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Assessing the potential information
content of multicomponent visual signals:
a machine learning approach
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Careful investigation of the form of animal signals can offer novel insights into

their function. Here, we deconstruct the face patterns of a tribe of primates, the

guenons (Cercopithecini), and examine the information that is potentially

available in the perceptual dimensions of their multicomponent displays.

Using standardized colour-calibrated images of guenon faces, we measure

variation in appearance both within and between species. Overall face pattern

was quantified using the computer vision ‘eigenface’ technique, and eyebrow

and nose-spot focal traits were described using computational image segmen-

tation and shape analysis. Discriminant function analyses established whether

these perceptual dimensions could be used to reliably classify species identity,

individual identity, age and sex, and, if so, identify the dimensions that carry

this information. Across the 12 species studied, we found that both overall face

pattern and focal trait differences could be used to categorize species and indi-

viduals reliably, whereas correct classification of age category and sex was not

possible. This pattern makes sense, as guenons often form mixed-species

groups in which familiar conspecifics develop complex differentiated social

relationships but where the presence of heterospecifics creates hybridization

risk. Our approach should be broadly applicable to the investigation of

visual signal function across the animal kingdom.
1. Introduction
Animal and plant signals frequently have complex forms that contain information

in multiple components either within or across sensory modalities. Understand-

ing the form of signals can provide important clues to signal function and

evolution [1], but the very complexity of multicomponent signals creates consider-

able technical challenges for empirical studies [2–4]. One common approach for

investigating signal form is to assess the variation within and between signal com-

ponents through cue isolation experiments, where single parameters of the signal

are manipulated and responses observed [5]. However, this approach does not

examine the full range of natural variation in signal components [6], and investi-

gating the responses of a wide range of potential receivers (e.g. potential mates,

competitors and kin) would be extremely time-consuming.

In this study, we take a complementary approach by examining the classi-

fication performance of a machine learning algorithm to establish whether

there are differences in signal components between species, sexes, age groups

and individuals that could be reliably distinguished by a model receiver. The

presence of consistent differences that are able to separate different categories

reliably can be highly informative in determining the selection pressures that

have driven signal evolution, and the function of signal components [1]. For

example, if the colour of a signal affords reliable discrimination between con-

specific individuals that encounter each other, this suggests that selective

pressures on individual discrimination may have been involved in its evolution

[7,8]. Similarly, if there are conspicuous and reliable differences between males

and females, this suggests a potentially sexually selected trait that functions

in reproductive decision-making [9]. Understanding the basis of variation in
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Figure 1. Examples of inter- and intraspecific variation of face patterns in five species of guenon. For each species, four different individuals are shown, two males
and two females. For example images of the guenon species not shown see [16]. All photographs taken by W. Allen. (Online version in colour.)
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signal appearance can also explain why signals are multicom-

ponent: information redundancy is indicated if two

components can both be used to reliably predict the same

attribute, whereas signal components that predict different

attributes may be communicating multiple messages [10].

A first objective in analysing the design of multicompo-

nent signals is separating and measuring the constituent

components. In this study, we focus on multicomponent sig-

nals in the visual modality. Typically, studies of visual

multicomponent signalling consider a component to be a

spatially and/or temporally isolated patch of contrasting

coloration, with a multicomponent signal comprising two

or more such patches [11]. In other frameworks, a single

patch of colour can be considered a potentially multicompo-

nent signal [12]. Our approach is to consider both single and

multiple patches of colour as potentially multicomponent

signals by using a definition based on appearance to the

receiver(s), where signal components are the perceptual

dimensions of signal appearance. These could potentially

include the size, shape, texture, number, colour, brightness,

contrast, and relative and absolute spatial and/or temporal

location of a signal. Under this formulation, a visual signal

is multicomponent if information is communicated by more

than one perceptual dimension.
The subjects of our study are the visual signals displayed

on the faces of guenons (tribe: Cercopithecini), a group of

25–36 Old World primate species [13–15]. The faces of gue-

nons are renowned for their remarkably varied appearances

(figure 1) [17]. Such a variety of visual signals exhibited in

social species with trichromatic colour vision and advanced

cognitive capabilities makes the Cercopithecini an ideal

group in which to study signal appearance. The primary

hypothesis for the functional significance of guenon face pat-

terns is that they communicate conspecific status [17,18] to

promote reproductive isolation [19]. In support of this, we

have previously shown that guenon face patterns are more

distinctive and more recognizable with increasing degrees

of range overlap between species [16].

