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Abstract

Inflammation is a fundamental feature of several complex cardiometabolic diseases. Indeed, 

obesity, insulin resistance, metabolic dyslipidemia, and atherosclerosis are all closely linked 

inflammatory states. Increasing evidence suggests that the infectious, biome-related or 

endogenous activation of the innate immune system may contribute to the development of 

metabolic syndrome and cardiovascular disease. Here we describe the human experimental 

endotoxemia model for the specific study of innate immunity in understanding further the 

pathogenesis of cardiometabolic disease. In a controlled, experimental setting, administration of 

an intravenous bolus of purified Escherichia coli endotoxin activates innate immunity in healthy 

human volunteers. During endotoxemia, changes emerge in glucose metabolism, lipoprotein 

composition, and lipoprotein functions that closely resemble those observed chronically in 

inflammatory cardiovascular disease risk states. In this review we describe the transient systemic 

inflammation and specific metabolic consequences that develop during human endotoxemia. Such 

a model provides a controlled induction of systemic inflammation, eliminates confounding, 

undermines reverse causation, and possesses unique potential as a starting point for genomic 

screening and testing of novel therapeutics for treatment of the inflammatory underpinning of 

cardiometabolic disease.
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INTRODUCTION: INNATE IMMUNITY AND CARDIOMETABOLIC DISEASE

Innate immunity, an ancient form of host defense, is the body's rapid, first-line response to 

environmental threats such as microbial infection.1 In contrast to the adaptive immune 

system — which is present only in higher-order vertebrates, and mediated primarily by 

somatically-generated receptors — the innate immune system relies inherently on basic 

detection machineries coded for and conserved within the germ-lines of higher and lower 

organisms, from plants and fruits flies to mammals.2, 3 For the specificity of innate immune 

receptors to be conferred genetically, innate immune recognition must be built upon small 

families of membrane receptors that recognize highly conserved pattern structures present in 

large groups of microorganisms.2 Perhaps the most prominent and widely-studied subgroup 

of these pattern recognition receptors (PRRs) is the Toll-like receptor (TLR) family, whose 

ten members are manifested in humans as cell surface receptors in a series of trouble-

detecting sentinel cells.4 Individual Toll-like receptors are known to play important roles in 

the recognition of structures derived from pathogens such as fungi, protozoa, viruses, and 

bacteria. As such, the TLR family is now widely accepted as the major microbe sensing 

system in mammals.5, 6

A classic starting point for innate immunity is Toll-like receptor-4, which — through 

detection of bacterial lipopolysaccharide (LPS) — is crucial for the effective immune 

response to gram negative bacteria.7 The binding of LPS to TLR-4 leads to downstream 

activation of nuclear factor- κB (NF-κB), a nuclear transcription factor responsible for 

regulating gene products that initiate a generalized inflammatory response.8 Specifically, 

tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other pro-inflammatory 

mediators are all synthesized and released into the systemic circulation, where they trigger 

the activation of the complement system, the coagulation cascade, and the acute phase 

response. TNF-α and IL-1β also play key roles in facilitating leukocyte migration by 

increasing the expression of adhesion molecules on endothelial cells. Lastly, the presence of 

circulating inflammatory cytokines enhances tissue perfusion, vascular permeability, and 

cell migration throughout the body. Altogether, these systemic changes work together to 

allow for the timely and efficient eradication of the invading microorganism.9, 10

Inappropriate or sustained triggering of innate immunity and inflammatory signaling may, 

however, contribute to various medical conditions and diseases. Excessive activation of 

inflammatory cytokines leads to septic shock, a leading cause of death in patients with 

bacterial infections.11 Several studies indicate that more moderate TLR-4 activation is also 

linked to immunodeficiency, asthma, obesity, diabetes, and atherosclerosis,12–15 all of which 

are known to possess substantial inflammatory components. An inflammatory insulin 

resistance (IR) and metabolic dyslipidemia emerges clinically during acute sepsis16 and 

chronic infections,17 possibly via activation of TLR-4 signaling. Furthermore, experimental 

studies of TLR-4 deficiency in mouse models demonstrate a reduction in both diet induced 

obesity18 and atherosclerosis.19 Lastly, genetic manipulation and therapeutic targeting of 

