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Trait dimensionality explains widespread
variation in local adaptation
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All species are locked in a continual struggle to adapt to local ecological

conditions. In cases where species fail to locally adapt, they face reduced popu-

lation growth rates, or even local extinction. Traditional explanations for limited

local adaptation focus on maladaptive gene flow or homogeneous environ-

mental conditions. These classical explanations have, however, failed to

explain variation in the magnitude of local adaptation observed across taxa.

Here we show that variable levels of local adaptation are better explained by

trait dimensionality. First, we develop and analyse mathematical models that

predict levels of local adaptation will increase with the number of traits experi-

encing spatially variable selection. Next, we test this prediction by estimating

the relationship between dimensionality and local adaptation using data

from 35 published reciprocal transplant studies. This analysis reveals a strong

correlation between dimensionality and degree of local adaptation, and thus

provides empirical support for the predictions of our model.
1. Introduction
Understanding local adaptation is a central goal of evolutionary ecology because

of its important role in diversification, conservation and epidemiology [1–4].

Consequently, a large body of theory has been developed to predict the con-

ditions under which local adaptation is expected to most readily evolve. The

most robust result to emerge from this work points to the balance between

gene flow and spatially heterogeneous selection as the primary determinant of

local adaptation [5–8]. Specifically, if local selection pressures differ substantially

among populations connected by comparatively weak gene flow, local adaptation

is expected to evolve as local selection causes gene frequencies to diverge among

populations. By contrast, if local selection pressures are relatively homogeneous

over scales at which substantial gene flow occurs, gene flow swamps local

selection and gene frequencies remain relatively homogeneous across space.

Although existing theory clearly identifies gene flowand spatially heterogeneous

selection as key factors shaping local adaptation, their explanatory power appears to

be relatively weak. For instance, a recent meta-analysis of studies estimating local

adaptation using transplant designs in plant populations failed to identify a signifi-

cant impact of spatial environmental heterogeneity, life history or mating system [9].

Similarly, another recent meta-analysis of reciprocal transplant studies found that

environmental variability explained only a very small (4%) proportion of the vari-

ation in local adaptation observed across studies [10]. Although the explanatory

power of these meta-analyses depends on the extent to which relevant environ-

mental variation is included, they suggest that the extent of spatial heterogeneity

in selection explains little variation in the magnitude of local adaptation. Although

neither meta-analysis evaluated the importance of gene flow per se, the absence of

any impact of plant life history or mating system on local adaptation suggests that

gene flow may not playa particularlystrong role. This view is consistent with empiri-

cal studies documenting strong local adaptation in the face of significant gene flow

[11–14]. In summary, existing theory focusing on the balance between gene flow

and selection does not adequately explain the abundant variation in the magnitude

of local adaptation observed across reciprocal transplant studies [9,10].

One possible reason why existing theory fails to explain widespread variation

in local adaptation is the common assumption that only a single trait is exposed to
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spatially variable selection [5,15–17]. In reality, of course, adap-

tation depends on a potentially very large number of traits, each

of which influences an organism’s performance in response to a

particular environmental variable or ecological interaction. If

the number of traits influencing an organism’s fit to its environ-

ment differs among species, trait dimensionality could have

important consequences for the widespread variation in local

adaptation we observe in nature. Although some recent

theory has begun to move beyond this critical assumption and

integrate multiple traits [8,18,19], this theory has not focused

on local adaptation as it is commonly measured empirically

through the use of reciprocal transplant studies [20,21], instead

focusing on the extent of trait differentiation among demes.

Here we develop and analyse a mathematical model that

allows us to predict the value of local adaptation that would

be detected using a reciprocal transplant study. This model

allows us to explore how the number of traits exposed to

spatially variable selection (trait dimensionality) influences

the magnitude of local adaptation. We take two approaches to

analyse this general model: first, we develop analytical approxi-

mations using classical quantitative genetic approaches in order

to develop a clear set of predictions. Second, we evaluate the

robustness of our analytical predictions using individual-

based simulations that relax key assumptions of our analytical

model. Finally, we empirically test the predictions of the

models by directly estimating both dimensionality and local

adaptation from reciprocal transplant data.
2. Model description and analysis
(a) Quantifying the effect of trait dimensionality on

local adaptation
To investigate the impact of trait dimensionality, we developed

a mathematical model that generalizes previous work on multi-

variate local adaptation [8,18,19]. Our model studies a species

composed of a large number of populations, N, scattered

across a complex and ecologically heterogeneous environment.

