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Abstract

Chronic inflammatory and autoimmune diseases have been the focus of many genome-wide 

association studies (GWAS) because they represent a significant cause of illness and morbidity, 

and many are heritable. Almost a decade of GWAS studies suggests that the pathological 

inflammation associated with these diseases is controlled by a limited number of networked 

immune system genes. Chronic inflammatory and autoimmune diseases are enigmatic from an 

evolutionary perspective because they exert a negative affect on reproductive fitness. The 

persistence of these conditions may be partially explained by the important roles the implicated 

immune genes play in pathogen defense and other functions thought to be under strong natural 

selection in humans. The evolutionary reasons for chronic inflammatory and autoimmune disease 

persistence and uneven distribution across populations are the focus of this review.

Introduction

Like all other organisms, humans are the transient outcome of eons of ancestral creatures 

affected by evolutionary forces. It has long been considered that chief amongst the factors 

that influence human physiological composition is natural selection exerted on the immune 

system [1,2]. As our primary interface with the environment, our immune system is thought 

to have been under severe selective pressure mediated by pathogens [3–7,8••,9–14,15••]. 

Indeed, studies examining human genomes for signs of positive selection, or ‘selection for’ 

particular traits, repeatedly find an overrepresentation of immune system genes associated 

with these signatures [16–21]. While we would expect the individuals of our young species 

to be phenotypically very similar, humans considerably vary in their capacity to manifest 

chronic diseases characterized by long-term, overt and pathological inflammation such as 

chronic inflammatory and many autoimmune diseases (Table 1). The persistence and 

increasing incidence of conditions characterized by pathological inflammation is a 

particularly enigmatic aspect of the diversification of human immunity, as many manifest in 

pre- and peri-reproductive individuals and negatively affect reproductive fitness. The factors 

contributing to disparate chronic inflammatory and autoimmune disease incidence are 
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myriad and include both genetic as well as current environmental factors. Here, we consider 

how past human immune system adaptation may have contributed to current disease 

disparities between individuals and human populations.

The genetic basis of susceptibility to autoimmune and inflammatory 

disorders

With the advent of whole-genome genotyping arrays, examinations of the entire genome for 

associations with complex phenotypes have become common practice. In less than a decade, 

such genome-wide association studies (GWAS) have found hundreds of loci associated with 

chronic inflammatory and autoimmune diseases. The hundreds of genes implicated in the 

progression of these diseases by GWAS have revealed two major patterns that make the 

persistence and uneven distribution of chronic conditions characterized by pathological 

inflammation particularly intriguing. First, genes implicated in infectious disease 

susceptibility overlap considerably those associated with chronic inflammatory and 

autoimmune diseases [22•,23•,24,25••,26]. Such observations have forced a shift from 

disease models that emphasize individual inflammatory disease pathways, to a model of 

pathological inflammation regulated by a tightly regulated network of genes that are 

implicated in multiple diseases [24,27,28]. A recent assessment of risk allele sharing across 

seven chronic inflammatory and autoimmune diseases (celiac disease, multiple sclerosis, 

rheumatoid arthritis, Crohn’s disease, psoriasis and systemic lupus erythematosus) found 

that over 40% of the associated single nucleotide polymorphisms (SNPs) were shared across 

multiple, though not by all seven, conditions [22•]. Via a large meta-analysis of multiple 

GWAS for inflammatory bowel disease (IBD), Jostins et al. found that 66 of 154 of loci 

associated with IBD were also associated with other ‘immune-mediated diseases’, including 

8 loci associated with ankylosing spondylitis, and 14 loci associated with psoriasis [23•].