Our present aim is to find out what design elements enable

guenon face patterns to work as species recognition signals

and whether they are also potentially informative about

characteristics other than species identity. To be effective,

species recognition signals should differ significantly in

appearance between sympatric species but maintain similarity

within species because stabilizing selection for easily identifi-

able signals should reduce phenotypic variation [20].

However, because multicomponent signals can vary on

several non-redundant visual dimensions, it is possible that



Table 1. Summary of the potential functions of guenon face pattern coloration and the different predictions each hypothesis makes for the appearance and
variability of visual signals within and between species. Adapted from [9].

signal function description

predicted appearance

within species between species

individual identity recognition and discrimination

of familiar individuals

continuous variation on multiple

dimensions resulting from negative

frequency-dependent selection for

rare phenotypes

no prediction

species identity recognition and discrimination

of con- and heterospecifics

consistent appearances resulting from

stabilizing selection for phenotypes

that match receivers’ species

recognition templates

continuous variation on multiple

dimensions resulting from disruptive

selection for unique species

appearances that aid discrimination

intraspecific mate selection identification of potential

mates and competitors

discrete variation on a single dimension

between age and sex classes

no prediction

quality determination of the fitness

of potential mates and

competitors

continuous variation on a single

dimension that varies within age and

sex classes

no prediction
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information additional to conspecific status is contained within

face patterns [21]. Specifically, we hypothesize that guenon

face patterns may also be informative about the individual iden-

tity, sex and age of the sender. Two general types of guenon

society have been identified. Miopithecus talapoin, Allenopithecus
nigroviridis and Chlorocebus aethiops generally form multimale

multifemale social groups [22]. For Erythrocebus patas and the

forest guenons in the genus Cercopithecus, the typical system is

female philopatry within small groups containing a single

adult male [23,24]. Both types of system often undergo reorgan-

ization during the breeding season as males undertake

temporary invasions of female groups [22]. Invading males are

often unknown to females, who are sexually receptive towards

them, leading to intense male–male competition for mates

[25]. Together, these features of guenon social and mating sys-

tems would lead to situations where there might be an

expected benefit to (i) having a signal that can rapidly communi-

cate individual identity within a social group [8], (ii) signalling

whether an unfamiliar individual is a potential mate (i.e. a sexu-

ally mature individual of the opposite sex), and (iii) signalling

quality or status, especially for males. Table 1 outlines the differ-

ent predictions each of these hypotheses makes regarding the

appearance of a signal and its variability between groups.

We tested these predictions using permuted discriminant

function analysis (pDFA) as a simple machine learning algor-

ithm that attempts to classify groups on the basis of signal

component trait scores. We used classification performance to

evaluate whether there is potential information in either overall

face pattern appearance or (separately) the appearance of focal

traits (nose-spots and eyebrow patches) that could be used to

determine individual, age or sex category membership reliably

in different guenon species. This strategy is regularly used

with great success in acoustic communication studies [26–28],

but to our knowledge has not yet been applied to visual signals.

Key to the success of this strategy is the decomposition of a multi-

component signal into its constituent perceptual dimensions.

Previously, this has been a challenging task for complex visual

signals [4]. Here, we demonstrate two approaches to achieving
this. First, we use the ‘eigenface’ technique, which was initially

developed for human face recognition systems [29,30], to

describe overall face pattern in a manner consistent with how pri-

mates represent face information [31]. The second approach uses

an image segmentation algorithm inspired by mammalian corti-

cal vision to define focal traits, which are then assessed using

biologically inspired measures of segment colour, shape, size

and brightness.
2. Material and methods
(a) Image data collection
We took digital images of Cercopithecini primates held in captiv-

ity in US and UK zoos and the CERCOPAN wildlife sanctuary in

Nigeria [16] (see Acknowledgements) using a calibrated camera

set up to enable estimation of guenon photoreceptor catches

and subject illumination (electronic supplementary material).