TLR-420 and NF-κB21, 22 have provided proof of concept that modulation of innate immune 

signaling attenuates IR and type 2 diabetes (T2DM) in dietary and obesity models. Taken 

together, therefore, several lines of evidence suggest that chronic TLR-4 activation by 

exogenous and/or host-derived molecules may lead to a pro-inflammatory state of increased 
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cytokines, chemokines, and adhesion molecules, all of which can exacerbate the risk of 

cardiometabolic disease.23

HUMAN EXPERIMENTAL ENDOTOXEMIA: AN INTRODUCTION & HISTORY

Human experimental endotoxemia has emerged as a controlled model for the study of 

complex disease inflammatory responses and their modulation in vivo. Administration of an 

intravenous bolus of purified Escherichia coli endotoxin activates TLR-4 signaling and 

stimulates innate immunity in healthy human volunteers.24 Though administration of lower 

doses of E. coli LPS (0.2–2 ng/ kg body weight) is best acknowledged today as a transient 

model of moderate systemic inflammation, intravenous LPS for decades was used at higher 

doses (3–5 ng/kg body weight) to mimic the storm of inflammatory signaling seen in acute 

clinical inflammatory conditions such as bacteremia and sepsis.25–28 Indeed, sepsis-like 

changes in systemic hemodynamics, ventricular function, pulmonary gas exchange, and 

permeability have all been shown to emerge within hours of experimental administration of 

higher doses of LPS.29 These responses are driven by a sharp induction of pro-inflammatory 

cytokines (e.g. TNF-α, IL-1β, IL-6, IL-8), many of which circulate in the plasma at levels 

resembling those seen clinically in infection and early sepsis.29 Since the pathophysiological 

derangements observed in septic patients result from an acute, systemic inflammatory 

response to endotoxin derived from gram-negative bacteria, it was logical to first use 

experimental endotoxemia most directly, and proximally, as a controlled model for the study 

of sepsis.

As such a controlled, transient model of early sepsis, human experimental endotoxemia also 

offered a means to study multiple organ dysfunction in septic shock, a topic intrinsically 

difficult to investigate in critically-ill patients. Using thermodilution pulmonary-artery 

catheters and simultaneous radionuclide cineangiography, Suffredini et al. were able to 

monitor the initial cardiovascular effects of 4 ng/kg endotoxin in healthy volunteers.24 

Experimental endotoxemia resulted in a hyperdynamic cardiovascular state involving an 

early increase in cardiac index (CI) with a concurrent reduction in systemic vascular 

resistance (SVR). An elevated heart rate and reduced mean arterial pressure were also 

manifested, altogether suggesting that experimental endotoxemia qualitatively mimicked the 

hyperdynamic circulatory pattern observed in septic shock. During endotoxemia, left 

ventricular ejection fraction (EF) was significantly depressed, while end-diastolic and end-

systolic volume indexes both increased. Decreased myocardial contractility was further 

evidenced by a reduced ratio of peak systolic pressure to end-systolic volume index (SBP/

ESVI), an observation consistent with clinical studies of septic shock.30–33 Indeed, the 

presence of diminishing left ventricular function in manners analogous to clinical septic 

shock demonstrated that endotoxin, its detection machineries, and its signaling mechanisms 

also possessed biological relevance to sepsis-related cardiac dysfunction in humans.

