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Abstract

In fluorescence imaging, both fluorescence yield and lifetime are of great importance. 

Traditionally, with the frequency-domain data, two parameters can be directly recovered through a 

nonlinear formulation. However, the reconstruction accuracy highly depends on initial guesses. To 

overcome this hurdle, we propose the linear scheme via an inverse complex-source formulation. 

Using the real and imaginary parts of the frequency-domain data, the proposed method is fully 

linear; it is not sensitive to initial guesses and is stable with high-level noise. Meanwhile, the 

algorithm is efficient, and the reconstruction takes one or a few iterations. In addition, the 

colocalization constraint due to the unique feature of fluorescence imaging is imposed to enhance 

algorithm performance. The algorithms are tested with simulated data.

Fluorescence tomography (FT) is capable of spatially resolving fluorescence yield or 

lifetime quantitatively. Fluorophore concentration determined from fluorescence yield 

provides valuable information of the location and functional status of the targeted tissue, 

while fluorescence lifetime provides essential microenvironment information, such as local 

pH, blood supply, and temperature. FT is becoming an essential in vivo molecular imaging 

tool for scanning small animals in recent years due to rapid advances in fluorescent probe 

development. Various research groups have developed small-animal FT systems for 

applications ranging from cancer imaging to stem cell imaging [1–7]. Although the 

reconstruction algorithm has been extensively examined [8–11], to date only a few studies 

have reported the reconstruction of lifetime [7,8]. In this Letter, we will develop techniques 

to improve the simultaneous reconstruction of both parameters with frequency-domain data.

Regarding the formulation of the reconstruction, a direct method was proposed to recover 

both fluorescence parameters, but it was nonlinear and sensitive to the initial guess [10]. In 

contrast, an inverse complex-source approach was suggested; however, it was not fully 

linear due to the use of the logarithm (log) of the amplitude and the phase of the data [11]. In 

this study, we adopt the complex-source formulation and make it into a fully linear scheme 
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via the use of the real and imaginary parts of the data. Moreover, we show that the linear 

scheme can be further enhanced by imposing colocalization constraints.

Hereafter, we use the following coupled diffusion approximation as the forward model:

(1)

where the quantities are photon density ϕx,m, absorption coefficient μax,am, diffusion 

coefficient Dx,m at excitation/emission wavelength, fluorescence yield μaf, fluorescence 

lifetime τ, excitation source q, modulation frequency ω, and speed of light in medium c. Let 

i ≤ Ns index the sources and j ≤ Nd index the detectors, with Pj representing the measuring 

functional, and F⃗ will be the data predicted by Eq. (1), i.e., the vector-valued function F⃗ = 

[Pjϕm,i].

Assuming that μax,am and Dx,m are both known, the direct method to recover X := (μaf, τ) for 

FT is through the following least-squares formulation, i.e., the minimization of the 

difference between the model F⃗(X) and the data Y:

(2)

A standard method for solving Eq. (2) is through the iterative linearizations via the Born 

approximation. Meanwhile, Eq. (2) needs to be regularized due to its ill posedness or the 

data noise, for which L2 regularization is popular. That is, we iteratively solve the following 

with the initial guess X0:

(3)

where Jn is the Jacobian computed with the current value  after the nth 

iteration, δX is the change in X, and λ is a regularization parameter.

Notice that F⃗ is nonlinearly dependent on X and J depends on Xn. Besides, Eq. (3) is only an 

approximation of Eq. (2). As a result, when Eq. (3) is used, both the accuracy and the 

stability of the reconstruction highly depend on the initial guess X0. When X0 is far from the 

true solution, the reconstructed solution via Eq. (3) may diverge from or converge to some 

local minimum instead of a true solution to Eq. (2). Fortunately, this weakness can be 

completely overcome through the following complex-source transformation.

In this case, the fluorescence term in Eq. (1) is treated as a complex-source pair (qR, qI), i.e.,

(4)
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The formulation of Eq. (4) is intrinsic to FT due to coexistence of fluorescence yield and 

lifetime, which will be used again later to define colocalization constraints. With new 

variables XC := (qR, qI) instead of X, ϕm,i in Eq. (1) is linear with respect to XC.

However, the reconstruction scheme using Eq. (2) with XC is still not fully linear yet, 

because Pjϕm,i may not linearly depend on XC, although ϕm,i does. This is where our 

formulation deviates from the original complex-source formulation [11]. There, the use of 

log of the amplitude and phase of the data prevents the linear dependence of Pjϕm,i on XC. In 

addition, the reconstruction requires nonzero initial guesses of μaf for the execution of Eq. 

(3) because Pjϕm,i appears in the denominator of Jacobian J. As a result, one still needs to 

update J during iterations. Instead, we use the real and imaginary parts of the data in our 

algorithm, which is precisely the reason for the linear dependence of Pjϕm,i on XC. 

Moreover, while Eq. (2) can be solved similarly through Eq. (3), Eq. (3) is exactly the same 

as, instead of an approximation of, Eq. (2) due to the linearity. That is, with both XC = (qR, 

qI) and the use of the real and imaginary parts of the data, FT can be exactly solved by the 

following minimization problem as a counterpart of Eq. (2):

(5)

Notice that the Jacobian J in this formulation does not depend on XC and, therefore, needs to 

be computed only once. Besides, the similar approach using Eq. (3) can be applied to 

regularize and solve Eq. (5) with one or a few iterations. After the reconstruction, (μaf, τ) 

can be retrieved from XC through Eq. (4).