We used a Canon T2i with Canon EF-S lenses with focal length

of either 18–55 mm, 55–250 mm or 75–300 mm and a circular

polarizing filter to reduce the appearance of specular reflections

off hair and glass. We collected at least three in-focus images of

individual subjects from each species in a frontal body position

(within 108 of ideal) under indirect light (i.e. overcast conditions

outdoors or diffuse artificial light indoors). Only one photo was

used from each series of images taken while the subject remained

in the same position, and we collected photographs of each indi-

vidual at multiple time points (normally over the course of a day)

to help ensure that replicate photographs were independent. This

meant subsequent classification was based on invariant features

of each individual’s appearance rather than their particular

appearance at a limited point in time and space.

Our analyses included 541 images of 110 individuals from 12

Cercopithecini species that we collected as part of a larger pub-

lished dataset [16]: A. nigroviridis (5 male, 3 female, 1 juvenile),

Cercopithecus ascanius (5, 7, 0), C. diana and C. roloway (3, 4, 2),

C. mitis (1, 2, 0), C. mona (7, 6, 3), C. neglectus (2, 4, 0), C. nictitans
(7, 12, 1), C. petaurista (3, 4, 0), C. wolfi (3, 4, 0), C. sclateri (2, 4, 2),

E. patas (2, 2, 0), M. talapoin (3, 2, 0). None of these species have

been split in either of the two most recent taxonomies [13,14],



Figure 2. The image segmentation process. On the left is an example of a
C. petaurista male image in LMS colour space that has been cropped and standard-
ized for size, position and orientation. On the right is the PCNN neuron firing time
map with the selected region outlined in green. The region selected is the largest
nose-spot segment that contains only one subregion. (Online version in colour.)
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though we combined data for the former subspecies C. diana and

C. roloway on the basis of their observed visual similarity and

former subspecies status. For each individual photographed,

we recorded individual identity, sex (male or female) and age

class ( juvenile, 1–5 years; young adult, 6–10 years; old adult,

11þ years). In sex and age classification analyses, we excluded

data on juveniles and analysed images from adults only.

(b) Image processing
We modelled the retinal responses of a guenon receiver to the visual

scene recorded by the camera using standard camera calibration

and image transformation techniques to transform the camera’s

colour space to guenon LMS (long, medium and short wavelength

photoreceptor) colour space and normalize for differences in light-

ing [32,33] (electronic supplementary material). Normalizing for

lighting conditions is an essential step for ensuring that classifi-

cations are based on invariant features of a subject’s appearance

rather than local lighting conditions. Next, we segmented out

each individual’s head from the background using a semi-auto-

mated outlining program in MATLAB (electronic supplementary

material), and standardized the cropped faces for size, orientation

and position by selecting the outside corner of each eye as two land-

marks and transforming the image using bilinear interpolation so

that these points had fixed coordinates. Images were then all

trimmed to the same size (297� 392 pixels). From the set of aligned

standardized faces of each individual, we calculated the mean face

of each individual (mean LMS responses at each pixel coordinate),

then from each species’ set of individual mean faces, we calculated

the species mean face (weighted to account for variation in the rela-

tive number of males and females) and the guenon mean face from

the set of species mean faces.

(c) Measuring overall face pattern: guenon eigenface
analysis

We calculated interspecific guenon eigenfaces from species aver-

age faces and intraspecific eigenfaces from the average faces of

each individual for each species. It uses principal components

analysis (PCA) on image vectors to establish the dimensions

of overall face pattern variation (electronic supplementary

material). We obtained inter- and intraspecific eigenface scores

for each original image by projecting them into inter- and intra-

specific eigenface space, respectively. The position of species and

individuals within each face-space describes their overall appear-

ance, and the relationship of their appearance to other species in

the tribe and to other individuals of the same species.