HUMAN EXPERIMENTAL ENDOTOXEMIA AS A MODEL FOR 

CARDIOMETABOLIC DISEASE

As a growing collection of recent literature has investigated the intricacies of the 

endotoxemia model, it has become widely acknowledged that human experimental 
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endotoxemia may actually not be best-defined as a model of sepsis, but rather one of 

moderate systemic inflammation.9, 34, 35 Particularly, at lower doses of LPS, endotoxemia 

activates innate immunity at a level vastly more relevant to the low-grade, chronic 

inflammatory state observed in cardiometabolic disease.36, 37 In contrast to the near 

supraphysiologic hundred to thousand-fold increases in TNF-α following higher doses of 

LPS,38, 39 administration of lower doses leads to modest, several-fold increases in plasma-

levels of cytokines40, 41 which more closely reflects, albeit in an acute manner, the 

subclinical inflammation which characterizes the metabolic syndrome and chronic 

cardiovascular diseases.42–44 Moreover, as a model for the inflammatory contributions to 

cardiometabolic disease, experimental endotoxemia has strong biological plausibility 

because it activates pathways known to be perturbed in obesity, diabetes, and 

atherosclerosis.18–20 Indeed in settings of risk for cardiometabolic disease, TLR-4 is 

activated intermittently, both locally and systemically, by host-derived antigens that are 

generated and circulate at more modest concentrations and thereby establish a dynamic low-

grade inflammatory state even in sterile, non-infectious settings. Thus, at lower doses, E.coli 

endotoxemia is reasonably thought to have substantial relevance to diseases associated with 

subclinical activation of innate immunity.36, 45

A recent development that supports the legitimacy of the human endotoxemia model is an 

increasing awareness of the gut microbiome as a dynamic inflammatory and metabolic 

influence in human disease. In fact, systemic and recurrent episodes of low-grade 

inflammation may result from metabolic endotoxemia and metabolic bacteremia — two 

phenomena in which bacterial fragments or live bacteria cross the gut mucosal membrane 

and enter into the systemic circulation.46, 47 Mounting evidence suggests that high fat diets 

increase gut permeability, resulting in 2- to 3- fold post-prandial increases of bacterial LPS 

in the host circulation48–51 while also generating, via altered gut microbiome, systemically 

active metabolites that directly impact cardiometabolic diseases.52, 53 Though post-prandial 

circulating levels of LPS are notably 10–50 times lower than the levels observed in 

septicemia and infections,47 metabolic endotoxemia nonetheless activates TLR-4-dependent 

innate immunity and appears to serve as an important determinant in the pathogenesis of 

inflammatory induced obesity and type 2 diabetes.46 Distinct gut microbiota signatures 

(GMS) — likely conferred by long-term diet54 — have been linked with inflammatory, 

obese, and metabolic conditions,55–57 and modulation of gut microbiota signatures in animal 

models has proven to relieve metabolic dysfunction.58, 59 Additionally, atherosclerotic 

plaque contains microbes, likely oral and gut derived,60 while blood microbial load may be 

predictive of the development of diabetes.61 Our growing understanding that the immune 

response to bacteria is closely linked to cardiometabolic disease risk emphasizes further both 

the relevance and utility of human endotoxemia protocols.

EVOKED INFLAMMATION INDUCES CARDIOMETABOLIC DISTURBANCES 

IN HUMANS

Following the administration of LPS in humans, several changes emerge that closely 

resemble those chronically observed in cardiovascular disease risk states (Figure A). To 

begin, experimental endotoxemia leads to significant system-wide alterations in glucose 

Patel et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



homeostasis. Agwunobi et al. were the first to document impaired insulin sensitivity 

following endotoxin administration in humans.62 More recently, our group further 

demonstrated that endotoxemia leads to the loss of both hepatic and peripheral insulin 

sensitivity.63 In a much larger sample, we have confirmed endotoxemia-induced insulin 

resistance in both European and African ancestry populations, and have revealed an apparent 

compensatory increase in pancreatic β-cell insulin secretion and function.64 Furthermore, we 

have shown that endotoxemia induces substantial adipose tissue inflammation — 

characterized by upregulation of chemokines, T-cell markers, macrophage markers, and 

many other genes — in a manner that parallels the abnormalities observed in adipose tissue 