Individuals move among these populations at some rate, m,

and experience a local selective environment that favours

particular trait values. Individuals that deviate from the optimal

combination of trait values favoured by local selection experi-

ence reduced fitness. Consequently, natural selection drives

population mean phenotypes toward their optimum local

trait values [22]. Within subdivided populations, however, this

process of adaptation can be counteracted by movement of

individuals among populations and stochastic fluctuations

in population mean phenotypes caused by random genetic

drift [5,23].

The fitness of individual i from population a in environ-

ment b was determined by Gaussian stabilizing selection

and is described by the function:

Wa,b(zi) ¼ e
�g
Pn

t¼1

(zi,t�ut,b)2

, (2:1)

An individual’s fitness in its own environment is given when

a ¼ b. Here, g measures the intensity of stabilizing selection,

zi,t is the value of the individual’s tth trait. The corresponding

ut,b is the optimal value for trait t in environment b, and n is

the total number of traits exposed to spatially heterogeneous

selection. Assuming stabilizing selection is relatively weak

and allows us to quantify local adaptation, d, as it is
commonly measured in empirical studies using reciprocal

transplant experiments [20]. Specifically, comparing popu-

lation mean fitness at ‘home’ with population mean fitness

‘globally’ yields the following expression for local adaptation

d � 2g
Xn

t¼1

Cova(�zt,a, ut,a)þO(g2), (2:2)

where the term Cova(�zt,a, ut,a) measures the covariance across

the metapopulation between the mean trait value of trait t in

population a, and its local optimum for this trait, ut,a (see elec-

tronic supplementary material for a complete derivation). This

expression shows that local adaptation increases with the

degree of matching between population mean phenotypes and

local optima and, all else being equal, with the number of traits.

To predict how local adaptation evolves, we developed a

framework for studying the evolution of the critically impor-

tant covariances in equation (2.2). Specifically, we employed

a classical quantitative genetic approach that assumes weak

selection, fixed additive genetic variance and covariance,

and multivariate Gaussian phenotype distributions. With

these assumptions, the change in population mean pheno-

type in one generation for trait t in population a is given by

D�zt,a ¼ �2g
Xn

k¼1

(Gt,k(�zt,a � ut,a)2)þm(ẑt � �zt,a)þ et, (2:3)

where Gt,k is a matrix giving the genetic covariance between

traits t and k, ẑt is the global mean phenotype for trait t across

the entire metapopulation and et is a random deviation in the

mean phenotype caused by genetic drift and is drawn from a

multivariate normal distribution with mean zero and var-

iance covariance matrix G/N (see electronic supplementary

material for a complete derivation).

Although (2.3) can, in principle, be used to study the

dynamics of local adaptation within a metapopulation, doing

so requires analysing a very large system of difference

equations equal to the number of traits multiplied by the

number of populations. Instead, we used a change of variables

that allows us to analyse any number of populations and traits

by following the statistical moments describing the distribution

of population mean phenotypes and local optima [5,24,25].