(d) Measuring focal patches: eyebrow and nose-spot
patch segmentation

For the analysis of focal traits, we selected all individuals from the

four species that were subjectively determined to present nose-

spots (C. ascanius, C. nictians, C. petaurista, C. sclateri; n ¼ 47) and

eyebrow patches (C. diana, C. mona, C. neglectus, C. wolfi; n ¼ 38).

We segmented the regions on monkeys’ faces into constituent

parts using a pulse-coupled neural network (PCNN) [34], a class

of image segmentation algorithm based on mammalian early

vision (electronic supplementary material). Each neuron in the

network corresponds to a pixel in the image and receives input

based on the pixel’s colour as well as input from neighbouring

neurons. Inputs accumulate until a threshold is reached and the

neuron fires, pulsing output to neighbouring neurons. Over a

number of iterations, the process results in a map of neuron

firing times, with spatially contiguous regions firing together

enabling image segmentation [35]. Each nose-spot or eyebrow

patch region was determined by selecting the largest segment in

the region with only one subregion from this map (figure 2).
While PCNNs are clearly a simplification of mammalian early

vision, given that we do not know how guenons segment face pat-

terns, and so whether human-mediated hand segmentations are

more or less similar to guenon segmentation than PCNN segmen-

tations, a generalized model provides a representation of an

object’s outline that has several advantages. The algorithm itself

is fast, automatic, resistant to noise, replicable and does not require

a training set or a user-specified set of features to detect.

(e) Measuring the perceptual dimensions of eyebrow
and nose-spot patches

After selecting the nose-spot or eyebrow region, we recorded the

colour of the region as the mean LMS value of all pixels. From

this we calculated luminance as (L þM )/2 and the response of

red-green (R/G) and blue-yellow (B/Y) colour opponency chan-

nels (R/G ¼ (L 2 M )/(L þM ), B/Y ¼ (((L þM )/2) 2 S)/(((L þ
M )/2) þ S)) that constitute the input to the colour vision systems

of Old World primates [36]. The size of the region was recorded

as the total number of pixels in the region.

We analysed shape using elliptical Fourier analysis (EFA; elec-

tronic supplementary material) [37,38]. This is a well-established

method for analysis of complex biological shapes that do not feature

easily described homologous landmarks. The shape outline is

decomposed into a series of mathematically defined ellipses

(called harmonics) of varying sizes, eccentricities and orientations

that describe increasingly finer shape details. EFA has successfully

been used to classify biological shape previously, for example, the

species identity of corals [39]. We found that we needed to extract

16 harmonics (which each have four coefficients) to achieve a close

match to segmented shapes. The dimensionality of shape descrip-

tors was then reduced using PCA [40]. PCA analyses were

conducted on both the whole dataset to find the axes of interspecific

shape variation and separately on the data for each species to find

compact descriptors that described intraspecific variation in shape.

( f ) Classification analyses
Data for classification analyses (Dryad doi:10.5061/dryad.4rb0r)

consisted of the four response variables associated with each

image (species identity, individual identity, sex and age class) and

a set of potential predictor variables as follows. All images had

overall face pattern descriptors, represented by both inter- and

intraspecific eigenface scores. For those images that possessed one

or both of the focal traits, we had as another set of predictors the

shape of the focal patch (represented by between one and five

shape components), the colour of the focal patch (mean R/G and

B/Y), the brightness of the focal patch (mean luminance) and the

relative size of the focal patch (mean number of pixels).

http://dx.doi.org/10.5061/dryad.4rb0r


Table 2. Summary of species identity classification performance on the basis of either the perceptual dimensions of overall face pattern (eigenface scores),
nose-spot appearance or eyebrow patch appearance. The pDFA models include all predictors that resulted in significant single-predictor models. Percentage
correct is the mean percentage of cross-validated cases classified correctly after 100 test iterations. The percentage chance column shows the mean correct
classification performance of 1000 random nested permutations of the test data.

signal predictors % correct % chance % above chance p-values

eigenfaces (10 species, 99 individuals,

490 cases)

eigenface 1 – 5 81.47 15.02 442.61 ,0.001

nose-spots (4 species, 47 individuals,

230 cases)

R/G, B/Y, area, shape PCs 3 & 5 88.65 32.58 172.09 ,0.001

eyebrow patches (4 species,

38 individuals, 188 cases)

R/G, B/Y 64.84 28.03 130.87 ,0.001
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The basic analysis strategy was to conduct multiple DFA ana-

lyses to establish whether each predictor variable could reliably

classify cases correctly for each of the categorical response vari-

ables. For each of the response variables we then examined two

DFA models with multiple predictors; the first contained the

three ‘top’ predictors that performed best in single-predictor

models (regardless of their individual classification performance)

and the second included all predictors that performed significantly

above chance. To meet the requirement that the number of predic-

tors is smaller than the minimum number of cases in each class,

and to increase the likelihood that our results are generalizable to

the population as a whole, we only conducted DFA analyses

when there were at least five cases in each class. For species iden-

tity, this meant at least five individuals from each species were

sampled, for sex classification at least five males and five females,

and for individual identity at least five example photos of each

individual were required. Owing to this, we were unable to include

M. talapoin in individual identity classification and E. patas and

C. mitis in species identity classification from eigenfaces.

As we were able to analyse more than one photo per individual

in species, sex and age classification analyses, the samples in each

class are not independent, as individual identity is an additional

factor nested within the species age or sex identity factors. This vio-

lates an assumption of traditional DFA, potentially leading to

incorrect results. To overcome this, we employed permuted DFA

[41], a technique that uses a nested random selection of samples

and random assignment of samples to classes to calculate a null dis-

tribution of the level of classification performance expected by

chance (electronic supplementary material). The cross-validated

classification accuracy of observed data can then be compared

with this distribution to assess whether performance is significantly

above chance. For consistency, we also used this test to analyse indi-

vidual identity classifications. Analyses were carried out using a

script written by R. Mundry (MPI for Evolutionary Anthropology,

Leipzig, Germany) in R with the MASS library loaded [42,43]. Per-

formance was judged significant if cross-validated classification

accuracy of the observed data was higher than 5% of the random-

ized datasets. We evaluated classification performance on the

basis of (i) the significance of single and multipredictor pDFA

models, (ii) the percentage above chance of cross-validated

classification performance and (iii) whether strong classification

performance was achieved with single or multiple predictors.
3. Results
(a) Species classification
Classification of species identity was performed with a high

degree of reliability on the basis of the eigenface scores, as
well as the nose-spot and, to a lesser extent, eyebrow patch

focal traits (table 2). For the 10 species with at least five indi-

viduals sampled, single-predictor models for overall face

pattern showed that each eigenface dimension alone was

able to classify species identity significantly above chance

(between 146% and 247%; electronic supplementary material,

table S1), but this was much lower than when all predictors

were included (443%). For nose-spots, shape PCs three and

five, as well as both colour and the area perceptual dimen-

sions, performed significantly above chance (between 68%

and 119%); however, this was also considerably lower than

when all significant predictors were included (179%). Single

component classification of species identity from eyebrows

was significantly above chance for both colour traits (R/G

and B/Y), but not for others.

(b) Sex classification
In the species we studied for which we had a sample size of

at least five adult males and five adult females, we found no

evidence for reliable differences that could be used to deter-

mine sex on the basis of eigenface scores (three species)

nose-spots (one species) or eyebrow patches (one species;

electronic supplementary material, tables S2–S4).

(c) Age group classification
There was no evidence that the age group of individuals

could be classified reliability. In the study species with at

least five individuals in the young adult and old adult cat-

egories, no single predictor alone could classify age

category at a level significantly above chance on the basis

of overall face pattern (two species), nose-spots (one species)

or eyebrow patches (one species; electronic supplementary

material, tables S5–S7). Even when suites of the top predic-

tors (up to three traits that performed above chance in

single-predictor models, but not significantly so) were used,

the best-performing model was only able to discriminate

C. nictitans age classes 28% above chance ( p ¼ 0.08).

(d) Individual classification
Individual identity classification from eigenfaces was poss-

ible in 10 of the 11 species tested (table 3). Classification

was highly reliable; on average, individuals were classified

correctly 70.89% of the time, 310.43% above chance. Perform-

ance was particularly impressive for A. nigroviridis (figure 3;