in obesity and obesity-related insulin resistance.37, 63, 65, 66 Importantly, during experimental 

human endotoxemia, this adipose tissue inflammation has been shown to precede systemic 

insulin resistance.63 Last, our group has also shown that a subclinical, low-dose (0.6 ng/kg) 

endotoxemia produces a more subtle adipose tissue inflammation and a more modest insulin 

resistance more consistent with the extent of abnormality observed in metabolic syndrome 

and diabetes.36

Inflammatory conditions are also characterized by widespread changes in plasma 

lipoproteins,67, 68 some of which may directly exacerbate the risk of cardiometabolic 

complications and atherosclerosis.69, 70 Hudgins et al. were the first to show that intravenous 

endotoxin in healthy human volunteers reproduces many of the lipid and lipoprotein changes 

observed in sepsis and atherogenic dyslipidemia — i.e., an increase in plasma triglycerides, 

an increase in small dense LDL particles, HDL remodeling, and a reduction in HDL particle 

size. Notably, these changes included a marked increase in HDL-serum amyloid-A (SAA) 

and a decline in HDL phospholipid, all while apolipoprotein A-I and HDL-C levels 

remained constant.71 More recently, our group examined the functional consequences of 

LPS-induced HDL remodeling and demonstrated that endotoxemia triggers HDL 

dysfunction — specifically by impairing HDL-macrophage cholesterol efflux function, the 

first step in reverse cholesterol transport (RCT)72 — independent of changes in plasma 

HDL-C and ApoA-I levels.73, 74 We observed that the activation of innate immunity 

modulates HDL composition in particular by inducing a substantial loss of HDL 

phospholipid and a specific decrease in small to medium sized HDL particles. Importantly, 

these changes followed a simultaneous induction of both HDL lipases and HDL enrichment 

with SAA,73–75 and coincided with an impaired capacity of the isolated HDL to efflux 

cholesterol from macrophages.73, 74 This loss of HDL RCT function is a pathologic 

hallmark of acute and chronic-recurrent clinical inflammatory syndromes that are associated 

with an increased risk of atherosclerosis and acute cardiovascular events. In fact, reduced 

HDL cholesterol-efflux function has been observed in insulin resistance,76 obesity,77 

psoriasis,78 systemic lupus erythematosis,79 acute infections,80 and surgery-induced 

systemic inflammation,80 and has been shown to be an independent risk factor for coronary 

artery disease independent of HDL-C levels.81 Together, these human data underscore the 

clinical relevance of experimental endotoxemia in the study of the atherogenic dyslipidemia 

found in inflammatory cardiometabolic diseases.
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ADVANTAGES OF THE MODEL

A distinct advantage of the experimental endotoxemia model is that it controls in a temporal 

manner the activation of innate immunity and its downstream responses in healthy human 

volunteers. As such, the model eliminates both confounding and reverse causation — 

features of observational studies in which inflammatory changes may result from other risk 

factors and the disease itself rather than being causal. Thus, the model provides a controlled 

framework for assessing the downstream impact of induced inflammation in vivo. Typically, 

endotoxemia studies are performed in healthy human volunteer samples. Though this 

certainly reduces direct translation to specific diseases, there are obvious advantages for 

experimental control of confounding parameters that may affect inflammatory outcomes. 

Individual studies may vary, but in general controllable parameters (often exclusions) 

include age range, obesity, pregnancy/lactating status, chronic or recurrent medical disorders 

including cardiovascular disease, diabetes mellitus, hypertension, malignancy, inflammatory 

and rheumatological disorders, HIV-1 infection, liver or kidney disease, tobacco use or use 

of any prescription medication or supplemental vitamins. Recent evidence suggests that race 

is a parameter which may affect response,64 while the influence of gender is still under 

debate.38, 82 Emerging data has demonstrated also that LPS responsiveness varies with 

circadian rhythm83 – consequently, most studies are performed at the same time of day, 

typically in the morning.