Remarkably, this change of variables reveals that evolution of

local adaptation depends on only two variables: the covariance

between the population mean value for trait t and the optimal

value for this trait, Cova(�zt,a, ut,a), and the covariance between

the population mean value for trait t and the optimal trait value

for trait k, Cova(�zk,a, ut,a). Thus, the change in the value of local

adaptation that occurs over a single generation is described by

the following pair of equations

DCova(�zt,a, ut,a) ¼ �2g
Xn

k¼1

Gt,k(Cova(�zk,a, ut,a)

� Cova(uk,a, ut,a))

�m Cova(�zt,a, ut,a) (2:4)

and

DCova(�zt,a, uj,a) ¼ �2g
Xn

k¼1

Gt,k(Cova(�zk,a, uj,a)

� Cova(uk,a, uj,a))

�m Cova(�zt,a, uj,a),

(2:5)

where the term Cova(uk,a, u j,a) measures the covariance

between the optimal value of trait t and the optimal value of
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Figure 1. Illustrating of alignment between G and Q. Figure parts (a,b) depict alignment, (a) through positive correlations and (b) with negative correlations; (c,d)
depict misalignment. (Online version in colour.)
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trait j over the metapopulation. Put differently, this term

quantifies spatial variation and covariation in optimal trait

values and can thus be more clearly represented as a

variance–covariance matrix that we will refer to as Q from

this point forward (figure 1). Together, equations (2.4) and

(2.5) fully describe the evolution of local adaptation for meta-

populations of any size and, in conjunction with definition

(2.2), allow us to solve for the equilibrium value of local adap-

tation. This equilibrium corresponds to a dynamic balance

between the impacts of selection, gene flow and random

genetic drift and is found by setting equations ((2.4)–(2.5))

equal to zero and solving for Cova(�zk,a, u j,a) and Cova(�zt,a, u j,a).

We simplify our equilibrium solution for local adaptation

by using a coordinate rotation into the principal component

space of the G-matrix (electronic supplementary material).

By defining a matrix A whose columns are the eigenvectors

of G, we can find the two matrices G0 and Q 0 that represent

the Q and G matrices in the principal component space

G0 ¼ A�1 �G � A (2:6a)

and

Q 0 ¼ A�1 �Q � A (2:6b)

where the ‘.’ indicates matrix multiplication and the super-

script ‘21’ indicates the matrix inverse. After applying this

coordinate rotation, the model simplifies greatly and the

equilibrium value of local adaptation is given by

d̂ ¼ 4g2
Xn

t¼1

G0t,t Q
0
t,t

mþ 2gG 0t,t
: (2:7)

This simple result shows that trait dimensionality (n) can

have a significant impact on the level of local adaptation

that ultimately evolves.

The simplest impact of dimensionality visible in (2.7) is

similar to what we saw previously in equation (2.2), and cor-

responds to the simple accumulation of selection as more

terms are added to the summation. Equation (2.7) also

reveals, however, that the impact of dimensionality is a bit

more subtle. Specifically, the rate at which local adaptation
increases with dimensionality depends on the orientation of

the genetic covariance matrix G relative to the environmental

covariance matrix Q (figures 1 and 2). Specifically, as the

alignment between these covariance matrices decreases, the

relationship between dimensionality and local adaptation

weakens, potentially even becoming non-monotonic when

G0 and Q 0 are strongly misaligned. Even in these cases of

strong misalignment, however, local adaptation increases

with dimensionality for modest numbers of traits, beginning

to decrease only when trait numbers become relatively large.

In order to clarify the biological interpretation of alignment

between the covariance matrices G and Q, we provide a

hypothetical example rooted in a well-studied biological

system. Within the cricket species, Gryllus firmus, femur

length and head width (as well as other morphological traits)

have been shown to be positively genetically correlated [26].

Thus, individuals with longer than average femurs tend to pro-

duce offspring with longer than average femurs and also wider

than average heads. If we now imagine that these crickets live in

a metapopulation where some populations/environments

select for long femurs and wide heads while others select

for short femurs and narrow heads, genetic variation G and

environmental variationQ are aligned (figure 1a). If, by contrast,

populations/environments where long femurs are selected for

are associated with selection for narrow heads or vice versa, gen-

etic G and environmental Q variation would be misaligned

(figure 1c). Our mathematical results suggest that, all else

being equal, local adaptation would increase more rapidly

with trait number in the former case than in the latter (figure 2).
3. Individual-based simulations
Our analytical approximation requires two critical assumptions:

