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Abstract

Purpose of review—Methicillin-resistant strains of the important human pathogen 

Staphylococcus aureus pose a significant public health threat in the community, as they are easily 

transmitted, especially prone to cause invasive disease, and infect otherwise healthy individuals. 

The mechanistic basis for the ability of these organisms to evade the innate immune responses 

remains incompletely defined.

Recent findings—The success of pathogens such as S. aureus rests, in part, on their capacity to 

overcome neutrophil-mediated host defense to establish infection and cause human disease. S. 

aureus has the potential to thwart effective neutrophil chemotaxis, and phagocytosis, and succeeds 

in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes 

neutrophil cytolysis, with release of host-derived molecules that promote local inflammation. 

Here, we provide a brief overview of our understanding of the mechanisms by which S. aureus – 

including methicillin-resistant S. aureus – avoids neutrophil-mediated host defense and causes 

disease.

Summary—Understanding the molecular mechanisms by which S. aureus avoids neutrophil-

mediated responses and initiates signaling cascades that culminate in neutrophil lysis will provide 

insights prerequisite to the development of novel targets for treating staphylococcal infections.
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INTRODUCTION

Infection from methicillin-resistant Staphylococcus aureus (MRSA) causes a wide range of 

diseases, including skin and soft-tissue infections, pneumonia, osteomyelitis, endocarditis, 

toxic shock syndrome and sepsis [1,2], and imposes a major burden on the healthcare 

system. Furthermore, staphylococcal infections are common and often deadly; in 2011, 

approximately 11 000 of an estimated 80 000 invasive MRSA infections in the United States 

were fatal [3▪▪]. Until recently, strains recovered in the United States classified as pulsed-

field type USA100 and USA200 were primarily isolated from patients with hospital-

associated infections, whereas USA300 and USA400 were isolated almost exclusively from 

community-associated infections (and were thus community-associated-MRSA) [4]. 

However, USA300 has now emerged as the predominant MRSA isolate recovered from both 

nosocomial and community settings [5▪▪]. Although progress has been made in elucidating 

mechanisms underlying the shift in epidemiology, the basis for the success of USA300 to 

establish itself widely in the environment remains incompletely determined.

Successful pathogens overcome mechanical barriers, withstand attack by soluble 

antimicrobial factors in the circulation, and avoid destruction by phagocytes in order to 

survive and disseminate. The capacity of an organism to subvert, evade, or endure immune 

responses contributes to its survival and ability to promote disease, namely to its virulence. 

In addition, the local consequences of infection can be magnified by derailing or delaying 

the resolution phase of the inflammatory response. With respect to all of these features, S. 

aureus represents a virulent pathogen par excellence. Long recognized for its ability to resist 

killing by neutrophils [6], S. aureus causes infections characterized by exuberant 

inflammation, local tissue necrosis, and a propensity for distant spread. Survival within 

neutrophils represents the essential initial step in the cascade culminating in staphylococcal 

disease.

NEUTROPHILS IN HOST DEFENSE

Recruited early to the site of infection, neutrophils ingest invading microbes and sequester 

them within the phagosome, a membrane-bound vacuole in which antimicrobial agents are 

delivered and generated by the combined actions of degranulation and activation of the 

NADPH oxidase, respectively [7▪]. The collaborative activities of NADPH-oxidase derived 

reactive oxygen species, such as H2O2 and HOCl, antimicrobial peptides and proteolytic 

enzymes originating from cytoplasmic granules (reviewed in [8,9]) kill and degrade a wide 

range of microbial targets. Following eradication of ingested microbes, neutrophils undergo 

apoptotic cell death. Engulfment of apoptotic cells, or efferocytosis, by macrophages 

initiates the resolution phase of inflammation and promotes a return to normal tissue 

homeostasis [10,11].

