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ABSTRACT

Sequence analysis of the group of proteins known
to be associated with hereditary diseases allows the
detection of key distinctive features shared within
this group. The disease proteins are characterized
by greater length of their amino acid sequence, a
broader phylogenetic extent, and specific conserva-
tion and paralogy profiles compared with all human
proteins. This unique property pattern provides
insights into the global nature of hereditary disea-
ses and moreover can be used to predict novel
disease genes. We have developed a computational
method that allows the detection of genes likely to
be involved in hereditary disease in the human
genome. The probability score assignments for the
human genome are accessible at http://maine.ebi.
ac.uk:8000/services/dgp.

INTRODUCTION

The identification of genes involved in inherited human
disease requires a large effort to collect inheritance patterns
from families with the disease and to perform linkage analysis
and/or mutation analysis for the candidate genes in order to
identify the gene(s) involved in a particular hereditary disorder
(1). The mutation analysis of candidate genes is a tedious,
labour-intensive activity and sometimes requires the analysis
of a large number of genes before finding the causative
mutation of the disease under consideration.

The genes known to be implicated in human disease and the
mutations causing these disorders are collected in several
databases such as OMIM (Online Mendelian Inheritance in
Man) (2), LocusLink (3) and The Human Gene Mutation
Database (4). This amount of information, together with the
sequence data derived from the human genome (5) and other
organisms (6,7), provides a unique opportunity to identify
intrinsic attributes of disease-associated genes, leading to a
deeper understanding of the causes of human hereditary
disease.

Despite the significance of these resources for human
welfare, only limited work has been carried out on the global
analysis of disease genes as a group. Recently, a report has
explored the functional classification of disease genes and
their products, and described a correlation between the

function of the gene product and general features of the
disease, such as the age of onset and the mode of inheritance
(8). Furthermore, sequence analysis for several eukaryotes
revealed that human proteins with multiple long amino acid
runs are often associated with disease (9).

A protein is involved in a hereditary disease when its
corresponding gene has suffered a mutation that impairs its
function or expression strongly enough to produce a certain
phenotype that is classified as disease. The likelihood of a
protein being involved in disease should scale with the
probability of its gene to suffer mutations with large (but non-
lethal) fitness effects. We can expect that long proteins with
highly conserved amino acid sequences would be more likely
to exhibit disease mutations. Moreover, proteins with similar
paralogues would be less likely to be involved in disease since
they could rescue the mutant phenotype.

We thus hypothesized that human genes involved in
hereditary disease have some distinct sequence properties in
common which render them more susceptible to mutations
causing genetic disorders. To test this hypothesis, we
compiled and analysed a set of 1567 proteins encoded by
genes known to be involved in disease from the OMIM
database (2). We then compared them with the rest of the
human proteins for some selected properties.

MATERIALS AND METHODS

We obtained a list of genes reported to cause a disease when
mutated from the OMIM database (2). The OMIM identific-
ation numbers of genes involved in hereditary disease were
selected from the ‘morbid map’ table in the OMIM database.
Using the National Center for Biotechnology Information
(NCBI) LocusLink (10) database (from tables mim2loc and
loc2ref) and the Ensembl database (11), we located the
corresponding protein sequence records. The result was a list
of 1567 genes associated with human diseases and their
protein sequences. Each of the protein sequence entries were
compared against a dataset containing all the protein
sequences from complete genomes (15 Archaea, 61 Bacteria
and seven Eukarya: Encephalitozoon cuniculi, Arabidopsis
thaliana, Saccharomyces cerevisiae, Schizosaccharomyces
pombe, Drosophila melanogaster, Caenorhabditis elegans
and Mus musculus) obtained from CoGenT (12), and all
protein sequences from SwissProt-TrEmbl (7) (January 2003)
using BlastP (13). These sequences were divided into nine
taxonomic groups: viruses, archaea, bacteria, protista, fungi,
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Table 1. Statistical analysis
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Phylogenetic extent

KS test: conservation score®

Z-score? D (%) P-value
Viruses 7.2 5.5 2.8.-04
Archaea 12.8 11 7.8.-16
Bacteria 16.7 17.5 <2.2.-16
Protista 6.5 8 1.1.-08
Fungi 4.9 6.2 2.2.-05
Plants 39 5 1.1.-03
Invertebrates 129 15.1 2.2.-16
Vertebrates (no mammals) 17.5 21.8 <2.2.-16
Mammals 12.5 23 <2.2.-16
Paralogues - 10.5 2.2.-14
KS test: length distribution®
D (%) P-value
Length 24.5 <2.2.-16

aZ-score of the number of proteins conserved in each taxonomic group between 10 000 randomly selected sets
and disease set [Z, = (X — Wy)/0x] and P-value [P, = X(n, > X)/N]. The P-value for all taxonomic groups is

<1.-04.

bKolmogorov—Smirnov (KS) test of the conservation score between disease proteins and all the human
proteins. The KS test analyses how different two distributions are, and computes a probability (P-value) that
the two distributions are equal to well as the maximum distance (D) between them.

°KS test of the distribution of length between disease proteins and all human proteins.

plants, (while metazoa were further divided in) invertebrates,
vertebrates (excluding mammals) and mammals (excluding
humans), as described elsewhere (14). This taxonomic parti-
tion is not designed as an evolutionary tree, but rather to serve
as a landmark of phylogenetic distance of these taxa from
humans. We computed phylogenetic profiles (15) for all
proteins. Sequence comparisons were performed using
BlastP (version 2.09) and the BLOSUMG62 matrix with an
E-value threshold of 1079 sequences were filtered for
compositional bias with CAST (complexity analysis of
sequence tracts) (16).

To assess the statistical significance of the findings, 10 000
protein sets of the same size were randomly selected from all
the human genome proteins (22638 protein sequences in total;
Ensembl version 15.33.1) (11) and used as control sets. An
identical BlastP analysis was performed for each of the 10 000
control sets. The number of proteins in each of the 10 001 sets
(10 000 randomly selected sets and the disease set) that
detected at least one homologue in each taxonomic group was
considered for the analysis of phylogenetic extent. To assess
the degree of conservation of disease proteins compared with
the rest of the human proteins, we computed for each protein
in each taxonomic group what we define as the conservation
score (CS). This is the BlastP score of the closest homologue
in that taxonomic group divided by the BlastP score of the
protein against itself, ranging from O to 1 (when the closest
homologue is 100% identical). This measure gives an
estimation of the mutation rate that the protein has been
subjected to during evolution, which is independent of the
length of the protein.

To examine the degree of paralogy of disease proteins, a
BlastP search was performed for each protein in the group
against the longest protein sequence of each gene in the human
genome (22638 protein sequences in total), to exclude
alternatively spliced forms. The best BlastP hit found in the
human genome (excluding the hit against itself) was obtained
for each protein and conservation scores between paralogues
were calculated. In the analysis of each feature, the Z-score

[Z, = (X — uy)/ok] and P-value [Py = X(n, = X)/N] were
calculated to statistically assess the results observed in the
disease set (X) against the 10 000 randomly selected sets
(where mean = [, standard deviation = Gy, and n, = the
number of sets that satisfy the condition for the calculation of
the P-value).

To test the differences in the distributions of conservation
scores between disease and human proteins, the Kolmogorov—
Smirnov test was applied, which provides the probability
(P-value) that the two distributions are equal, and also the
maximum distance between them. This analysis was also
applied for distributions of length (Table 1).

The features used to build the decision tree-based model
(17) correspond to protein length, phylogenetic extent, degree
of conservation and paralogy. To represent phylogenetic
extent and conservation, we computed the conservation score
for each protein in each taxonomic group. To quantify
paralogy, the conservation score with the closest paralogue
was used as a parameter.

We searched for all these parameters in the 1567 proteins
known to be involved in disease and the 1567 other proteins
that were taken randomly from the human genome and were
not known to be involved in any disease. The result is 3134
vectors, one for each protein, with 11 dimensions [CS viruses,
CS archaea, CS bacteria, CS protista, CS plants, CS fungi, CS
invertebrates, CS vertebrates (no mammals), CS mammals,
CS paralogues and protein length]. These vectors were used to
generate a decision tree using the ‘Machine Learning in C++’
(MLC++) library (17), through SGI’s Mineset™ machine-
learning software suite (version 2.5) (18). The derived model
can then be applied to other proteins in order to obtain a
probability score for these proteins being involved in human
disease.

To cross-validate our prediction method, we executed two
widely used tests: self-consistency and jack-knife. The self-
consistency test consists of estimating the probability score for
each protein that has been used to build the model, called the
learning set. To obtain a global estimate, this test examines
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Table 2. Validation of the prediction model

Probability score Total of predicted genes

Total of known disease genes

Number of new genes

>0.5 7770 1567 6203
>0.55 5795 1567 4228
>0.60 4247 1567 2680
>0.65 3031 1556 1475
>0.70 1734 1073 661
>0.75 507 284 223
>0.80 101 52 49
>0.85 14 8 6
Actual Predicted Self-consistency test Jack-knife test
n % n
A Disease Disease 1567 100 274
B Disease Non-disease 0 0 115
C Non-disease Disease 0 0 136
D Non-disease Non-disease 1567 100 259
Formula Decision tree
Accuracy (A+D)/(A+B+C+D) 68%
Sensitivity A/(A+B) 70%
Precision A/(A+C) 67%