The overlap between chronic inflammatory and autoimmune implicated loci makes sense in 

the context of disease pathogenesis because such diseases tend to manifest in pairs and share 

expression of minor pathologies. For example, approximately 50% of patients with the axial 

skeleton arthritis ankylosing spondylitis (AS) acquire small gut lesions that, in 10% of 

patients, develop into Crohn’s disease (CD) [29,30]. Other such diseases that co-manifest 

include Crohn’s disease with psoriasis/arthritis, as well as IBD with multiple sclerosis/optic 

neuritis/rheumatoid arthritis/asthma [31•] (reviewed in Ref. [32]). A model of similar or 

shared mechanisms regulating the pathological inflammation of these conditions is further 

supported by the observation that anti-TNFa (infliximab) treatment for Crohn’s disease 

significantly influences the risk of developing psoriasis [33–36]. Disease-associated gene 

overlap, disease co-occurrence and the influence that neutralizing a single but ubiquitous 

proinflammatory cytokine can have on the manifestation of multiple and seemingly diverse 

pathologies suggest that the essential mechanism of pathological inflammation across 

conditions is conserved and that such disease is the outcome of regulatory perturbations of a 

tightly regulated network of genes [22•,25••]. Importantly, the effect size of most GWAS 

identified loci appear to be rather small, suggesting that the manifestation of most chronic 

inflammatory and autoimmune diseases occurs via a combination of genetic risk loci and 
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environmental triggers (e.g., gluten consumption in celiac disease development) that lead to 

various small shifts in the expression of these gene networks in an individual [37••].

Natural selection as a contributing factor to disease susceptibility

The second major pattern noted for GWAS data is that many GWAS ‘hits’ occur proximal 

to immune genes in regions with signatures of positive natural selection [15••,38–41]. For 

this review we gathered a measure of recent positive selection, Integrated Haplotype Scores 

(iHS), from Hapmap phase II data for the most recent catalogue of all GWAS implicated 

loci (Figure 1) [21]. When we examined GWAS loci with an absolute iHS value greater than 

the 99th percentile of the genomewide distribution we found the European sample to have 

>2-fold increase (P = 0.048) in the number of positively selected alleles among GWAS 

SNPs associated with autoimmune diseases, while the African sample’s strongest signals of 

positive selection occurred at loci associated with infectious disease (P = 0.001) (Figure 1a). 

This observation suggests that at least some of the present-day autoimmune risk loci have 

been adaptive and conferred some sort of functional benefit to Europeans in the past.

Interestingly, the African sample exhibits less of a signal for positive selection than the 

European sample overall, which may indicate disparate types of selection acting on these 

populations. Indeed, no signatures of selection on GWAS-associated SNPs appear to be 

shared between Europeans and Africans. Moreover, fifty-three percent of GWAS-associated 

SNPs showing evidence of recent selection in the European sample are either completely 

absent or found at very low frequency (minimum allele frequency <5%) within the African 

sample. We note, however, that virtually all GWAS studies to date have focused exclusively 

on individuals of European ancestry [42]. It is therefore possible that the genetic 

determinants of susceptibility to chronic inflammatory and autoimmune diseases in 

individuals of African descent are distinct from those found among Europeans and that, if 

we were to identify those variants, they would also show evidence of selection in Africans. 

Fortunately, an increasing number of cohorts of individuals of diverse ancestries are being 

assembled. Hopefully these data will soon allow less biased evaluations of the relative 

contribution of past selection to susceptibility to chronic inflammatory and autoimmune 

diseases in large array of human populations.

Asymmetrical interbreeding between archaic human and modern human populations is an 

interesting possibility that may have contributed to differences in the repertoires of disease-

causing loci of African and European descended individuals. The temporal overlap between 

modern humans and Neanderthals in Europe has been estimated as 2600–5400 years, 

between ~35 000 and 40 000 years ago [43]. Interestingly, recent sequence studies of ancient 

DNA from Neanderthals suggests that some of the alleles presently associated with 

susceptibility to Crohn’s disease, systemic lupus erythematosus, IL-18 levels and type-II 

diabetes in Europeans have been introduced in non-African populations via interbreeding of 

modern humans with archaic Neanderthal species at the time of the Out-of Africa exodus 

[44]. Similarly, an analysis of human leukocyte antigen (HLA) class I sequences from 

Denisovan, Vindija Neanderthal and modern human genomes revealed that several of the 

most common and functionally distinct HLA haplotypes found in Eurasian populations (e.g., 

HLA-C12:02, HLA-C15 and HLA-A11) were also present in the archaic genomes, which 
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suggests that these alleles came into modern Eurasian populations through admixture with 

archaic humans [45•]. The shared presence of these alleles in modern and archaic 

populations opens up the possibility that adaptive introgression of archaic alleles into 

modern human genetic diversity is amongst the factors contributing to the diversification of 

the immune system between populations.