first, that selection is weak, and second, that the G-matrix is

constant across space and time. Because these assumptions

are known to be violated in many cases [27–30], we relax

them using individual-based simulations. Simulations studied

a metapopulation consisting of 200 demes, each containing

400 individuals. Selection was imposed by assuming that an
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individual’s probability of survival to reproduction was given

by equation (2.1). Gene flow occurred stochastically, with

individuals moving to another randomly selected population

with probability m. Reproduction occurred at the end of each

generation by randomly sampling pairs of parents from the

population, and creating an offspring by drawing its trait

values at random from a multivariate Gaussian distribution

defined by a vector of means equal to the parental means and

a variance/covariance structure chosen to approximate a

target G-matrix. This process was continued until an offspring

population size of 400 was reached, at which point the parental

population died and the life cycle repeated.

Simulations were run for three different strengths of selec-

tion and three different alignment regimes. We then compared

the value of local adaptation calculated using the exact defi-

nition (2.1) and the analytical approximation (2.7) for between

one and eight traits for each parameter combination. The simu-

lations reveal that our analytical results are quantitatively robust

over a broad range of parameters (figure 3; electronic sup-

plementary material, figures S1–S9). Only when selection

becomes strong does the quantitative agreement between

analytical and simulation results begin to break down,

and even then, qualitative predictions about the role of dimen-

sionality and alignment between genetic and environmental

variation remain quite robust. In addition to supporting our

analytical predictions, simulations revealed that although
increasing rates of gene flow generally decrease levels of local

adaptation, they also enhance the impact of dimensionality

and alignment. Finally, as expected based on our analytical

results and previous research [5–7], simulations showed

that stronger selection and larger amounts of genetic and

environmental variation increase local adaptation.
4. Empirical test
In order to test our central theoretical prediction that local

adaptation increases with dimensionality, we extended a

method for estimating dimensionality originally designed for

mate choice and behavioural isolation [31]. Here we apply

this method to previously published reciprocal transplant

data in which individuals from a set of source populations

are tested in the corresponding sites, and fitness is measured

for each pairwise test in the form of viability, fecundity or

some composite fitness measure. The method fits points repre-

senting both population phenotypic means and local selective

optima in a multidimensional space and determines the

number of dimensions that best explain the data (see electronic

supplementary material for more details). The technique is

analogous to multidimensional scaling or principal coordi-

nates analysis, in which the matrix of fitness measures in a

reciprocal transplant experiment is treated akin to a distance

matrix. However, rather than using simple Euclidean distance,

the distance between the phenotypic mean of a source popu-

lation and the selective optimum of a site is treated using one

of two models of spatially heterogeneous stabilizing selection.

This model-based approach allows us, for any dataset of fitness

in a reciprocal transplant experiment, to calculate a likelihood

given any particular arrangement of phenotypic means and

selective optima in a d-dimensional space. We thus use maxi-

mum likelihood techniques to find the best-fit arrangement of

points given each value of d, and the likelihood of this arrange-

ment is treated as the likelihood of that value of d. The

dimensionality of selection inferred from the dataset is then esti-

mated in two ways: first using corrected Akaike Information

Criterion (AICc) and related statistics to identify the most

supported value of d; and second using the effective dimension-

ality (nD; [32]) of the points when fit in a high-dimensional space

[31]. This second metric reflects the amount of variation among

phenotypic means and selective optima that is concentrated

along a primary axis; for instance, a value of nD ¼ 3.0 means

that one-third of the variation among phenotypic means and

selective optima lies along a single primary axis. These estimates

of dimensionality are unaffected by the identities of the popu-

lations and sites in each pairwise transplant, so that they are

unbiased with respect to the metric of local adaptation used

above. We verified this with both simulated datasets and

random permutation of published datasets, neither of which

showed any correlation between dimensionality and local

adaptation (see electronic supplementary material).