Table 3. Summary of individual identity classification performance showing pDFA models that include all predictors that produced significant single-predictor
models (see electronic supplementary material, tables S8 – S10, for single-predictor models). Numbers in brackets after the species name denote the number of
individuals and the number of cases in the sample, respectively.

species predictors % correct % chance % above chance p-values

overall face pattern

A. nigroviridis (7, 45) eigenface 1 – 5 95.2 14.17 572.07 ,0.001

C. ascanius (7, 36) eigenface 1 & 2 47.50 8.40 465.64 0.003

C. diana (4, 36) eigenface 4 71.83 25.41 182.75 0.027

C. mitis (3, 30) eigenface 1 92.83 32.71 167.46 0.011

C. mona (13, 62) eigenface 1 & 5 35.67 8.28 330.64 ,0.001

C. neglectus (4, 22) eigenface 3 – 5 75 23.88 214.14 0.047

C. nictitans (11, 60) eigenface 1, 3 & 5 31.31 6.51 60.83 ,0.001

C. petaurista (4, 27) eigenface 1 & 2 88.14 24.53 259.31 ,0.001

C. sclateri (6, 39) eigenface 1, 3 & 4 71.44 17.40 310.49 ,0.001

C. wolfi (6, 34) eigenface 1 – 3 100 15.60 541.03 ,0.001

E. patas (3, 17) none qualified

nose-spots

C. ascanius (7, 36) R/G 34.25 8.26 314.69 0.016

C. nictitans (11, 60) area, shape PC 5 39.40 9.30 225.30 0.035

C. petaurista (4, 27) PC 2 & 4 85.57 25.09 241.12 0.004

C. sclateri (5, 30) R/G, B/Y 63.60 20.68 207.49 0.011

eyebrow patches

C. diana (4, 36) luminance 89 24.46 263.92 0.002

C. mona (12, 64) B/Y 23.19 7.54 207.70 0.026

C. neglectus (4, 22) R/G, B/Y, area 60 24.26 147.32 0.044

C. wolfi (6, 34) R/G, luminance 63 16.38 284.66 0.014
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95.20% of cross-validated cases correctly assigned, chance

14.17%, p , 0.001) and C. wolfi (100% of cross-validated

cases correctly assigned, chance 15.60%, p , 0.001). From

the perceptual dimensions of nose-spots and eyebrow

patches, significant individual identity classification models

were found for all study species (table 3).

The perceptual dimensions included in models varied

between species; none of the components contributed to

species identification in all of the studied species and all

types of component were included in the final discriminant

model of multiple species. Focal trait models that only included

one perceptual dimension generally performed relatively

poorly compared with the multi-trait models (electronic sup-

plementary material, tables S8–S10). The typical pattern was

like that of the species classification results, with some individ-

uals being identifiable on one dimension, for example by

having a distinctively light or dark nose-spot, but with other

individuals being poorly separated on this dimension (but per-

haps distinctive on another dimension), explaining the higher

performance when all predictors were included.
4. Discussion
We took a novel machine learning approach to investi-

gating the potential information content of complex
multicomponent visual signals, and found that this offered

new insight into the types of selection pressures that are

likely to have led to the extraordinary diversity in guenon

face pattern appearance. Deconstructing and measuring the

detailed form of 12 species’ signals and investigating whether

their perceptual dimensions could reliably predict basic bio-

logical information showed that species and individual

identity could be consistently established correctly for the

large majority of guenon species, while age and sex could

not be determined in the analysed species.

Eigenface scores, nose-spots and eyebrow patches could

all be used to classify species identity reliably. This is consist-

ent with our previous finding [16] that guenons have evolved

face patterns to have distinctive appearances from the species

that they are sympatric with, and our conclusion that this is in

order to promote reproductive isolation by functioning as a

species recognition signal that reduces the likelihood of

hybridization [17,18,44].