To more formally assess if European and African populations have significantly 

differentiated disease-associated loci, we collected the levels of population differentiation 

(Fst) at GWAS-SNPs between European and African populations using the allele 

frequencies reported by the 1000 Genomes Project [46]. We found many GWAS-SNPs 

highly differentiated between the two populations (Fst values >0.4). SNPs associated with 

important inflammatory pathways appear to have very rapidly differentiated in humans. The 

most extremely differentiated SNPs (Fst >0.6) in the European and African samples occur 

proximal to genes that are the regulators of NFKB activation or are known to be expressed 

after NFKB regulation (i.e., PRKCH, TNIP1, TRAF3IP2) or occur in the chemokine cluster 

on chromosome 4q13.3 (Figure 2). Generally, SNPs associated with the NFKB and JAK-

STAT (i.e., REL, STAT3, STAT4) pathway are well represented amongst polymorphisms 

highly differentiated between European- and African-descent individuals.

Within the European sample, multiple GWAS identified loci associated with a signature of 

positive selection are implicated repeatedly across several auto-immune conditions (i.e., 

HLA-DRB1, SH2B3), including celiac disease, type 1 diabetes, rheumatoid arthritis (Figure 

1b). Previous authors have noted signatures of positive selection at these GWAS loci and 

suggested pathogens as the potential selective factor [6,15••,47]. The possible link between 

infectious and chronic inflammatory diseases is further supported by reports that some 

pathogens may be a contributing and possibly causal factor in chronic inflammatory and 

autoimmune disease (e.g., Epstein–Barr virus and SLE, RA and MS; Mycobacterium avium 

and Crohn’s disease, Yersinia enterocolica and IBD) [48–55]. However, the relationship 

between infection with a present day pathogen and the co-occurrence of a chronic disease is 

very difficult to interpret in terms of past selective events, as the original mitigating factors 

of allele fixation can only be vaguely reconstructed. Mycobacterium species are, perhaps, 

the most well supported candidates for pathogen-mediated selection altering inflammatory 

pathways and increasing the frequency of chronic disease alleles in humans [2,23•,56]. That 

virtually all identified Mycobacterium leprae risk loci are also associated with genes 

implicated in IBD progression (e.g., NOD2, LRRK2, TNFSF15) [57••] hints at a possible 

evolutionary trade off between the probability of reproductive success after acquiring a 

pathogen with epitopes or tropism similar to M. leprae, and the likelihood of long-term 

pathological inflammation that may affect reproduction. Caution must be taken with such an 

interpretation; however, because it assumes that any other role an implicated gene might 

play in any other biological process is less important to ensure reproductive success than the 

process of surviving an infection. While pathogens are likely a very important factor driving 

an increase in chronic inflammatory and autoimmune disease risk loci, the relationship 

between the two is far from straight forward.
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Discerning the influential factors in an evolutionary trade off

Most of our evidence of an association between chronic inflammatory/autoimmune risk 

alleles and adaptation to past infectious disease is diffuse, primarily because the etiological 

agent(s) at core of this question is/are fundamentally unknowable. Most of the support for 

specific pathogens exerting a past evolutionary effect leading to chronic disease consists of 

genes implicated in chronic disease progression also being implicated in host responses to 

present day pathogens [23•,57••,58–60]. For all of the attempts to connect historical 

pathogen exposure to present day human immune characteristics, it’s worth noting the 

physiological promiscuity of the immune system. Many immune genes are cross-referenced 

and fulfill functions in other bodily systems thought to be under strong selective pressure, 

including reproduction, lung maintenance and embryonic and brain development [61–64]. 

An examination of the 20 GWAS implicated genes associated with the strongest signatures 

of positive selection reveals that along with host responses to infection, these genes are also 

involved other activities extremely important for reproductive success, such as embryo 

implantation into the uterine lining, embryonic morphogenesis and hematopoiesis (Table 2). 

Chronic inflammatory and autoimmune disease risk alleles associated with signatures of 

positive selection could indicate such alleles conferred greater reproductive success via a 

broader range of beneficial phenotypes than simply infection survival.

A good example of the complicated business of interpreting the evolutionary meaning of 

risk loci shared between chronic inflammatory and infectious diseases can be found in a 

celiac disease risk allele (exonic SNP rs3184504-A). This SNP is associated with SH2B3, a 

gene which encodes an adaptor important to T-cell activation and occurs in a region of 

12q24 with a strong signature of positive selection. In 2010 Zhernakova et al. suggested that 

bacterial pathogens had acted as selective factors for rs3184504-A based on findings that 

peripheral blood mononuclear cells isolated from individuals homozygous for the selected 

allele under-expressed a mutated SH2B3 and exhibited increased pro-inflammatory cytokine 

production when challenged with ligands for the bacterial detecting receptor NOD2 [15••]. 

Although this observation is compatible with selection driven by bacterial pathogens the 

identity of what SH2B3 phenotype may be under selection is fogged by the pleiotropic 

nature of the gene. SH2B3 also acts as a regulator of two processes assumed to be under 

very high selective pressure — structural organization and development of platelets and 

endothelial cells (reviewed in Ref. [65]). Furthermore, the SNP rs3184504 is well known to 

co-segregate with intronic SNP (rs653178-C) in neighbouring RNA processing and 

amylosing lateral sclerosis (Lou Gherig’s) risk gene ATXN2 [66–69]. Both variants are 

found in high frequencies in Europeans, and are virtually non-existent in African 

populations (Figure 2b). The combination of both alleles is associated with multiple chronic 

diseases and, therefore, a wide range of pathologies (i.e., celiac disease, rheumatoid arthritis, 

psoriasis, cardiovascular disease, type 2 diabetes and thrombotic antiphospholipid 

syndrome) [24,70–73]. It seems very possible that signatures of positive selection in the 

region could be associated with other unknown beneficial variants that are being co-

inherited within, at least, the 125Kb space between the SH2B3 and ATXN2 alleles, if not the 

entire >1 Megabase region of linkage disequilibrium that encompasses the two genes [66]. 

This might include ATXN2 variants that limit neurodegenerative disease and which have 
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previously been proposed to be the target of positive selection [66]. Given the pleiotropy of 

most immune genes, and that natural selection is more easily detected in regions of high 

linkage disequilibrium, discerning the precise phenotypes in an evolutionary trade off can be 

a daunting task. Success could require extensive characterization of how putatively selected 

genetic variants might impact the multiple functions of the gene(s) located within the 

boundaries of the selected locus.

The rapid differentiation of chronic inflammatory risk alleles in humans

How pathogens, such as an ancestral Mycobacterium, may have exerted sufficient selective 

pressure to rapidly and significantly differentiate Eurasian and African populations at 

multiple chronic inflammatory and autoimmune disease risk loci is of significant interest. 

Our Fst analysis found 41 GWAS-implicated loci highly differentiated between European 

and Africans, with 8 loci exhibiting extreme Fst values (>0.6). It seems likely that in the ~60 

000 years since these populations separated, major cultural shifts, such as the Mesolithic 

(~10 000–5000) transition from hunting-gathering to an agricultural lifestyle in Eurasia, to 

the initial exclusion of sub-Saharan Africa, would have profoundly affected human health 

and disease [74,75]. Pre-agricultural life after the end of Pleistocene was likely small group 

based, migratory or semi-sedentary, hunter-gatherer lifestyle. Most subarctic populations 

would have maintained a diverse diet and fairly egalitarian social structure (reviewed in Ref. 

[76•]). A shift to an agricultural economy would have led to significant changes in human 

ecology that altered the relationships between humans and pathogens. The advent of 

agriculture likely affected human immune phenotypes by encouraging many humans to live 

close together in large groups, with some suffering malnourishment due to eating an 

unevenly distributed and fairly homogenous diet of novel foods. With the emergence of 

moderate scale animal husbandry mixed and, potentially, stressed human and animal 

communities likely provided continuous stretches of human and nonhuman animal hosts for 

particular pathogens. The ease of pathogen transmission from one host to another also likely 

benefited from large and drastic alterations of the environment via mass waste accumulation, 

land clearance for farming, and diversion or development of local water supplies. All of 

these cultural and environmental changes would have contributed to the emergence of new 

infectious pathogens, nutritional deficiencies and ‘crowd diseases’ such as measles 

(reviewed in Ref. [77•]).

The dietary shifts associated with an agricultural economy likely transiently altered immune 

phenotypes on which selection could act. Efficient digestion of new foods could have 

conferred a selective advantage to agricultural populations via increased energy and 

indirectly affected the evolution of immunity. Novel foods likely also contributed to 

pathological immune phenotypes that reduce reproductive fitness. For example, with the 

emergence of cereal processing ~20 000 years ago, human populations began to consume 

considerable quantities gluten for, likely, the first time. It is the innovation of cereal 

processing that introduces many humans to high levels of the triggering antigen for celiac 

disease [78]. The negative effects of celiac disease, therefore, have only affected the human 

genome very recently. The likely ‘‘newness’’ of celiac disease may explain why the number 

of positively selected variants associated with the condition is high.
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Similarly, the emergence of alcohol as a food stuff could have improved daily caloric intake, 

but might have also reduced reproductive fitness. Alcohol dehydrogenase (ADH) alleles that 

enhance alcohol metabolism are thought to have been under positive selection starting at the 

dawn of the Mesolithic [79–81]. Increased consumption or metabolism of alcohol, however, 

alters immune traits by changing innate immune modulation, triggering liver inflammation 

and promoting tumor development [82–88]. Similar arguments can be made about the 

indirect impact of other putative dietary adaptations such as the rise of multiple alleles 

upstream of the transcription start site for the gene that expresses Lactase/Lactase-Phlorizin 

Hydrolase (LCT) alleles in European populations approximately 2000–20 000 years ago 

[89,90]. These alleles confer lactase persistence and allow continued consumption of dairy 

products into old age. Milk, however, is iron poor, can cause gut microbleeding in human 

infants and toddlers (cow milk), and can disrupt iron absorption contributing to iron 

deficiency and potentially altering immune function [91–95]. After the Mesolithic–Neolithic 

transition, as agricultural practices disseminate, there is an increase in Eurasian skeletons 

with pathologies associated with nutritional disruptions such as increased carbohydrate and 

milk consumption including caries, cribia orbitalia and cranial pitting associated with 

anemia [96–100]. It is reasonable to expect that shifts in diet altered immune and, 

specifically, inflammatory phenotypes that later came under selective pressure via other 

factors.

Conclusion

The recent development of both high throughput sequencing and genotyping technologies, 

have led to a plethora of GWAS and genome-wide analyses of natural selection. These 

studies have revolutionized our understanding of how and why chronic inflammatory and 

autoimmune diseases manifest. Signatures of positive selection associated with risk alleles 

within a small network of, often, pleiotropic genes regulating these diseases, suggests that 

chronic inflammatory and autoimmune disease manifestation could be the outcome of an 

evolutionary trade off. While increased protection against pathogens seems a likely benefit, 

it is very possible that other traits such as anti-inflammatory conditions in utero, skin color 

and hypoxic responses associated with these genes could have been strong drivers of 

positive selection and contributed to increased frequencies of chronic disease risk alleles. 

The recent advent of new genome-editing technologies such as CRISPR together with 

induced pluripotent stem cells (known as iPS cells) open new exciting avenues to 

functionally test the impact of the selected alleles in different cell types and under different 

cellular conditions (e.g., in response to different pathogens, hypoxia, etc.) [101–104]. 

Determining which phenotypes might have been under selection in the past will allow us to 

delineate the immune functions that have been and still are essential for host survival, as 

well as help clarify the mechanisms contributing to pathological inflammation in 

contemporary human populations.
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Figure 1. 
Recent positive selection targeting SNPs associated with susceptibility to chronic 

inflammatory, autoimmune and infectious diseases. (a) The proportion of GWAS SNPs that 

present evidence for recent positive selection, as attested by the Integrated Haplotype Score 

(iHS) statistic [21]. The complete list of GWAS-associated SNPs was obtained from the 

NIH Catalog of Published Genome-Wide Association Studies [105], which reports all SNP 

trait associations with a p-values <1.0 × 10−5. For the purpose of the current analyses we 

used all GWAS SNPs with an association at a significance threshold <1.0 × 10−6. We note, 

however, that the results are qualitatively similar if using more stringent cutoffs for the 

GWAS data. The y-axis represents the proportion of SNPs that present an absolute iHS 

values above the 99th percentile of the HapMap phase II genome-wide distribution for 

Europeans (left side — orange bars) and Africans (right side — green bars). Diseases were 

grouped into broader groups: the set of inflammatory disorders includes Crohn’s disease, 

ulcerative colitis and celiac disease. The set of autoimmune diseases includes rheumatoid 

arthritis, systemic lupus erythematosus, type 1 diabetes, multiple sclerosis, and psoriasis. 

The set of ‘Immune disorders’ encompasses both inflammatory and autoimmune diseases. 

The set of infectious diseases includes HIV/AIDS, Hepatitis B and C, Leprosy, Malaria and 

Tuberculosis. As a control we also looked at enrichment for signatures of selection among 

all cancer-related diseases. (b) iHS values for Europeans (orange) and Africans (green) for 

SNPs associated with several immune-related diseases by different GWAS studies. The 

genes reported by the GWAS as the most likely associated with the SNPs with absolute iHS 

values above the ninety-fifth percentile (orange dashed line) are reported. ‘NR’ stands for 

non-reported. # intergenic region. ## This is the same locus of SH2B3.
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Figure 2. 
Levels of population differentiation at GWAS SNPs for immune-related diseases. (a) 
Boxplots of Fst values between European- (CEU) and African-descent individuals (YRI) 

based on the data from the 1000 Genomes Project. The Fst statistic examines variation in 

SNP allele frequencies between populations. Under neutrality, Fst is determined by genetic 

drift, which affects all loci across the genome similarly. Conversely, positive selection will 

cause an increase in Fst values in the population where selection occurs. Orange dots 

highlight highly differentiated GWAS SNPs with an Fst value above the 95th percentile of 

the genome-wide distribution. (b) Worldwide frequency distribution of two highly 

differentiated SNPs. The top panel shows the worldwide distribution of allele frequencies 

for rs2472649, an SNP associated with IBD located in a chemokine cluster on chromosome 

4 (e.g., CXCL5,CXCL1,CXCL3,IL8,CXCL6,PF4,CXCL2,PF4V1) and the bottom panel 

shows the worldwide distribution of allele frequencies for rs653178 an SNP associated with 

celiac disease linking the SH2B3/ATXN2 locus with susceptibility to celiac disease.
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Table 1

Prevalence of select chronic Inflammatory and autoimmune diseases per 1000 individuals, by United States 

population. Data represents the combined sex prevalence rate normalized to 1000 Individuals unless otherwise 

noted. All data here was collected on populations within the United States after 1994, with the exception of 

some data for Native North Americans, which pre-dates 1994 and Includes Canadian groups. With the 

understanding that the defined population names used here encompass heterogeneous populations that may 

overlap, population group names were chosen based on the majority use In publications, with few exceptions: 

‘African American’ and ‘Black’ are aggregated with ‘non-Hispanic Black’, Puerto Rican Hispanics and 

‘Latino American’ are aggregated with ‘Hispanic’, ‘White’ and ‘Caucasian’ are aggregated with ‘Non-

Hispanic White’, ‘Alaskan Eskimo’ is lumped under ‘Native North American and Inuit’

Per 1000 individuals Non-hispanic white
Mean (range)

Non-hispanic black
Mean (range)

Hispanic American
Mean (range)

Asian American and
Pacific Islander
Mean (range)

Native North
American/Inuit
Mean (range)

Type 1 diabetes
2.13

a
 (1.86–2.55) [106,107] 1.65

a
 (1.29–2.04) [106,108] 1.12

a
 (0.96–1.29) [106] 0.62

a
 (0.50–0.77) [106,109] 0.32

a
 (0.35–0.30) [106]

Psoriasis
30.5

b
 (25–36) [110,111] 16.0

b
 (13–19) [110,111] 12

b
 (8–16) [111,112]