We used this method to estimate trait dimensionality for 35

published reciprocal transplant datasets reviewed by Hereford

[10]. All datasets contained measurements of fitness from reci-

procal transplant experiments with all pairwise tests among at

least three populations and sites. We then calculated local adap-

tation for these same datasets and regressed this value against

the inferred number of dimensions from the two metrics

described above. Dimensionality estimated by AICc ranged

from 1 to 4, while the estimate of nD ranged from 1.09 to 3.00.
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The correlation between the AICc estimate of dimensionality

and local adaptation was significant (figure 4; r2 ¼ 0.20; p ¼
0.0071). The proportion of variance in local adaptation

explained by dimensionality in this analysis (20%) is substan-

tially higher than that explained by other factors such as

degree of environmental difference (4%) or phenotypic distance

(0.5%) explored in previous analyses [9,10]. The relationship

between dimensionality and local adaptation held separately

for datasets using viability as a fitness measure, analysed with

a binomial fitness model [31], and for those using fecundity

and composite fitness measures, analysed with a multivariate

Gaussian fitness model (see electronic supplementary material).

It was also robust to log-transformation of fecundity data and

the two alternative ways of quantifying dimensionality (figure

4; electronic supplementary material, figure S10–S12), and the

two metrics of dimensionality were highly correlated with

each other (r2 ¼ 0.61; p , 107). Finally, several of the empirical

datasets come from the same published study, but were con-

ducted in different years, on different species, or on different

sets of populations, and a few actually represent different fitness

metrics measured on the same reciprocal transplant experiment

(figure 4; electronic supplementary material, table S2). We used

a mixed linear model to account for non-independence of data-

sets either from the same published study or derived from the

same reciprocal transplant experiment, and the relationship
between the AICc estimate of dimensionality and local adap-

tation held in both cases (likelihood ratio tests; p ¼ 0.0318 and

p ¼ 0.0075, respectively).
5. Discussion
(a) Model predictions
Local adaptation quantifies the fit of an organism to its

environment and has important implications for diversifica-

tion, epidemiology, the persistence of metapopulations and

reintroduction programs, as well as predicting the response

of species to rapid climate change [2,33,34]. Although theory

has long predicted that local adaptation should depend on

the balance between gene flow and local selection [6,7], convin-

cingly demonstrating this relationship at a broad taxonomic

level has proven vexing. Our results point to two new causes

of variation in the magnitude of local adaptation observed

across organisms: trait dimensionality and alignment between

genetic and environmental (co)variation. Specifically, both our

analytical and simulation results reveal that local adaptation

should increase as the number of traits experiencing spatially

heterogeneous selection grows.

This strong linear relationship between local adaptation and

dimensionality can be cast in two lights. First, as we chose to
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portray it, each additional trait under selection increases the

total strength of selection that an individual experiences. If

selection on each trait is the same as was assumed in equation

(2.2), this ever increasing selection results in the strong linear

relationship between dimensionality and local adaptation.

Alternatively, if the total strength of selection is held constant,

the relationship between dimensionality and local adaptation

depends entirely on alignment between G and Q. However, it

is unlikely that the total strength of selection acting on an indi-

vidual is somehow constrained or altered by the addition of

new traits under selection, hence it may be more realistic that

total selection does indeed increase with dimensionality. For

this reason, we chose not to scale out the effect of increasing

selection in equation (2.2).

In addition to the strong impact of trait dimensionality

owing to increasing selection, our analytical and simulation

results show that the magnitude of local adaptation depends

on the alignment between genetic and environmental vari-

ation. The increase in local adaptation with dimensionality is

most pronounced when genetic (co)variance aligns with the

(co)variance in selective optima across populations. By con-

trast, when genetic and environmental variation are

misaligned, local adaptation reaches a maximum at an inter-

mediate number of traits. This occurs because adding each

additional trait (moving from n to n þ 1 traits) always adds

only a single additional axis of selection but contributes n
new sources of genetic constraint. As n increases, these

additional constraints begin to outweigh the benefit of

additional selection causing a decrease in local adaptation.