Further, when attempting to predict the biochemical and clinical consequences of activated 

innate immunity in disease, studying the evoked physiology may be of much greater value 

than measuring the resting levels of inflammatory markers, the strategy in epidemiological 

studies. Unlike more static blood risk factors (e.g., LDL-C), single time-point measurements 

of basal circulating levels of inflammatory markers (e.g., cytokines and acute phase 

proteins), that are putative biomarkers of cardiovascular disease,84, 85 may not necessarily 

reflect the physiology and pathophysiology of innate immune responses during dynamic 

disease processes in acute, sub-acute or even chronic disease. In fact, resting levels in non-

stressed settings may have limited relevance to how the host responds during acute or 

recurrent pathophysiological stresses, as has been demonstrated, particularly in response to 

nutritional challenges.86, 87 Thus the evoked response might be more clinically informative 

than basal levels. In this context, in our own work (the largest human endotoxemia protocol 

published to date, n = 294),64 we have observed that (a) the LPS-induced cytokine responses 

had greater correlations with each other and with the subsequent increases in acute-phase 

proteins than the correlations observed for the pre-LPS cytokines with baseline biomarkers 

or with LPS-induced responses, (b) opposite trends in basal vs. endotoxemia-responses 

across race, with lower peak levels, but higher basal levels of inflammatory biomarkers in 

African Americans compared to European Americans, and (c) a genome wide-significant 

locus for evoked fever has no association with basal temperature.88–91 Thus, basal levels 

may not capture the dynamic pathophysiology, may have limited utility as markers of innate 

immune processes, and may also be relatively poor predictors of the evoked response and 

innate immune activity during inflammatory stress and in disease.

Experimental endotoxemia also provides a precise model for the study of the temporal 

patterns of innate immune responses in humans, from the early activation of systemic 
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inflammation to the later resolution phase. This can offer a much more complete insight into 

the complex physiological, molecular, and genetic influences on the promotion and 

resolution of inflammation, insights that cannot be derived from single-time point estimates 

or repeated sampling of resting levels in traditional population studies and clinical trials. 

Furthermore, by making repeated measurements on the same individual over time, the 

model also can account for inter-individual variation. Coupled to the capacity to reveal 

biological differences in innate immune responses that are either enhanced by or only 

evident after the experimental perturbation, this allows more modest sample sizes than 

traditional static epidemiological designs.92–95

Though animal models of experimental endotoxemia have benefits over human models in 

terms of cost, feasibility and genetic manipulation, there are important differences between 

humans and model organisms that decrease the applicability of animal studies and highlight 

the advantages of the human experimental system. Many model organisms including mouse 

and zebrafish are LPS-tolerant relative to human,96, 97 and thus may not be ideal models of 

human disease. A noteworthy study directly compared gene expression changes in human 

severe blunt trauma, human burn injury, 2 ng/kg human endotoxemia, mouse trauma, mouse 

burn injury, and mouse endotoxemia at a mathematically scaled down dose.98 Although this 

study concluded that mice make poor models for inflammatory diseases, a subsequent 

publication using the same data came to a different conclusion.99 The results from these 

conflicting analyses revealed that though different etiologies of acute inflammatory stresses 

result in highly similar genomic responses in humans, the responses in corresponding mouse 

models may only partially overlap with the human conditions. While rodent models have 

specific utility, the ongoing controversy underscores the need for caution in extrapolating 

rodent models to study human inflammatory diseases, and emphasizes the value of human 

translational research models with direct relevance to human disease. Similarly, ex vivo 

endotoxemia models using human cells100, 101 allow for high-throughput profiling, however 

these models are not able to recapitulate the complexities of the multiple tissues and 

integration of cell-types involved in the whole-organism inflammatory response.102

Finally, controlled endotoxemia is a useful model for the evaluation of genetic influences on 

evoked clinical inflammatory phenotypes as well as the cytokine responses that drive 

clinical pathophysiologies. Genetic variation in TLR-4 is associated with differences in LPS 

responsiveness,103 while promoter polymorphisms in candidate genes such as TNF-α, 