For 9/10 species, individual identity classification per-

formance from intraspecific eigenfaces was comparable in

performance to that of determining species identity from inter-

specific eigenfaces. The reliability of individual identity

classification afforded by interindividual variation in guenon

face pattern appearance strongly suggests that both overall

face patterning and the appearance of focal traits have another

function in supporting individual recognition [8], despite the
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Figure 3. How the first two eigenface dimensions were together able to classify individuals of A. nigroviridis with 95.20% cross-validated accuracy (chance ¼
14.17%). Differently coloured symbols represent different individuals (n ¼ 7). Repeat photographs of each individual are generally clustered together, enabling
accurate classification. Eigenface 1 corresponds closely with skin colour and eigenface 2 relates to fur colour. Triangle symbols show males and circles show females.
Thick symbol outlines show older adults and thin outlines show younger adults. Note that although we did not have sufficient sample size to run classification
analyses on A. nirgroviridis age and sex identity, males and females and younger and older adults overlap in space, so that individuals cannot be easily separated
into these categories on the basis of these two eigenface dimensions. (Online version in colour.)
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difficulty human observers might have in distinguishing indi-

vidual guenons from one another. As highly social species

with complex social relationships framed at the level of the

individual, guenons could gain several benefits by being able

to track the individual identity of peers visually, including

stabilization of dominance hierarchies, increased altruism

from familiar individuals, improved mating success, improved

group defence and a reduction in the frequency or intensity of

agonistic interactions [8,45]. Confirmation that guenons use

face patterns as a signal to individual identity and rejection

of the hypothesis that interindividual variation in face patterns

is a potential cue that is nevertheless not used in individual dis-

crimination [46] will require experimental work with guenon

receivers. Comparative evidence from other primates, however,

indicates that this confirmation and rejection, respectively, are

likely to be correct. Interindividual discrimination on the

basis of visual information is relatively widespread (reviewed

in [8]), especially in species with complex social systems [47].

Our own experiences suggest that in humans, face appearance

has a key role in recognizing individuals, and chimpanzees

and macaques have both been shown to perform individual

recognition on the basis of face appearance [48]. Individual rec-

ognition using face patterns has also been shown in ungulates

[49] and invertebrates: queens of the paper wasp Polistes
fuscatus, who, like guenons, have linear female dominance
hierarchies, also use variable face patterns to signal indivi-

dual identity and dominance to conspecific females [50,51].

We also know that guenons can recognize individual identity

from other sensory modalities. For example, vervet monkeys

(Ch. pygerythrus) use acoustic information to discriminate

between individuals’ calls and can incorporate identity infor-

mation with other knowledge when making social decisions

[52]. Variability in call structure suggests that other guenon

species also use interindividual differences in call structure to

determine the identity of the sender [53].

If face appearance is used for individual recognition in

guenons, a further question is whether intraspecific variation

in guenon face patterns is maintained by evolution to support

intraindividual discrimination, or whether it is an incidental

cue. Signalling traits involved in individual recognition

should vary on multiple dimensions and be highly variable

within each dimension so that a sufficient number of individ-

uals can be reliably discriminated (table 1) [7,8]. Thus,

phenotypes that have evolved to support identity signalling

should be under negative frequency-dependent selection,

where rare phenotypes are more successful [54,55] as they

will make for more distinctive faces. The evidence collected

in our study was consistent with this [9]; more than one

eigenface was a significant predictor of individual identity

in 8/11 species, more than one nose-spot dimension was a
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predictor in 3/4 species and more than one eyebrow patch

dimension predicted individual identity in 3/4 species. It is

also possible that each eigenface dimension encodes multiple

correlated signal components, and that eyebrow patches and

nose-spots are just two of multiple face pattern traits that

have perceptual dimensions that contribute to the encoding

of individual identity. Furthermore, in accordance with the

predictions made by the individual identity signalling

hypothesis (table 1), eigenface scores and the perceptual

dimensions of focal patches showed continuous distributions

and sometimes considerable variability (figure 3). It should

also be recognized that the expected degree of variation in

traits will also depend on the ability of receivers to discrimi-

nate. Less able receivers will require senders to have more

varied appearances than more able receivers. The lighting

environment through its influence on signal transmission

will also modify the level of variability in appearance

required for receivers to discriminate [56].