Although neutrophils eliminate the vast majority of invading bacteria, some microbes 

circumvent killing by these leukocytes. Indeed, S. aureus sabotages neutrophil-mediated 

host defense by compromising neutrophil viability and disrupting normal chemotaxis, 

phagocytosis, antimicrobial action, and efferocytosis [6,9,12▪▪, 13▪,14,15▪].
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CAVEATS REGARDING STUDIES OF NEUTROPHILS VERSUS MICROBES

Much of our understanding of neutrophil function in host defense derives from studies 

performed in vitro using neutrophils isolated from blood. Experimental variables, with 

respect to phagocytes and bacteria, greatly influence the fate of both microbe and host cell. 

The expression of virulence factors varies with growth phase, and staphylococci in early 

exponential or mid-log phase succumb more readily to neutrophil attack than do organisms 

in stationary growth phase [14]. Functional properties of adherent and suspended human 

neutrophils differ markedly [16], and adherent neutrophils more readily kill ingested S. 

aureus [16]. Furthermore, the efficiency of killing a given inoculum of bacteria improves as 

the magnitude of the microbial challenge decreases; a lower multiplicity of infection results 

in more complete antimicrobial action [17].

In addition to variations in experimental design, in-vitro studies with isolated neutrophils 

lack the contributions that circulating factors and bystander cells, including tissue 

macrophages, platelets, and lymphocytes, may provide to host defense. For example, the 

acute phase plasma protein Group IIA phospholipase A2 (gpIIA-PLA2) exhibits potent 

antimicrobial action against Gram-positive bacteria, including S. aureus [18,19]. At 

nanomolar concentrations, gpIIA-PLA2 acts synergistically with neutrophils in an NADPH 

oxidase-dependent fashion to kill and degrade ingested staphylococci [20]. The significant 

contributions of gpIIA-PLA2 to neutrophil efficacy would be lacking from in-vitro studies 

in the absence of plasma.

Given the limitations inherent to in-vitro experimental systems, one might be tempted to 

employ animal models to probe neutrophil function against S. aureus. However, neutrophils 

from rodents, rabbits, and other mammals, including nonhuman primates, differ from human 

neutrophils in many ways. For example, in contrast to human neutrophils, murine 

neutrophils contain less myeloperoxidase and lack defensins, two important antimicrobial 

agents (reviewed in [21▪,22]). Furthermore, responses of nonhuman neutrophils to S. aureus 

and its products often diverge from those of human neutrophils, and such differences often 

bring into question whether animal infection models are appropriate for mimicking human 

staphylococcal disease [23,24▪].

Although both reductionist in-vitro studies and animal model in-vivo systems have intrinsic 

shortcomings, they each yield observations that provide insight into the processes 

underlying neutrophil–S. aureus interactions. With the limitations of the experimental 

systems in mind, we will highlight several ways in which S. aureus overcomes neutrophil-

mediated immunity to cause disease.

INHIBITION OF NEUTROPHIL RECRUITMENT AND PHAGOCYTOSIS

As first responders to microbial invasion, neutrophils migrate to sites of infection by a 

chemical gradient of chemokines, anaphylatoxins, and other chemoattractants, including 

molecules produced or shed by microbes. To succeed as a human commensal, S. aureus has 

adapted to coexist with humans and to that end acquired capabilities to inhibit fundamental 

neutrophil functions, such as chemotaxis and phagocytosis. Toxins and membrane-

associated proteins that can block chemokine signaling and extravasation include 
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superantigen-like 5 (Ssl5), Ssl3, Ssl10, staphopain A, chemotaxis inhibitor protein, FPR-like 

1 inhibitor proteins (FLIPr and FLIPr-like), and extracellular adherence protein. In addition, 

staphylococcal factors, including aureolysin, staphylococcal complement inhibitor, 

extracellular fibrinogen-binding molecule, Ssl7, staphylococcal protein A, Ssl10, 

staphylococcal IgG-binding molecules (Sbi-III and Sbi-IV), and staphylokinase inhibit 

complement activation and opsonization. Consequently, the enhanced virulence phenotype 

of community-associated-MRSA strains, such as USA300, might be attributed, in part, to 

their ability to subvert these key neutrophil functions. However, the extent to which such 

devices serve as virulence factors to promote human disease remains unclear, as purulence 

and abscess formation, both clinical manifestations of successful neutrophil recruitment, and 

phagocytosis are robust in human S. aureus infections. As detailed descriptions of these S. 

aureus molecules are beyond the scope of this article, we refer the reader to recent review 

articles on the topic [9,12▪▪,13▪].