However, owing to the constraints on the magnitude of covari-

ances, local adaptation can never decrease below the value

given by a single trait, allowing for the assertion that increased

dimensionality will in general increase local adaptation.
(b) Empirical confirmation
Our analysis of 35 published studies supports the first predic-

tion of the models, demonstrating a significant trend toward
elevated levels of local adaptation in those studies character-

ized by greater dimensionality. This result was robust to

different metrics of dimensionality and fitness, and trait

dimensionality explained a much larger fraction of variance

in local adaptation across datasets than previously examined

factors. However, the direct effect of rates of migration on

local adaptation has not been addressed in such a meta-

analysis, because gene flow is often more difficult to estimate

directly than local adaptation. Given the predictions of our

model, we would expect that some portion of variance in

local adaptation among these 35 published studies would

be explained by variation in migration rates, although such

an analysis is not feasible using published data.

Finding such a strong, positive relationship between local

adaptation and trait dimensionality across studies suggests that

the major axes of environmental and genetic variation may

often be aligned within natural populations. Unfortunately, our

analyses of published data do not allow us to rigorously evaluate

this possibility because we lack information on the structure of

environmental and genetic variation. An interesting focus for

future research, and a more direct test of our theory, would

involve evaluating the alignment between genetic and environ-

mental variation using estimates of G-matrix structure within

populations and estimates of environmental variation among

populations. Genomic tools provide novel ways to directly

estimate G-matrices in natural populations, by estimating

relationship matrices directly from large numbers of markers

rather than requiring a controlled breeding design [35]. Genomic

data can also provide more precise estimates of migration rates

[36], allowing these factors to be teased apart with empirical data.
(c) Implications for local adaptation
In addition to explaining variation in levels of local adaptation

observed among studies, our results may help explain why

strong local adaptation is sometimes observed in organisms

with high rates of gene flow [11–14]. There are two ways in

which trait dimensionality facilitates the evolution of strong

local adaptation, even in the face of substantial gene flow.

First, as the number of traits experiencing spatially variable

selection increases, so too does the number of traits contribut-

ing to local adaptation. Thus, even if gene flow erases most

phenotypic differentiation for individual traits, summing this

small differentiation over many traits can produce strong

local adaptation. This simple and intuitive impact of dimen-

sionality is captured by equation (2.2). Second, and less

intuitive, is the influence trait dimensionality has on the rate

of adaptation within populations. This effect is most easily

understood using the metaphor of the adaptive landscape. In

each generation, gene flow pulls population mean phenotypes

away from the summit of their adaptive peak, reducing local

adaptation. Selection then acts to drive population mean phe-

notypes back toward the summit of their local adaptive peak,

increasing local adaptation. The rate at which populations

climb their adaptive peaks in response to selection can be

substantially faster if the major axis of genetic variation

aligns with the vector of directional selection [22]. Thus,

when environmental and genetic variation are aligned, the bal-

ance between selection and gene flow is tipped in the favour of

selection and local adaptation becomes more pronounced than

would be expected based on a single trait.

In natural metapopulations, there may be reason to expect

that genetic and environmental variation would align with
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one another. For example, theoretical work [27] has shown that

the major axis of genetic variation (the G-matrix) on an island

comes to align with the line of divergence between the island

and mainland optima, as a result of migration from the main-

land source, with the strength of alignment depending on

mutational and selectional correlation. Here, we examine gene

flow among multiple populations of equal size, so that the

‘source’ of incoming migrants to any one population is a

sample from all other populations. To the extent that these

other populations lie close to their respective optima, the covari-

ance structure of incoming genetic variation should reflect the

distribution of phenotypes across the metapopulation.

Together, our results identify a new and potentially impor-

tant explanation for widespread variation in local adaptation.

Evaluating the overall importance of trait dimensionality

relative to more classical explanations based on gene flow,
selection or population size will require further meta-analyses

that explicitly consider these factors simultaneously. Such

future studies will be essential if we wish to develop a

robust understanding of the forces driving local adaptation

in the wild.

Data accessibility. The work reported here is based upon mathematical
theory, computer simulation and analysis of previously published
data. We are happy to make the simulation data available in Dryad
if appropriate.
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