Our evidence that guenon face patterns support both

species and individual identity signalling has interesting

implications for how evolution shapes the design of signals

that have functions with conflicting requirements. Species

recognition signals are expected to be created and main-

tained by disruptive selection on signal phenotypes

between populations leading to distinctive species-specific

signals [57]. However, they should also undergo stabilizing

selection within populations in order to facilitate the match-

ing of individuals to a species template, which would work

against production of variation required for individual rec-

ognition. Given the evidence that interspecific variation in

face patterns is maintained by the requirements of discrimi-

nation between sympatric heterospecific guenons [16], it is

likely that guenon face patterns reflect a compromise. Such

a trade-off may be made possible by specialized cognitive

architecture for face processing, allowing finer differences

in appearance to be discriminated for individual identity

judgements between conspecifics, like that identified in

humans, chimpanzees and perhaps other non-human pri-

mates [58–60]. Even without specific adaptations for face

processing, expertise at face processing and a sufficiently

large perceptual face-space may allow for both species-

specificity and interindividual distinctiveness [61]. Greater

sensitivity to differences in the appearance of conspecific

compared with heterospecific faces is likely to be key to

supporting this dual role [62], allowing gross features

to be used for coding species identity and finer features to

encode individual identity.

Although we did not have sufficient sample sizes to

attempt classification of the age and sex of most species, for

those that we did study, classification performance was

poor (see also figure 3). This suggests that guenons do not

directly signal quality or status to potential mates and compe-

titors with their face patterns (table 1). The lack of direct cues

to sex or age is perhaps not surprising given the evidence we

present that reliable individual recognition is possible from

face patterns. Individual identification would allow age and

sex information, as well as information on quality or status,

to be learnt in other ways and associated with the corre-

sponding face pattern identity template. Signals of age, sex

or quality are more likely to be needed when communicating

with unfamiliar individuals because prior experience, learn-

ing and memory are not required for them to function
effectively; rather, a signal can be compared with a template

that may be either learned or innate [63].

In most cases, the messages of both species and individual

identity were carried by several of the signal components we

measured, suggesting that guenon face patterns contain both

redundant and multiple messages. The increase in classifi-

cation performance when multiple components were used

indicates that the multicomponent designs would enhance

responses over any potential single component design [10].

Three main factors are likely to promote multicomponent sig-

nalling. First, multiple components that contain some

redundancy will be more resistant to environmental noise

[10]. For example, while the information content of a signal

based on colour decreases greatly as light levels decrease at

dusk, information based on shape will degrade to a much

lesser extent. Conversely, shape information may be difficult

to retrieve from an atypical viewing angle, whereas colour

information is less affected. Second, signalling on more than

one dimension increases the overall span of phenotypic face-

space. This allows for more perceptually salient variation

and enables increased distinctiveness of more units, whether

species or individuals. Third, there may be cognitive effects

of multicomponent signalling that lead to improved detection,

learning and memory of a multicomponent signal compared

with a unicomponent signal of equivalent perceptual distinc-

tiveness [2]. Unexplored in this study is how visual species

and individual identity signals or cues interact with species

and identity signals in other modalities [52,64]. Multimodal

communication is extremely common in primates, and it

would be informative to understand the similarities and

differences between signalling modalities.

In summary, we present a simple machine learning

approach that is straightforward to implement but provides

a powerful tool for understanding the potential information

content of visual signals. This was combined with percep-

tually inspired decompositions of both overall face pattern

and the appearance of focal traits that are both simple to

implement and have broad use. For example, the eigenface

technique might also be applied to describing primate facial

expressions [31] or lepidopteran wing colour variation, and

the analysis of focal traits could be used on photos of any

colour patch. We showed that for the large majority of

guenon species studied, face patterns probably have a dual

function of communicating species and individual identity.

Interpretation of differences between groups in terms of

classification accuracy is intuitive and gives insight into

how the perceptual space is occupied and divided by groups.
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