IL-10, and IL-6 have all been studied with the intent of demonstrating the importance of 

specific genes and pathways on the induced inflammatory response.104, 105 Recent studies 

have probed the cell-specific transcriptomic106 underpinning of the evoked response to 

endotoxemia, with novel data revealing the potential role of tissue-specific inflammatory 

modulation of non-coding RNA in inflammatory cardiometabolic disease.107 As a controlled 

model of proven relevance to inflammatory diseases, metabolic syndrome and 

cardiovascular disease, human experimental endotoxemia provides a probe for the study of 

therapeutic influences on inflammatory atherogenic stress, with important clinical and 

translational implications, as discussed in the next section. Altogether, experimental 

endotoxemia provides a well-characterized, reproducible, and tractable model of 

inflammation in which novel therapies and genomic influences can be tested for their ability 
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to modulate evoked inflammation and its specific metabolic consequences. Overall, such 

natural genomic variations and experimental interventions offer a starting point and 

screening strategy for development of novel therapies for treatment of acute and chronic 

human inflammatory and cardiometabolic diseases.

EVIDENCE FOR TRANSLATION AND CLINICAL RELEVANCE

Although the model is unable to capture the chronicity of inflammation, findings from 

human endotoxemia have proven to be relevant to the clinical course of both acute 

inflammatory and chronic inflammatory disease states. TNFα blockers and IL-1 pathway 

antagonists that showed partial suppression of the inflammatory response in human 

endotoxemia models may have failed in trials of sepsis, but now are mainstays in the 

treatment of rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, and 

gout.108–111 Indeed, endotoxemia protocols have been used safely in humans for decades to 

test the efficacy of LPS antagonists,112, 113 IL-1 receptor antagonists,114, 115 IL-10 

infusions,116, 117 and TNFα blockers118, 119 in mitigating the system-wide dysfunction 

which results from excessive innate immune signaling. Evoked endotoxemia can be used to 

inform mechanism of action of therapeutics, potentially identifying novel applications, or 

contraindicating utility. Thalidomide was thought to offer therapeutic benefit through 

modulation of TNFα, however results in clinical trials on TNFα modulation were 

conflicting. In an evoked endotoxemia protocol, thalidomide was found to have no 

significant effect on the TNFα response to LPS, but significantly decreased the IL-6 

response, suggesting IL-6 rather than TNFα as a potential target.120 Similarly, evoked 

endotoxemia has been used to understand the specific in vivo effects of different doses of 

prednisolone, revealing target effects on fibrinolytic pathways and chemokine 

responses.121, 122 Dobutamine, a catecholamine used to treat septic myocardial dysfunction, 

has no effect on inflammatory responses to evoked endotoxemia in vivo, despite effects in 

vitro, highlighting the importance of the human model.123 In our own work, we found no 

effect of fenofibrate on response to evoked endotoxemia,124 contrasting with a modulating 

effect of high-dose n-3 PUFA supplementation in the same trial.125 In addition to modeling 

pharmacologic interventions, experimental endotoxemia has also been applied to study the 

capacity of nutrients to modify the systemic inflammatory response. Notably, the anti-

inflammatory properties of omega-3 polyunsaturated fatty acids have been assessed by 

administering fish oil either parenterally126 or through dietary supplementation125, 127 prior 

to the endotoxin challenge, while habitual dietary intake of soy-derived foods may also 

modify the response to endotoxemia.128

Differences in the evoked responses, and the genetic determinants of these differences, may 

indeed relate to the clinical course of future disease. For example, our group has shown 

recently that genetic variation associated with the evoked IL1RA response during 

experimental endotoxemia is also predictive of patient survival in septic shock.129 Further, 

as noted above, evoked endotoxemia revealed a novel genomic locus for the febrile response 

to LPS (but not resting body temperature) and this locus also associates with outcomes 