MODERATION OF PHAGOCYTE REACTIVE OXYGEN SPECIES

The combined actions of reactive oxygen species, including H2O2, HOCl, and their 

derivatives, and granule proteins create in the neutrophil phagosome an environment often 

lethal to many species of bacteria and fungi. However, a significant fraction of the ingested 

inoculum of S. aureus remains viable, albeit not replicating, within neutrophils, presumably 

because it has evolved redundant means to resist oxidative damage and survive within 

phagosomes. Indeed, S. aureus can survive in the presence of millimolar concentrations of 

hydrogen peroxide [25]. For example, S. aureus produces super-oxide dismutase, which 

converts superoxide anion, the proximal product of the NADPH oxidase, to H2O2, and 

catalase, which consumes H2O2 to yield O2 and H2O, thereby eliminating oxidants 

generated by stimulated neutrophils. Furthermore, S. aureus strains express the pigment 

staphyloxanthin, which consumes oxidants and renders cells resistant to oxidant-dependent 

killing and surface factor promoting resistance to oxidative killing, which protects bacteria 

from singlet oxygen via an undefined mechanism [26–30]. Ingested S. aureus not only 

undermine oxidant attack but also repair oxidative damage incurred within neutrophils. 

Methionine sulfoxide reductases (Msr), highly conserved enzymes that support oxidative 

repair in a wide range of organisms [31,32], contribute to survival of bacteria within 

neutrophils [33,34▪]. Deletion of msrA1 and msrB, the predominant Msr isoforms in 

staphylococci, from USA300 impairs the ability of ingested organisms to survive in the 

presence of H2O2, HOCl, or within neutrophils [34▪]. Of note, S. aureus upregulates Msr 

expression when fed to neutrophils that lack NADPH oxidase activity, due to either 

pharmacologic inhibition or genetic absence, or to purified granule proteins, demonstrating 

that not all oxidant stress in ingested neutrophils derives from the phagocyte NADPH 

oxidase. Together, the combined effects of limiting and repairing oxidant damage promote 

survival of S. aureus within neutrophils.

Ingested staphylococci sense and react to the toxic onslaught within neutrophils. Studies of 

the S. aureus transcriptome following neutrophil phagocytosis indicate that genes involved 

in stress response, virulence, capsule synthesis, metabolism, and gene regulation are 

upregulated, whereas those involved in protein synthesis, cell division, and replication are 

downregulated. These findings suggest that phagocytosed S. aureus devote significant 
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energy and effort to self-preservation rather than to growth and replication [14]. Similar 

changes in gene expression occur when S. aureus encounters in-vitro sublethal amounts of 

H2O2, HOCl, or neutrophil azurophilic granule proteins [25]. These studies demonstrate the 

dynamic nature of events within neutrophil phagosomes, with both captor and prey actively 

exchanging responses.

REGULATION OF VIRULENCE

Bacterial two-component gene regulatory systems (TCS) are known to be important for 

many processes, including growth, metabolism, virulence, and pathogenesis. In general, 

TCS are composed of a sensor kinase and a response regulator. The sensor kinase interacts 

with specific molecules present in the extracellular milieu – for example, reactive oxygen 

species – and then interacts with the response regulator protein, which in turn alters gene 

expression [35]. Although this review lacks sufficient space to review the 16 TCS encoded 

within the genome of S. aureus and links to pathogenic properties, we highlight a few of the 

discoveries on the role of SaeRS, a S. aureus TCS that has been the focus of recent studies.

