitÞw; expðitbÞz�;

where b is irrational. All orbits are dense so
this flow is quasi-ergodic, and it is also ergo-
dic. To see this, assume there is an invariant
measurable set A and let f be the indicator
function of this set (1 on A and 0 on its
complement). Expand f in a double Fourier

series and use the invariance of A under Pt
to see that all Fourier coefficients except for
the constant term vanish. Therefore, f is
constant, and this establishes ergodicity.
An important set of examples for the

subsequent development of ergodic theory
is the shift transformations. Let F be a finite
set of n elements and assign a probability
measure to F; that is nonnegative num-
bers p1; . . . ; pn, whose sum is 1. Then
form the infinite product M of the mea-
sure space F with itself using the integers
as the index set. Thus, M consists of dou-
bly infinite sequences of points of F, s=
½. . . ; sðn− 1Þ; sð0Þ; sð1Þ; . . . �, with sðiÞ in
F. The shift transformation is defined by
P½sðnÞ�= sðn+ 1Þ. P has the effect of shift-
ing a sequence s one place. P also preserves
the product measure on M, and it is easily
seen to be ergodic. Indeed any invariant
set in the language of probability theory
is statistically independent from the family
of subsets of F that are defined by any
finite set of indices. Hence, it is a so-called
tail event, and by the Borel–Cantelli Lemma
of probability theory, it has probability zero
or one. Hence, shifts are ergodic.
Specializing to the case n= 2 and

p1 = p2 = 1=2, one sees that M is the proba-
bility model of doubly infinite sequences of
the results of tossing a fair coin. Letting
f ðsÞ= 1 if sð0Þ= 1 (heads) and f ðsÞ= 0 if
sð0Þ= 0(tails), the time average of f in the
ergodic theorem is

ð1+NÞ−1
XN
0

f ½PnðsÞ�;

which is simply the proportion of heads
in the first N + 1 coin tosses. The ergodic
theorem says that this converges for almost
all s to the integral of f over M, which is
1=2. This is, of course, just the strong law
of large numbers, a fundamental theorem
in probability theory, and, therefore from
the perspective of probability theory, the
ergodic theorem emerges as a far-reach-
ing generalization of the strong law of
large numbers.
Another set of examples of significance

for ergodic theory as well as statistical
mechanics are geodesic flows, in particular
geodesic flows on compact Riemannian
manifolds of negative curvature. First, con-
sider the 2D case of a surface. Geodesic
flow take place on the unit tangent bundle
T of such a surface, which consists of pairs
ðx; vÞ, where x is a point of the surface M
and v is a unit tangent vector at x. Then T
consists of points of M with a circle above
each point consisting of unit tangent vectors,

so T is a 3D compact manifold. Geodesic
flow Pt on T flows a point ðx; vÞ along the
geodesic curve starting at x with tangent
vector v a distance t with Ptðx; vÞ= ðy;wÞ,
where y is the endpoint of the geodesic of
length t and w is its tangent vector at y.
Hedlund (24) and Hopf (25) independently
established that such flows were ergodic
and also later extended the result to higher
dimensional manifolds with negative cur-
vature. A key part of the reasoning was
the fact that negative curvature makes
nearby geodesics diverge exponentially from
each other so that the flow has sensitive
dependence on initial conditions in that, if
u and v are very close together, PtðuÞ and
PtðvÞ will diverge away from each other
exponentially in t. This property is called
hyperbolicity, and it is known to be key in
many proofs showing that flows or single
transformations are ergodic. It is also a
property that a system of colliding gas
molecules will have. If one perturbs very
slightly the position and momentum of
a gas molecule, then in its next collision, it
will bounce off the other molecule at a quite
different direction, a situation that is repeated
in further collisions, resulting in rapid diver-
gence of its path from the path of the un-
perturbed molecule.
There is a substantial and fascinating

amount of papers in ergodic theory pur-
suing a program using hyperbolicity to
help prove that various approximations
to a system of a volume of gas molecules
confined in a container are ergodic. The
program has not succeeded as yet in proving
that an actual model of a gas is ergodic, but
the results are getting close. The first paper
was the path breaking paper of Sinai (26).
Sinai redefined the problem from one
where the gas molecules are contained in
a cubical enclosure with reflecting walls to
a model where the particles move in a cube
with periodic boundary conditions. The
molecules collide with each other but not
with the walls. This is not physically re-
alistic, but it can shed light on the original
problem by analogy. Much progress has
been made on this model, especially by
Simanyi and Szasz (27) and Simanyi (28),
where, using hyperbolocity as indicated
above, a nearly complete resolution of
ergodicity issues is established for such
Sinai flows [see also the survey article by
Szasz (29)].
Going back to the more realistic case of

molecules in a container with reflecting
walls, one should begin in dimension two
with a single ball—a billiard flow in a pla-
nar region or table. If the table is a rectan-
gle, the momenta of the ball over time can
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take on only a finite number of values so
the flow on a phase space of fixed energy
cannot be ergodic. However, if one has
a billiard table of more complex geometry,
the situation becomes more interesting. For
instance, if the billiard table is a polygon,
then Kerckhoff et al. (30) show that for
topologically almost all polygons, the bil-
liard flow on a phase space of constant en-
ergy is ergodic. In particular, one has to
stay away from rational polygons where
all of the angles are rational multiples of

π. The authors point out an interesting cor-
ollary of this result, which is that a mechan-
ical system of two particles of masses m1

and m2 moving along a finite track without
friction, bouncing off each other elastically
and bouncing off the fixed end points is
ergodic on a phase space of constant energy
for topologically almost all values of the
ratio m1=m2. This is sort of like a one-
dimensional gas.
Finally, Simanyi (31) has established that

a system consisting of two hard spheres

contained in a cube of any dimension at
least two bouncing off each other and off
the hard walls is ergodic on any surface
of constant energy. This appears to be a rig-
orous ergodicity result in a situation that
comes closest to an actual gas. However, this
whole array of theorems, of which we have
mentioned only a few, suggest that the hy-
pothesis of ergodicity (or metric transitivity)
for a physical system like that of gas dynamics
mentioned at the outset of this essay is very
plausible.
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