following severe trauma and sepsis.91 Other common genetic variants influencing both 

response to evoked endotoxemia and disease risk have been described. A SNP in MMP-8, 

previously shown to associate with mortality in pneumonia, was found to modulate the 
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inflammatory response to evoked endotoxemia.130 Similarly, genetic variation in fibrinogen 

and CRP relate to the endotoxemia response.131, 132 Finally, experimental endotoxemia 

revealed polymorphism-specific effects in TNF, with the Asp299Gly and Thr399Ile, but not 

the -308 G/A polymorphisms associating with inflammatory response,133, 134 while 

variation in IL-6 was not associated with alterations in the IL-6 response to endotoxemia.105 

These studies thus highlight common genetic underpinnings of evoked endotoxemia and 

inflammatory responses, which then direct functional studies and clinical translation.

LIMITATIONS AND CHALLENGES OF THE MODEL

The human experimental endotoxemia model generates a low-grade acute systemic 

inflammatory state and admittedly does not fully capture chronic subclinical inflammation 

as is present in cardiometabolic disease. Additionally, due to Food and Drug Administration 

restrictions on the use of experimental endotoxemia in humans, most protocols are now 

restricted to relatively young (< age 45), healthy, non-obese (BMI <30) non-smoking 

individuals. Because of the small number of subjects who have undergone endotoxemia 

studies and their relatively young age, it has not been possible in this field to date to perform 

cardiovascular disease outcome studies and evaluate the relationship between LPS 

phenotype and future cardiovascular events. Additionally, there is also no currently 

established association between the LPS response and established inflammatory biomarkers 

of CVD. However, as noted, relative to resting inflammatory biomarker levels (which in fact 

are very modest predictors of CVD), the evoked inflammatory biomarker response to 

endotoxemia may better reflect the pathophysiology, the genetic underpinnings and the 

therapeutic modulation of innate immunity during inflammatory stress. A pragmatic 

approach to overcome limitations on predictive capacity of the model is to use the 

endotoxemia model as a tool to focus on specific responses or characteristics of interest and 

then to assess the relation of those characteristics to incident clinical disease in independent 

epidemiological studies.129

Moreover, the single-exposure human endotoxemia model, as approved currently for use 

within the US by the FDA, is unable to capture sustained activation of innate immunity 

which may occur with chronic or repeated exposures to innate immune ligands (e.g. chronic 

infections, inflammatory bowel disease, or chronic obstructive pulmonary disease). 

However, repeated-exposure models have been applied by researchers in Europe, further 

illuminating the biology of chronic innate immune stimulation in clinical disease. Five 

consecutive days of 2 ng/kg endotoxin administration leads to endotoxin tolerance,135 with 

evidence of attenuated release of both pro-inflammatory and anti-inflammatory cytokines 

over time, leading to less leukocyte and endothelial activation, an effect which may last 

several weeks.102 In the same model, endothelial dysfunction gradually declines as 

endotoxin tolerance emerges,136 whereas LPS tolerance does not seem to protect against 

ischemia-reperfusion injury.137 The repeated-exposure model has also been used for the 

study of sepsis-induced immunoparalysis, where IFN-γ treatment has partially reversed 

immune suppression and furthered pharmacologic interest for immunostimulation in 

sepsis.138 Though these findings provide key initial insights into the elements of endotoxin 

tolerance, much research is still needed to elucidate the role of repeated LPS exposure on 

cardiometabolic physiology.
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Indeed, many compounds including cytokine pathway modulators, endotoxin antagonists, 

nutritional supplements, hormones, and novel therapeutics, among others, have all to 

varying degrees been shown to influence the systemic inflammatory response in human 

experimental endotoxemia.35 However, due to the complexity of the inflammatory response, 

no single intervention has been shown to blunt the entire inflammatory spectrum during 

endotoxemia. In fact, TNFα blockers118, 119 and IL-1 antagonists114, 139 only partially 

mitigated the systemic inflammatory response in human endotoxemia, and were brought to 