Genes encoding SaeRS are upregulated following phagocytosis of S. aureus by neutrophils. 

Genetic deletion of saeR and saeS from the USA400 strain MW2 decreases pathogen 

survival in human blood and in the presence of human neutrophils [14,36]. Consistent with 

these findings, virulence of the mutant strain is reduced significantly in mouse models of S. 

aureus infection [14,36]. SaeRS induces expression of genes encoding molecules involved 

in virulence, such as hla, LukAB/LukGH, and hlgA [37▪], and those encoding Ssls protein 

and staphylococcal nuclease [38▪,39]. Collectively, these data support the idea that SaeRS is 

important for the ability of S. aureus to circumvent killing by neutrophils and thereby cause 

disease.

ROLE OF CYTOLYTIC TOXINS

Cytolytic toxins produced by S. aureus are recognized for their ability to cause lysis of host 

cells in vitro. Many of these toxins, including the two-component leukotoxins, alpha-

hemolysin (Hla) and alpha-type phenol soluble modulins (PSMα), contribute to virulence in 

animal models of S. aureus infection. In addition, sublytic concentrations of Panton-

Valentine leukocidin, one of the two-component leukotoxins, and PSMα can prime 

neutrophils for enhanced function, which could alter the outcome of host–pathogen 

interactions. Whether the findings with respect to cytolysis, neutrophil priming, or virulence 

in animal models of infection can be extrapolated to implicate toxins in human disease 

remains incompletely determined. There is evidence from the early 1900s that Hla 

contributed the human fatalities prior to the antibiotic era, but some of these reports are 

anecdotal. Inasmuch as a comprehensive understanding of S. aureus virulence and 

pathogenesis is important for development of new prophylactic and therapeutic approaches 

directed to treat or prevent severe S. aureus infections, the toxins have been the focus of 

intense investigation.

Recent studies [40,41▪,42,43▪,44▪] – including work from our collective laboratories – have 

provided evidence that leukotoxin GH (LukGH; also known as leukotoxin AB), Hla, and 

PSMα contribute to neutrophil lysis after phagocytosis. In other studies [41▪,43▪,44▪], these 
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toxins have been suggested to directly disrupt the S. aureus phagosome and promote 

bacterial escape to and replication in the cytoplasm. Although it is tempting to speculate that 

such phenomena explain the observed rapid S. aureus-mediated lysis of human neutrophils 

after phagocytosis, a few notable caveats should be considered. First, the toxins would need 

to accumulate in the phagosome at sufficient concentration to disrupt the phagosomal 

membrane. Although this is possible, reactive oxygen species, especially those generated by 

the myeloperoxidase–halide system, can inactive toxins such as the PSMs [45]. If the 

bacteria escape from the neutrophil phagosome – and we have found no evidence for such 

an event – the toxins must accumulate in the cytoplasm at sufficient concentration to disrupt 

the plasma membrane. For LukGH and Hla, the cytoplasmic face of the plasma membrane 

presents an incorrect topology (i.e., inside-out) for toxin interaction and formation of 

cytolytic pores. It is also interesting that neutrophil lysis after S. aureus phagocytosis occurs 

in the absence of PSMs, albeit at a reduced level [43▪]. Taken together, these data suggest 

that these toxins do not disrupt the phagosome membrane directly. Rather, the mechanism 

may be indirect and more work is needed to better understand these phenomena. As an 

alternative explanation for lysis of S. aureus-containing neutrophils, the toxins could induce 

changes in neutrophil gene expression, trigger signal transduction events, or both that 

culminate in lysis of neutrophils. We describe these events in greater detail in the next 

section.