Furthermore, the algorithm for solving Eq. (5) can be further augmented by colocalization 

constraints due to the aforementioned unique coexistence of fluorescence yield and lifetime 

in FT, which can be achieved using the following steps. Let  be the solution 

after the nth iteration, which has not been updated yet. First, we intersect two individual 

supports with a threshold value  for  and a threshold value 

 for , i.e., . Second, we update the solution only 

within intersected support Ωn through  and . In 

summary, with colocalization constraints, Eq. (5) can be solved via

(6)

In theory, a single iteration of Eq. (6) should be enough due to the linearity. However, due to 

its ill-posed nature or the high-level noise, a few iterations are suggested with a large initial 

regularization parameter λ.

Last but not least, to balance the scale variation of the data, we scale Eq. (5) to minimize Σi|

(JXC)i − Yi|2/|Yi|2 instead, where i indices all source-detector pairs.

Gao et al. Page 3

Opt Lett. Author manuscript; available in PMC 2015 February 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Next, we will compare the nonlinear method, Eqs. (2) and (3) (method 1), and the linear 

method, Eq. (5) and (6) (method 2), through various simulation studies using a 40 mm 

diameter synthetic phantom (Table 1). Eight sources and eight detectors are alternatively 

distributed around the phantom in fan-beam geometry, and the modulation frequency is set 

to 100 MHz. Here, the finite element method is used as a discretization method for general 

purposes [12], in which the photon density and reconstruction variables are discretized 

piecewise-linearly and -constantly, respectively. Approximately three thousand variables 

need to be recovered using 128 measurements.

Five different cases were simulated. In the first case, we assumed perfect uptake, so there 

was no fluorophore at the background. The fluorescence yield and lifetime were set to 10−4 

mm−1 and 1 ns, respectively, for all inclusions (case 1). In other cases, the target-to-

background contrast was set to two for both concentration and lifetime (cases 2–5). The 

effect of different initial guess and noise level combinations was evaluated using these 

cases. The reconstruction results for each case are plotted in Figs. 1–5, while the true values, 

initial guesses, and noise levels are specified in Table 1. In all figures and tables, the unit of 

fluorescence yield and lifetime is 10−4 mm−1 and nanoseconds, respectively. Please note that 

method 1 requires nonzero initial fluorescence yield  and that the plotted results from 

method 1 are post-processed through colocalization constraints similar to Eq. (6) for fair 

comparison.

In case 1, method 1 fails to resolve the inclusions clearly, as shown in Fig. 1. Besides, the 

recovered mean lifetime values for inclusions are completely off, varying between 12 and 76 

ns. In contrast, method 2 is able to recover the fluorescence yield of the inclusions within a 

30% error. The recovered mean fluorescence yields are 1.2 × 10−4, 0.8 × 10−4, and 0.7 × 

10−4 mm−1, respectively. Meanwhile, this method recovers the true lifetime for each 

inclusion. In cases 2–5, the contrast-to-background value for each inclusion is set to two. 

With the correct background values as the initial guess (case 2), both methods recover the 

true fluorescence yield and lifetime for the big object, as shown in Fig. 2. The same 

parameters are recovered within 30% error again for the small objects. When the initial 

guess is assumed to be zero (case 3), method 2 still performs effectively, while method 1 

malfunctions such that the error in the recovered fluorescence yield goes up to 60% and 

lifetime values for inclusions vary between 26 and 48 ns. Afterward, 5% and 10% Gaussian 

noise are successively added to the synthetic data, cases 4 and 5, respectively. For both 

cases, method 1 starts with the true background values, while method 2 starts with zeros as 

the initial guess. Despite the wrong values as initial guesses, method 2 produces better 

results than method 1, as shown in Figs. 4 and 5. For example, method 1 could only recover 

half of the true values for small objects for case 5 due to the high-level noise. Method 2, on 

the other hand, could recover both parameters within 30% error for these small objects.

We want to emphasize that the choice of threshold σR and σI should be task dependent: to 

detect the most significant object, especially with high-level noise, a large value is preferred, 

e.g., 20% of the maximal value; in contrast, the small threshold is able to “see” small 

features. Here, σR and σI are taken to be 5%, 10%, and 20%, respectively, for 1%, 5%, and 

10% noise.
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Fig. 1. 
(Color online) Reconstruction results for case 1 (no background fluorescence).
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Fig. 2. 
(Color online) Reconstruction results for case 2 (contrast = 2) with correct background as 

the initial guess.
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Fig. 3. 
(Color online) Reconstruction results for case 3 (contrast = 2) with zero background as the 

initial guess.
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Fig. 4. 
(Color online) Reconstruction results for case 4 (contrast = 2) with 5% noise, correct 

background, and zero background as the initial guess in methods 1 and 2, respectively.
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Fig. 5. 
(Color online) Reconstruction results for case 5 (contrast = 2) with 10% noise, correct 

background, and zero background as the initial guess in methods 1 and 2, respectively.
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