To cross-validate the disease gene prediction method, we executed two widely used tests: self-consistency and jack-knife. The self-consistency test consists of
estimating the probability score of being involved in disease for each protein that has been used to build the model, called the learning set. To obtain a global
estimate, this test examines how well the model can predict the entire learning set. Our model assigned a probability score of >0.5 to all the disease proteins

in the learning set (100%).

how well the model can predict the entire learning set. Our
model assigned a probability score of >0.5 to all the disease
proteins in the learning set (100%) (Table 2).

The jack-knife test consists of building the model with a
fraction of the data (learning set; in this case, 75% of the total)
and checking how well the model is able to predict the
remaining fraction that has not been seen before (test set; 25%
of the total). This test was performed 10 times: on average, 70%
of the disease genes in the test set were predicted correctly. We
want to point out here that the values of accuracy, sensitivity
and precision shown in Table 2 have been calculated for a
fraction of the genome (the test set), including 392 genes
involved in disease and 392 genes not known to be involved in
disease. These values are calculated for a cut-off probability
score of 0.5. These assessments give us an estimation of the
performance of our method. It should be noted that for higher
cut-off values (i.e. 0.6 or 0.7) the precision increases and the
sensitivity decreases, meaning that the model predicts less real
disease genes but with fewer false-positives.

Although the positive set of proteins obtained from OMIM
can generally be trusted, producing negative sets for proteins
that are known not to be involved in disease is not possible.
We thus faced the problem that our negative examples were
provided by randomly selected proteins from the human
genome and presumably were not known to be involved in
disease. However, some of these proteins may well be
involved in disease, although this property has not been
detected yet. By implication, some of the false-positive
predictions might represent true positives; indeed, this is the
predictive power of our current inductive approach.

Finally, a matrix of 22638 proteins [all the genes in the
human genome (Ensembl version 15.33.1) (11)] with the 11
dimensions was generated and the decision tree model was
applied to all of them; the probability score for possible
involvement in a hereditary disease was then calculated for
each gene.

A relational database has been set up to allow queries on
these results and is available via the Internet at http://
maine.ebi.ac.uk:8000/services/dgp, using the mySQL rela-
tional database management system and a set of PERL scripts
using the DBI package. The probability scores for genes being
involved in disease can be consulted via the Internet, querying
for any gene of interest or a defined chromosomal region. It
can also be searched for any of the diseases that have been
mapped to a chromosomal region, but the disease-causing
gene has not yet been found.

RESULTS

We first analysed protein phylogenetic extent and sequence
conservation. We found that disease proteins exhibit a wider
phylogenetic extent (Fig. 1; for statistical analysis see Table 1).
Almost all disease proteins (99.5%) have homologues in
mammals, and the majority of disease proteins (73%) have
homologues both in vertebrates (mammals and no mammals)
and invertebrates, while only 55% of human proteins have
homologues in these three taxonomic groups (see Table 1 of
Supplementary Material for additional information). Also,
many more proteins in the disease group have homologues in
bacteria (41%) or archaea (25%) compared with all human
proteins (23% and 14%, respectively). Disease proteins are
also more conserved than the rest of the human proteins,
meaning that they tend to have larger conservation scores
(Fig. 2; Table 1; see Materials and methods). On the other
hand, we have also observed that extremely conserved
proteins with conservation scores of ~1 in vertebrates
excluding mammals, >0.8 in invertebrates, or >0.6 in plants,
fungi or protista, are less frequently found to be involved in
disease (Fig. 2).

This wider phylogenetic extent could be partly due to
historical biases. It is possible that genes found to be involved
in disease in humans might have been preferentially
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Figure 1. Phylogenetic extent of human disease proteins. Frequency distributions of disease proteins (bars indicated by vertical arrows) with homologues in
archaea, bacteria, fungi, invertebrates, vertebrates (excluding mammals) and mammals, versus 100 control sets of equal size containing randomly selected
human proteins. Notice that less human proteins appear to have homologues in vertebrates (not mammals) than in invertebrates, yet this effect is only due to
the fact that there are more sequences available from invertebrates (largely contributed by the two completed genomes of D.melanogaster and C.elegans).
Number of proteins with homologues (from a maximum of 1567) is shown on the x-axis and the frequency of the sets on the y-axis.

sequenced in other species. Alternatively, the analysis of
genes involved in disease could have been biased towards the
most well studied genes, which may correspond to the most
conserved ones. In order to remove these biases, we have
performed an analysis of protein phylogenetic extent and
conservation using data exclusively from complete genome
sequences (see Table 2, and figs 1 and 2 of Supplementary
Material). The results obtained using all available sequences
(including SP-TrEMBL and complete genomes) or just
sequences from complete genomes are very similar, indicating
that the above-mentioned biases are negligible.

We then tested if protein sequence length is another shared
property within disease genes, reasoning that the longer the
coding sequence is, the more likely it is that the gene will suffer
a disease-causing mutation. As predicted, we have found that
proteins involved in human diseases are longer than the rest of
the proteins encoded in the human genome. The average length
of disease proteins is 699 amino acids, while the average length
of the sequences in each randomly selected set ranges from
460 to 508 (Z-score = 19.8, P-value <1.-04, see Materials
and methods). Furthermore, a comparison of the length

distributions for the disease and all the human proteins shows
a clear trend for the disease proteins to be longer than the rest of
the proteins in the human genome (Fig. 3; Table 1). Paralogy is
another salient feature of genes that causes human disease. We
have found that genes with highly conserved paralogues are less
frequently involved in disease (Fig. 2; Table 1).

Taking into account that the above-mentioned features
follow different trends in the proteins known to be involved in
hereditary diseases compared with the rest of the human
proteins, we also have the opportunity to identify which other
proteins in the human genome follow this trend and thus are
more likely to be involved in disease. We have developed a
method based on a decision tree algorithm (17) that is able to
predict whether a gene is associated with hereditary disease
with 70% sensitivity and 67% precision (see Materials and
methods; Table 2). This model has been applied to all the
genes in the human genome and a probability score for
possible involvement in a hereditary disease has been
calculated for each gene. The probability score assignment
for the entire human genome can be accessed online (http://
maine.ebi.ac.uk:8000/services/dgp).
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Figure 2. Conservation and paralogy of disease proteins. Distribution of
conservation score of disease (solid line) and all human proteins (dotted
line) against their closest homologue in invertebrates, vertebrates (not mam-
mals) and mammals, and between paralogues. The conservation score gives
an estimation of the mutation rate that the protein has been subjected to dur-
ing evolution that is independent of the length of the protein: it is calculated
as the BLAST score of the closest homologue in one taxonomic group, or
the closest paralogue divided by the BLAST score of the protein against
itself, ranging from O to 1 (when the closest homologue is 100% identical).

DISCUSSION

The proteins involved in hereditary diseases follow a
specific property pattern. They tend to be long, conserved,
phylogenetically extended, and without close paralogues.
Conserved proteins correspond to segments of the genome
that have been exposed to strong evolutionary constraints and
have not had the opportunity to accumulate many variations.
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Figure 3. Protein length, calculated as number of amino acids, distribution
of disease proteins (black) and all human proteins (white).

These selective constraints can still be seen today in the sense
that some variations in those genes have severe phenotypic
consequences, thus bringing the patients in question to the
attention of clinicians. Conversely, other proteins, under less
selective pressure, have been able to vary among species, and
are able to tolerate variations without causing a major
phenotypic effect that would be classified as disease. On the
other hand, we have also observed that extremely conserved
proteins, with conservation scores of ~1 in vertebrates (not
mammals), >0.8 in invertebrates or >0.6 in plants, fungi or
protista, are less frequently found to be involved in disease
(Fig. 2). One likely explanation is that variations in this group
of extremely conserved genes are mostly lethal.

These results on the conservation of proteins coded for
genes that cause hereditary diseases are in agreement with the
idea that genes with strong fitness effects should evolve more
slowly than other genes (19,20). One analysis of the evolu-
tionary distances between S.cerevisiae and C.elegans proteins
indicates that the fitness effect of a protein influences its rate of
evolution (21). More recently, another report suggested that
essential genes are more evolutionarily conserved than
non-essential genes in bacteria (22). Here, we demonstrate
that genes with fitness effects in humans are also more
evolutionarily conserved than other genes.

Other reports on the analysis of disease-causing mutations
have shown that the most conserved residues of disease
proteins are frequently found to be mutated in patients with the
disease (23,24). Linked to our conclusions that disease
proteins are mostly conserved, it is possible to infer that the
mutations causing hereditary diseases in humans mostly occur
in conserved residues of conserved proteins. It would be
interesting to test this hypothesis in the future, provided that a
reliable method for the detection of conserved residues is
developed.

Genes with highly conserved paralogues are less likely to be
involved in disease. This can be explained by the fact that
conserved paralogues might be able to complement the
function of a mutated gene, while non-conserved paralogues
may have acquired a different function. Recently, it has been
shown that in S.cerevisiae, there is a strong anti-correlation
between the fitness effect of a deleted gene and the sequence
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Table 3. The top 20 predicted high-scoring genes not known to be involved in disease

Ensembl identifier Name Position P-value
ENSG00000182175 Repulsive guidance molecule A (RGMA) 15926 0.87
ENSG00000034827 Calcium channel alpha 1E subunit (CACNAIE) 1925 0.87
ENSG00000118432 Cannabinoid receptor 1 (brain) (CNR1) 6ql5 0.87
ENSG00000184349 Homologue to ephrin-A5 precusor (Dario rerio) 5q21 0.86
ENSG00000129348 tRNA guanine transglycosylase (TGT) 19p13 0.85
ENSG00000108309 RaP2 interacting protein 8 (RPIP8) 17q21 0.85
ENSG00000130702 Laminin alpha 5 (LAMAS) 20q13 0.85
ENSG00000159964 Selenoprotein SelM (SELM) 22ql2 0.84
ENSG00000111432 Frizzled homologue 10 (Drosophila) (FZD10) 12q24 0.84
ENSGO00000135862 Laminin gamma 1 (LAMCI) 1925 0.83
ENSG00000155886 Solute carrier family 24 member 2 (SLC24A2) 9p22 0.83
ENSG00000151498 Acyl-coenzyme A dehydrogenase 8 (ACADS) 11q25 0.83
ENSG00000082269 KIAA1411_protein (KIAA1411) 6q13 0.83
ENSG00000180914 Oxytocin receptor (OXTR) 2p25 0.83
ENSG00000168772 Dvl binding protein (IDAX) 4p24 0.83
ENSG00000133026 Myosin heavy chain, non-muscle type B (MYH10) 17p13 0.83
ENSG00000085741 Wingless type MMTV 11 (WNT11) 11ql3 0.83
ENSG00000110536 NADH-ubiquinone oxidoreductase (NDUFS3) 11pl1 0.83
ENSG00000162383 Excitatory amino acid transporter 5 (SLC1A7) 1p32 0.83
ENSG00000168610 Signal transducer and activator of transcription 3 (STAT3) 17q21 0.82

similarity of its closest paralogue (25), suggesting that genes
with highly similar paralogues are compensated for mutations
more often than genes with distant paralogues.

Using the specific property pattern followed by genes
involved in disease, we have developed a model to predict
which genes in the human genome are more likely to be
involved in disease. We have assigned a probability score of
being involved in disease to all genes in the human genome.
Two new disease genes have been described in the recent
literature: CXCR4 as the causative gene of WHIM syndrome
(26) and the GARS gene involved in Charcot-Marie-Tooth
disease type 2D and distal spinal muscular atrophy type V
(CMT2D/dSMA-V) (27). Both genes are predicted by our
method to probably to be involved in disease, with prob-
abilities of 0.688 and 0.695, respectively. Furthermore,
CMT2D/dSMA-V diseases were mapped in a region of
~980 kb (27), which contains 15 genes according to the
Ensembl database (11), and the gene with the highest
probability score in the region was the GARS gene. As a
further example, the 20 highest-scoring proteins in the human
genome not known to be involved in disease are shown in
Table 3: these include enzymes, DNA-binding proteins,
receptors, channels and proteins of unknown function.

Recently, three different computational methods for the
prediction of disease-related genes have been reported (28—
30). These methods score potential disease genes based on
functional similarities to known disease genes that cause
similar phenotypes, and/or use expression data that correlate
with the phenotype of the disease. The approach of our model
is entirely different to these other methods in that it is based on
readily computable sequence properties, having the advantage
of assigning a probability score of involvement in a disease for
all proteins in the human genome, even without having
information about their function or expression profiles.

This work provides further insights into the general nature
of human hereditary diseases and the genes that (when
mutated) cause them. We have shown that long genes that are
conserved, have a wide phylogenetic extent and do not have

highly similar paralogues are more likely to cause a disease
due to mutations in their protein sequence. Moreover, the
capability to assign probabilities to human genes with respect
to whether they are likely to be involved in diseases will be
highly useful in identifying new candidate genes. Researchers
working on one particular disease may want to consult the
probability scores of the proteins in the region linked to the
disease of interest as well as obtain additional information for
that gene, before starting any mutation analysis. The identi-
fication of genes with a high probability of causing hereditary
diseases should provide the basis for future associations of
these genes with the diseases in which they may be involved.

SUPPLEMENTARY MATERIAL
Supplementary Material are available at NAR Online.
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