clinical trials of sepsis in part because of promising results indicating decreased mortality 

with such compounds in rodent models of endotoxemia. Recent data suggesting that rodent 

models of endotoxemia correlate poorly with human conditions may partly explain why 

these compounds failed in clinical trials of human sepsis.98 Our recent work, however, show 

that genetic variation associated with the evoked IL1RA response to experimental 

endotoxemia is predictive of patient survival in clinical cohorts with septic shock.129 These 

data have re-ignited a discussion on whether IL-1 pathway modulation might provide 

clinical benefit in sepsis if targeted to subsets of patients with specific genetic or biomarker 

features i.e., a “precision medicine” approach. As noted also, TNF pathway blockers and 

IL-1 antagonists ultimately succeeded in clinical translation and are now mainstays in the 

treatment of several rheumatological and inflammatory disorders.108–111

FUTURE AND CONCLUSION

Human experimental endotoxemia has established utility as a controlled model of systemic 

inflammation. Coupled to contemporary genomics, transcriptomics, and strategies for 

development of novel therapeutics, the model provides a unique platform for clinical, 

genetic, and pharmacological research applications in inflammatory and cardiometabolic 

diseases (Figure B). Controlled sampling within the structure of the experimental model 

permits cell- and tissue-specific interrogation of genomic, epigenetic, and transcriptomic 

responses to the activation of innate immunity, and may help identify unique molecules or 

pathways for future treatments that target cell-specific components of innate immunity. 

Admittedly, human experimental endotoxemia is just one of several complementary 

approaches which all possess the advantage of studying genomic and transcriptomic 

regulation in context.100, 101 In all human experimental models, increasing sophistication in 

multiple “omics” profiling and integrative genomics combined with the evoked phenotypic 

responses allows for enhanced discovery and profiling of novel pathways and therapeutics 

even with limited trial sample sizes.91, 92, 95, 129 Alongside discovery, the human 

endotoxemia model allows for the assessment of specific genetic, pharmacologic, and 

lifestyle exposures on cell and organ level responses, as well as the effect of these exposures 

on the dynamic integrated human host physiology. Lastly, in light of recent evidence 

demonstrating the challenges in extrapolating rodent endotoxemia models to human 

inflammatory disease,98 greater emphasis on human translational experimental models is 

warranted.

With the advent of whole exome and genome sequencing, we now have the unique 

opportunity with the human endotoxemia model to examine the impact of specific loss of 

function alleles in the human genome on innate immune physiologies as well as the cell-

specific mechanisms underlying the host response in these “knock-out” in vivo. Certainly, an 
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exciting future exists in the controlled, clinically-relevant, human endotoxemia model where 

precision and personalized initiatives may be discovered, evaluated, and expanded into 

diagnostic, prognostic, and therapeutic applications.
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SIGNIFICANCE

Inflammation is a key feature of several complex cardiometabolic diseases, and evidence 

suggests the activation of the innate immune system may be a contributing factor in the 

pathophysiology of obesity, insulin resistance, metabolic dyslipidemia, and 

atherosclerosis. Here we describe the human experimental endotoxemia model for the 

specific study of innate immunity in understanding further the pathogenesis of 

cardiometabolic diseases in humans. In a controlled, experimental setting, administration 

of an intravenous bolus of purified Escherichia coli endotoxin activates innate immunity 

in healthy human volunteers, and elicits specific metabolic consequences that closely 

resemble those observed chronically in inflammatory cardiovascular disease risk states. 

Such a model allows for the controlled study of innate immune influences on 

cardiometabolic physiology, but perhaps more importantly is uniquely positioned with 

contemporary technology as a starting point for genomic screening and testing of novel 

therapeutics for treatment of the inflammatory underpinning of cardiometabolic disease.
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Figure 1. 
Panel A provides examples of the dynamic cardiometabolic responses to low-grade human 

endotoxemia. Panel B describes model applications for discovery, genetic and therapeutic 

purposes.
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