– –

Multiple sclerosis
0.83

c
 (0.56–0.99) [113] 0.56

c
 (0.22–0.90) [113] 0.35

c
 (0.11–0.56) [113,114]

– –

Celiac disease 0.1 [115] – – – –

Ulcerative colitis (UC) 1.94 [116] 0.78 (0.07–1.5) [116,117] 0.56 (0.12–1.0) [116,13] 1.00 [116] 1.15 [116]

Crohn’s disease (CD) 1.3 [116] 0.51 (0.12–0.89) [116,117] 0.26 (0.058–0.47) [116,118] 0.62 [116] 1.09 [116]

Inflammatory bowel 
disease
 (UC and CD 
combined)

3.24 [116] 2.39 [116] 0.53 (0.06–1.47) [116,118] 1.62 [116] 2.24 [116]

Systemic lupus
 erythematosus 
(SLE)

0.72 (0.34–1.11) [119,120]

1.19
d
 (0.62–2.03) [119–

121]

1.69 (1.16–2.23) [119,120]

3.78
d
 (1.97–6.94) [119–

122]

1.29 (1.03–1.59) [120,123]

1.81
d
(1.38–2.44) [120,121]

1.75 [120]

1.5
d
 (0.92–2.55) [120,121]

1.71 (1.65–1.78) 
[120,124]

2.13
d
 [120]

a
Age–adjusted rate 15–19 years of age, or as close to 19 years of age as possible.

b
Age–adjusted to ≥20.

c
Average of non-contiguous U.S. regions.

d
Female only. Combined sex rates listed immediately above.
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Table 2

Non-immune functions of genes associated with 20 SNPs with the strongest signatures of positive selection 

(IHS scores) and implicated in chronic inflammatory and autoimmune disease

GWAS gene Physiological system/role Process

NAA25 Universal Cell cycle progression [125]

SH2B3 Embryonic development
Embryonic hematopoiesis

a
 [61,126]

Wound healing/haematological Platelet architecture [61]

PTPN11 Reproduction Genitalia development [127]

Embryonic development Genitalia development [127], heart development [128],
growth plate architecture [129], brain development [130,62],
face morphogenesis [130]

Growth and development Growth plate architecture [129], brain development [130],
face morphogenesis [7]

Digestive/metabolism Insulin reception [128], energy metabolism [128,131]

ZNRD1 Reproduction Testis (expressed in) [132,133]

IL2 Locomotion/cognitive Sensorimotor gating [134]

IRF1 Reproduction Uterine remodeling [135,63]

Skeletal Bone remodeling [136]

DNA maintenance/repair
Telomere maintenance

a
 [137]

IL13 Respiration Regulator of lung cilia cell and goblet cell differentiation [64]

CSF2 Reproduction Trophoblast differentiation [138], placenta development [138]

SLC22A4 Haematological/respiration Haeme biosynthesis [139]

IL4 Reproduction Regulates decidua [140], downregulates placental inflammation [141],
contributes to normal maternal blood pressure [141], prevents

reproductive failure
a
 [142–144]

IL3 Brain development Nervous system development [145], determinant of brain volume [145]

PDLIM4 Skeletal Osteoblast development/function [146]

SLC22A5 Digestive
Maintenance of gut epithelial barrier

a
 [147]

ACSL6 Brain development/cognitive Neuronal cell proliferation [148]

Growth and maintenance Lipid synthesis/degradation [149,150]

GNA12 Reproduction Sperm development [151]

TNXB Growth and maintenance Dermal collagen fibril development and organization [152]

POPDC3 Embryonic development Heart development [153]

Growth and maintenance Skeletal muscle development [153]

RASIP1 Embryonic development
Vasculogenesis

a
 [154], angiogenesis

a
 [154]

MLANA Skin colour Melanogensis [155]

CPEB4 Digestive Glucose metabolism/proinsulin production [156]

ETS1 Embryonic development Angiogenesis [157], fetal membrane remodeling [158]

Reproduction Uterine decidualization [159]

Respiration/cardiac/growth
and maintenance

Response to hypoxia [160]

a
Process with dual role in immunity.
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