S. AUREUS ALTERS THE RESOLUTION OF INFLAMMATION

Daily production and turnover of neutrophils in healthy adults are extraordinary – in the 

order of 109 neutrophils per/kg body weight [7▪]. Inasmuch as neutrophils are the most 

abundant leukocyte in humans and contain or produce high levels of toxic molecules, such 

as reactive oxygen species and proteases, there is potential for host tissue damage should 

these cells be activated nonspecifically or lyse. Consequently, mechanisms closely regulate 

neutrophil activation and eliminate effete neutrophils. Aged or spent neutrophils typically 

undergo apoptosis and are subsequently removed by other phagocytic cells. Together with 

modulation of other components in the local milieu [46], the clearance of apoptotic 

neutrophils serves as a critical step in restitution of tissue homeostasis after inflammation.

Although most bacteria are killed by neutrophils, which in turn undergo apoptosis, S. aureus 

can survive within these host cells and ultimately cause cytolysis. Following phagocytosis of 

USA300, neutrophils have initial features typical of apoptosis, including surface expression 

of phosphatidylserine, mitochondrial membrane depolarization, nuclear condensation, and 

membrane blebbing [15▪,47]. S. aureus-laden neutrophils upregulate the prosurvival factor 

proliferating cellular nuclear antigen, fail to activate caspase 2, 3, 8, and 9, increase surface 

expression of CD47, a ‘don’t eat me’ signal, and resist engulfment by macrophages [15▪]. 

The recent recognition that the normal pathway toward apoptosis is derailed in neutrophils 

containing viable S. aureus has stimulated interest in elucidating the mechanisms that 

culminate in neutrophil lysis [14,47]. As indicated above, the contribution of S. aureus 

toxins to neutrophil lysis after phagocytosis may be indirect [40,41▪,42,43▪,44▪,47,48▪▪,49], 

as neutrophil lysis following phagocytosis of S. aureus depends on the presence of viable 

organisms and new protein synthesis by neutrophils [47]. As S. aureus activates the NLRP3 

inflammasome in macrophages in a toxin-dependent manner [50–52], it is reasonable to 
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speculate that neutrophils die via a caspase-1-dependent cell death known as pyroptosis. 

However, neutrophils produce relatively low levels of IL-1β in response to stimuli, 

suggesting that caspase-1 activation is not robust in human neutrophils [53▪]. Consistent 

with this notion, the caspase 1 inhibitor YVAD has no effect on neutrophil lysis following 

phagocytosis of USA300 [47]. Data from our collective research groups indicate that 

neutrophils harboring viable S. aureus undergo programmed necrosis or necroptosis [15▪]. 

Necroptosis is a proinflammatory form of cell death dependent on receptor interacting 

protein-1 kinase, and it is associated with release of danger-associated molecular patterns 

(DAMPs) [54▪▪], which activate the immune system. Although this form of cell death 

releases DAMPs and thereby amplifies local inflammation, death by necroptosis delays or 

prevents the return to normal tissue homeostasis. Further studies are required to elucidate 

how persistence of viable S. aureus within neutrophils promotes necroptosis and whether the 

phenomenon contributes to pathogenesis of staphylococcal disease.

CONCLUSION

The success of S. aureus – including MRSA – as a pathogen depends on its ability to avoid 

killing by components of the innate immune system, especially neutrophils. Understanding 

the mechanisms by which S. aureus avoids destruction by the innate immune system is a 

prerequisite to the development of new prophylactic or therapeutic agents designed to 

prevent or treat infections.
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KEY POINTS

• Success of S. aureus as a pathogen rests on its ability to undermine initiation of 

an immune response, thwart the antimicrobial responses of the host, and inhibit 

the resolution of inflammation.

• Many community-associated-MRSA strains, especially the USA300 strain, 

survive within and ultimately cause lysis of neutrophils.

• S. aureus inhibits neutrophil-mediated resolution of inflammation by interfering 

with macrophage efferocytosis and promoting receptor interacting protein-1-

dependent lysis of neutrophils.
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