Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 29;91(7):2738–2742. doi: 10.1073/pnas.91.7.2738

An evolutionarily conserved palindrome in the Drosophila Gld promoter directs tissue-specific expression.

P Gunaratne 1, J L Ross 1, Q Zhang 1, E L Organ 1, D R Cavener 1
PMCID: PMC43445  PMID: 8146184

Abstract

A conserved palindromic sequence (Gpal) in the promoter region of the Drosophila Gld directs expression of a heterologous reporter gene in transgenic flies to the anterior spiracular glands of third instar larvae and to the ejaculatory bulb of adult males. The Gld gene is normally expressed at high levels in the anterior spiracular glands but is not expressed in the ejaculatory bulb of Drosophila melanogaster. However, Gld promoters from other Drosophila species contain the Gpal element and express glucose dehydrogenase (GLD) in the adult male ejaculatory bulb. A gene fusion composed of the D. melanogaster Gld promoter and the lacZ gene is expressed in the anterior spiracular glands of transgenic larvae. Mutations of the Gpal sequence element in this gene fusion block expression of beta-galactosidase in the anterior spiracular gland. Together these experiments demonstrate that Gpal is necessary and sufficient for tissue-specific expression in the anterior spiracular glands. Based upon the tissue distribution and function of GLD, it is speculated that expression of GLD in the anterior spiracular glands represents the ancestral state and that GLD expression in other tissues arose as a fortuitous consequence of a shared combinatorial regulatory network.

Full text

PDF
2738

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackman R. K., Meselson M. Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J Mol Biol. 1986 Apr 20;188(4):499–515. doi: 10.1016/s0022-2836(86)80001-8. [DOI] [PubMed] [Google Scholar]
  2. Cavener D. R. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol. 1992 Feb 5;223(3):811–814. doi: 10.1016/0022-2836(92)90992-s. [DOI] [PubMed] [Google Scholar]
  3. Cavener D. R., MacIntyre R. J. Biphasic expression and function of glucose dehydrogenase in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6286–6288. doi: 10.1073/pnas.80.20.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavener D., Corbett G., Cox D., Whetten R. Isolation of the eclosion gene cluster and the developmental expression of the Gld gene in Drosophila melanogaster. EMBO J. 1986 Nov;5(11):2939–2948. doi: 10.1002/j.1460-2075.1986.tb04590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox-Foster D. L., Schonbaum C. P., Murtha M. T., Cavener D. R. Developmental expression of the glucose dehydrogenase gene in Drosophila melanogaster. Genetics. 1990 Apr;124(4):873–880. doi: 10.1093/genetics/124.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickinson W. J. On the architecture of regulatory systems: evolutionary insights and implications. Bioessays. 1988 Jun;8(6):204–208. doi: 10.1002/bies.950080608. [DOI] [PubMed] [Google Scholar]
  7. Efstratiadis A., Posakony J. W., Maniatis T., Lawn R. M., O'Connell C., Spritz R. A., DeRiel J. K., Forget B. G., Weissman S. M., Slightom J. L. The structure and evolution of the human beta-globin gene family. Cell. 1980 Oct;21(3):653–668. doi: 10.1016/0092-8674(80)90429-8. [DOI] [PubMed] [Google Scholar]
  8. Falb D., Maniatis T. A conserved regulatory unit implicated in tissue-specific gene expression in Drosophila and man. Genes Dev. 1992 Mar;6(3):454–465. doi: 10.1101/gad.6.3.454. [DOI] [PubMed] [Google Scholar]
  9. Feng Y., Schiff N. M., Cavener D. R. Organ-specific patterns of gene expression in the reproductive tract of Drosophila are regulated by the sex-determination genes. Dev Biol. 1991 Aug;146(2):451–460. doi: 10.1016/0012-1606(91)90246-y. [DOI] [PubMed] [Google Scholar]
  10. Glaser R. L., Wolfner M. F., Lis J. T. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. doi: 10.1002/j.1460-2075.1986.tb04277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson P. F., McKnight S. L. Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem. 1989;58:799–839. doi: 10.1146/annurev.bi.58.070189.004055. [DOI] [PubMed] [Google Scholar]
  12. Klemenz R., Weber U., Gehring W. J. The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 1987 May 26;15(10):3947–3959. doi: 10.1093/nar/15.10.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krasney P. A., Carr C., Cavener D. R. Evolution of the glucose dehydrogenase gene in Drosophila. Mol Biol Evol. 1990 Mar;7(2):155–177. doi: 10.1093/oxfordjournals.molbev.a040592. [DOI] [PubMed] [Google Scholar]
  14. Mitsialis S. A., Kafatos F. C. Regulatory elements controlling chorion gene expression are conserved between flies and moths. Nature. 1985 Oct 3;317(6036):453–456. doi: 10.1038/317453a0. [DOI] [PubMed] [Google Scholar]
  15. Mitsialis S. A., Spoerel N., Leviten M., Kafatos F. C. A short 5'-flanking DNA region is sufficient for developmentally correct expression of moth chorion genes in Drosophila. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7987–7991. doi: 10.1073/pnas.84.22.7987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murtha M. T., Cavener D. R. Ecdysteroid regulation of glucose dehydrogenase and alcohol dehydrogenase gene expression in Drosophila melanogaster. Dev Biol. 1989 Sep;135(1):66–73. doi: 10.1016/0012-1606(89)90158-9. [DOI] [PubMed] [Google Scholar]
  17. Quine J. A., Gunaratne P., Organ E. L., Cavener B. A., Cavener D. R. Tissue-specific regulatory elements of the Drosophila Gld gene. Mech Dev. 1993 Jul;42(1-2):3–13. doi: 10.1016/0925-4773(93)90094-e. [DOI] [PubMed] [Google Scholar]
  18. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  20. Schiff N. M., Feng Y., Quine J. A., Krasney P. A., Cavener D. R. Evolution of the expression of the Gld gene in the reproductive tract of Drosophila. Mol Biol Evol. 1992 Nov;9(6):1029–1049. doi: 10.1093/oxfordjournals.molbev.a040777. [DOI] [PubMed] [Google Scholar]
  21. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  22. Whetten R., Organ E., Krasney P., Cox-Foster D., Cavener D. Molecular structure and transformation of the glucose dehydrogenase gene in Drosophila melanogaster. Genetics. 1988 Oct;120(2):475–484. doi: 10.1093/genetics/120.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES