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ABSTRACT

A persistent design problem for ratiometric micro-
array studies is selecting the ‘denominator’ RNA
cohybridization standard. The ideal standard should
be readily available, inexpensive, invariant over time
and from laboratory to laboratory, and should repre-
sent all genes with a uniform signal. RNA references
(both commercial ‘universal’ and experiment-
specific types), fall short of these goals. We show
here that mouse genomic DNA is a reliable micro-
array cohybridization standard which can meet
these criteria. Genomic DNA was superior in
universality of coverage (>98% of genes from a
16000 feature mouse 70mer microarray) to the
Stratagene Universal Mouse Reference RNA stand-
ard. Ratios for genes in very low abundance in the
Stratagene standard were more unstable with the
Stratagene standard than with genomic DNA. Genes
with mid-range, and therefore presumably optimal
RNA denominator values, showed comparable
reproducibility with both standards. Inferred ratios
made between two different experimental RNAs
using a genomic DNA standard were found to cor-
relate well with companion, directly measured ratios
(Spearman correlation coefficient = 0.98). The
advantage in array feature coverage of genomic
DNA will likely increase as newer generation micro-
arrays include genes which are expressed exclu-
sively in minor tissue or developmental domains
that are not represented in mixed tissue RNA
standards.

INTRODUCTION

DNA microarrays have quickly become an indispensable tool
for transcriptome analysis (1). Mechanical spotting of DNA on
glass slides has emerged as a widely used microarray platform
because it affords flexibility of array design and relative
economy. However, this technology also has some significant
shortcomings. Because feature geometry and the amount of
DNA per feature vary within a gene chip, and also from one
chip to another, measurements must be made as internal
ratiometric comparisons of one RNA sample with a reference
(or ‘denominator’) RNA (2,3). This is done by simultaneous

hybridization of experimental and reference samples, where
each RNA population is transcribed into cDNA with a
different fluorophore (typically Cy3 for one and Cy5 for the
other). While this is very effective for direct comparisons of
just two RNA samples, the full power of large-scale expres-
sion analysis comes from comparisons of multiple (tens to
hundreds or even thousands) of different RNA samples. To do
this using spotted microarrays, the ratio observed for each
feature on the array is compared across all gene chips in a
study, each of which has used the same denominator RNA
sample (converted to labeled cDNA or cRNA).

Although this design has proved very successful, the
requirement for internal ratiometric measurement presents a
thorny set of problems that come from properties of the
reference hybridization standard. For example, instability and
error is expected for RNAs not represented in the reference or,
alternatively, for RNAs so prevalent in the reference that they
saturate their corresponding features (detectors). Moreover,
the reference RNA sample composition is not standard from
one study to another, usually having been selected based on
different criteria for each study. Once a standard is selected,
the vagaries of biology make it difficult to reproduce precisely
from one preparation to another. This means that global
comparisons between studies done in the same laboratory over
a long time or between different laboratories are comprom-
ised. These issues have so far been dealt with using strategies
that range from selecting a single tissue standard, such as
whole spleen RNA for a study of B cells done by the Alliance
for Cell Signaling (AFCS) (http://www.signaling-gateway.
org) to making a denominator mixture of RNAs by pooling
aliquots from each sample in a given study (4,5), to attempting
to make a ‘general mixture’ of RNA from diverse cell lines
(e.g. the Stratagene Universal Reference RNA standards)
(4,6).

Genomic DNA should, in principle, be a more general,
invariant and inexpensive solution (1,7). Major virtues of the
genome as a cohybridization ‘standard’ include complete
sequence representation, sequence stability over time and
from one preparation to another, uniform prevalence for most
genes and very low cost. These features mean that it is also
applicable to any array, independent of which subset of genes
is arrayed or which strand, in the case of oligonucleotides, is
represented.

It is also clear that genomic DNA presents problems and
challenges of its own. In the large vertebrate genomes that are
our principle interest, mRNA coding sequences are highly
diluted by non-coding DNA. This is expected to adversely
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affect absolute signal level, elevate noise, and perhaps
generate additional variability from the effects of interspersed
repeat sequences. However, recent successes with microarray-
based comparative genome hybridization (CGH), in which
two human genomic DNA samples are cohybridized to cDNA
microarrays (8) suggested that genomic DNA signals could be
made reliable enough to act as a universal denominator for
expression measurements. Recent reports of genomic DNA as
an expression array denominator on various kinds of arrays
have been mixed. In small bacterial genomes where most of
the complications listed above do not apply, it is very effective
(9). For much larger genomes including Arabidopsis and
human, the results have generally been less convincing, when
compared with RNA standards (see Discussion).

In this study we tested total sheared mouse genomic DNA
as a reference in the context of a complex 70mer oligonucle-
otide microarray (~16 000 features). Genomic DNA provided
superior array feature coverage compared with the Stratagene
Mouse Universal Reference RNA standard, and comparable
signal stability for all array features in multiple replicate
experiments. It has the specific salutary effect of adjusting and
stabilizing ratios for genes whose transcripts are present at
very low levels in the Stratagene Universal Reference RNA
standard used for comparison. As the sequence representation
of microarray gene sets becomes more comprehensive, the
genomic DNA standard has the potential to provide reliable
denominator signals for every sequence represented on an
array. Coverage by a mixed RNA reference standard is
necessarily limited to those genes expressed in its constituent
cell lines.

MATERIALS AND METHODS
Oligonucleotide arrays

70mer oligonucleotides representing 13 443 expressed sequen-
ces from the mouse genome (Operon Array Ready Oligo Set
version 1.0) were printed on SurModics 3-D Link glass slides
using a robotic printing apparatus assembled according to
instructions from the Pat Brown Laboratory website (http://
cmgm.stanford.edu/pbrown/mguide/index.html). The Operon
70mers were resuspended in SurModics print buffer at a
concentration of 20 pmol/ul. Samples of xenotypic DNA (408
features) and sequences informatically determined to be absent
from the mouse genome (320 features) served as negative
controls. An additional 1436 print buffer features served as
blanks for carryover control, and a select group of positive
control genes was included for quantitative comparisons and
statistical analysis, bringing the final array size to 16 192
features (herein referred to as the 16K array). A 32 pin print
head outfitted with MicroQuill 2000 print pins (Majer
Precision Engineering) was used to array the features in 32
sectors, each 23 X 22 features in dimension. Slides were
post-processed according to the manufacturer’s protocol.
Hybridizations were carried out in 5X SSC, 50% formamide
and 100 ng/ul yeast tRNA, at 46°C for 72 h. Coverslips were
removed in 4X SSC, 0.1% SDS; the slides were then washed
twice in 1 X SSC, 0.1% SDS at 67°C for 5 min, then in 0.2X
SSC at room temperature for 1 min, and again in 0.1 X SSC for
1 min at room temperature, before spin drying at 900 r.p.m. for
3 min in an IEC Centra GP8 centrifuge using a 216 rotor.
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Hybridized arrays were scanned on an Axon 4000 dual-
laser scanning instrument (Axon Instruments) with PMT
voltages matched at 600 V. The scanned images were
quantified using Axon’s GenePix 3.0 software, and imported
to Microsoft Excel for further filtering and analysis after
global scaling using the median of ratios values. Comparison
of the intensity distributions for all mouse targets and for the
collection of negative control features on the chip was
performed with an Excel macro. Threshold, percent coverage
and receiver operating characteristic (ROC) curve analyses
were also performed with Excel macros.

c¢DNA labeling

Total RNA was isolated from the C2C12 mouse skeletal
muscle cell line after 72 h in differentiation medium, using
RNeasy columns (Qiagen). Messenger RNA was then
extracted from total RNA using oligo dT-coated beads
(Oligotex, Qiagen). The same procedures were used to isolate
RNA from adult mouse liver. Messenger RNA samples were
primed with random hexamers, and then reverse transcribed
with SuperScript II (Invitrogen) in the presence of either CyS5
dUTP or Cy3 dUTP (Amersham), for 4 h. Stratagene
Universal Mouse Reference RNA samples were primed with
anchored oligo dT, and then reverse transcribed with
SuperScript II in the presence of Cy3 dUTP. Details of the
reverse transcription protocols are as described at http://
cmgm.stanford.edu/pbrown/protocols/4_human_RNA html/.

Genomic DNA shearing

Mus musculus genomic DNA was isolated from adult male
and female B6D2F1 mouse kidneys using the MasterPure
complete DNA purification technique (Epicentre). We process
8 or more 5 mg preps in a single session. After sequential
treatment with RiboShredder (Epicentre), RNAse I and
RNAse H, this preparation was sonicated for 45 s in a volume
of 233 ul in a 2 ml microcentrifuge tube at setting 18 on a
Microson XL 2007 sonicator. The microcentrifuge tube was
half submerged in a solution of —-20°C ethanol during
sonication. Sonicated DNA was then diluted with DNA
binding buffer (Zymo), and column purified according to the
manufacturer’s protocol (Zymo catalog no. D4005). UV
absorbance spectrophotometry was used to estimate the
yield of sheared DNA, and gel electrophoresis was performed
to verify that sonicated DNA averaged 2-3 kb. Sonicated
genomic DNA was frozen in 2 ug single-use aliquots.

Genomic DNA labeling

Two microgram aliquots of randomly sheared mouse genomic
DNA were labeled using Klenow fragment (BioPrime;
Invitrogen) in the presence of Cy3-labeled dCTP
(Amersham), in a 50 pl reaction volume (http://cmgm.
stanford.edu/pbrown/protocols/4_genomic.html). The reac-
tions were incubated for 2.5 h in a 37°C oven, respiked with
an additional 1 pl of Klenow fragment, and incubated again
for 2.5 h. Unlabeled nucleotides from Roche (catalog no.
1 277 049) were frozen in single use 10X aliquots and used at
a final reaction concentration of 200 uM. The proportion of
unlabeled dCTP to Cy3-labeled dCTP in the final reaction was
100:60 pM. The reaction was terminated with stop buffer
(0.5 M Na,EDTA, pH 8.0), and then cleaned up on QiaQuick
PCR purification columns using two wash steps (Qiagen). An
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aliquot representing 5% of the labeled product was reserved
for measuring label incorporation via fluorometry (BioRad).
The amount of labeled nucleotide incorporated was estimated
against a standard dilution curve made with unincorporated
Cy-labeled nucleotides. After incorporation was measured, the
fluorescent, double strand binding dye Pico Green (Molecular
Probes) was added to the sample, and the yield of synthesized
DNA estimated against a standard curve of lambda phage
DNA. This ‘serial’ method allowed us to measure genomic
DNA probe yield and incorporation using only 5% of our
reaction product, and eliminates spurious contributions
from the Pico Green excitation or emission spectra that
overlap with the Cy3 spectra. For each hybridization experi-
ment, three labeling reactions using 2 ug of mouse genomic
DNA as template were combined for hybridization to a
single array.

Arabidopsis thaliana genomic DNA preparation

Inflorescences, siliques and stem leaves were collected from
mature A.thaliana, frozen in liquid nitrogen and ground in a
mortar and pestle under liquid nitrogen. Genomic DNA was
isolated from the ground tissue using the GenElute Plant
Genomic DNA isolation kit (Sigma). After UV absorbance
spectrophotometry to estimate yield, the DNA was sonicated
as above and column cleaned prior to labeling as described
above. Genomic DNA hybridizations using Arabidopsis
genomic DNA were carried out using labeled probe from a
single reaction using 2 ug of genomic DNA as template.

Data processing and analysis

Before using the genomic DNA based ratio measurements to
calculate relative expression ratios, the median of pixel-by-
pixel ratios (10) for any given feature is first scaled, using the
global scaling algorithm provided with the GenePix software.
Briefly, this algorithm assumes that the overall expected mean
of expression ratios is equal to 1 for all features on the
corresponding array with ratios between 10 and 0.1. The
global scaling factor of (1/observed mean) is then applied to
the observed median of ratios value from each feature on the
corresponding array. After scaling, the inferred ratio of
relative gene expression for any given feature on the array
(C2C12 cDNA over adult liver cDNA) is calculated as:

scaled median of ratios [C2C12 (Cy5) / genomic DNA (Cy3)]
scaled median of ratios [adult liver (Cy5) / genomic DNA (Cy3)]

Ratiometric data sets were inspected for normality using an
implementation of the Kolmogornov—Smirnoff normality test
available in Minitab statistical software (Minitab). Pearson
correlation coefficients between replicate data sets were
computed with the implementation available in Excel
(Microsoft). When raw data sets or log-transformed data sets
deviate significantly from normality, the Pearson correlation is
less appropriate, since it assumes normality in the distri-
butions. The Spearman correlation coefficients are more
appropriate in these cases, and were computed with the
implementation available in the Excel plug-in package,
Analyse-It (Analyse-It, Leeds, UK).
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RESULTS

Genomic DNA hybridization signals on 70mer
microarrays

Because the vast majority of protein coding sequences are
present once in the mouse genome, it is expected that all
microarray features representing mouse mRNAs will react
with labeled genomic DNA at similar signal levels. However,
mammalian genomes are large and only ~1% is mRNA coding
sequence (36 433 genes over 3.1 X 10° bp, average ORF
~1000 bp) (http://iubio.bio.indiana.edu:8089/). This means
that with current technology, genomic DNA is expected to
give relatively low absolute hybridization signals, and the vast
amount of non-coding sequence is an obvious candidate
source of noise. We therefore evaluated signal and back-
ground noise distributions for genomic DNA hybridization
under our conditions. The microarray used in these studies
includes a majority of verified mouse genes represented as
‘long oligos’ (70mers), and includes for comparison a smaller
set of typical 0.5-2.5 kb cDNAs as PCR products. Among
widely used ratiometric arrays, we expect long oligonucle-
otides to be the most rigorous test case for genomic DNA
reactivity, since longer probe sequences (i.e. cDNA, fosmids,
BACs) generally give higher absolute signals than shorter
ones (8). However, it is worth noting that this is not likely to be
a simple linear relationship with probe length due to other
factors such as probe accessibility, molar density and
sequence length of labeled DNA, among others.

Figure 1A shows signal intensity distributions from an
experiment in which labeled genomic DNA (Cy3) was
cohybridized to an array with labeled cDNA from the
C2C12 mouse skeletal muscle cell line after 72 h of
differentiation (Cy5). The distribution of mouse genomic
DNA hybridization for 13 915 mouse features (black trace) is
compared with a set of 315 70mer negative control sequences
(gray trace). The negative control group is comprised of 15
different sequences, each replicated 21 times. These control
70mers were selected because they are absent from the mouse
genome and they have melting temperatures similar to gene
oligos (http://oligos.qiagen.com/arrays/oligosets_mouse.php).
Separation of negative control signals from putative positive
signals was evaluated in two ways, both of which lead to the
general conclusion that signals from genomic DNA are
significantly above background for >98% of features on the
array. First, if the distribution of negative control spots is
modeled as a Gaussian distribution, the median signal is 3, and
two standard deviations above this control median is 20. In
contrast the median signal for positive mouse probes on the
array is 239 in the experiment shown, and overlap with the
negative control distribution is negligible (1.9% of mouse
genomic values were below 20). These results were robust
over five replicate determinations with the average negative
control median 3.3 * 0.4 and the average genomic DNA
median 217 = 41. The fraction of mouse genes falling within
the negative control distribution at 2 SD was, on average,
1.8 = 0.6%. We observed that the genomic DNA signal
distribution was not strictly Gaussian, nor is it expected to be,
so we also applied a ROC analysis to quantify separation of
the two distributions (11). An average ROC value of 0.99 over
the five replicates is very close to 1.0, which defines two
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Figure 1. Mouse genomic DNA signal intensities compared to negative
control signal intensities. (A) The distribution of Cy3 signal intensities for
13 915 putative mouse gene features (black trace), and the distribution of
Cy3 intensities for 315 negative control features on the same array (gray
trace). Bin widths are adjusted to accommodate the full range of signal
intensities on a single plot. Values from —20 to 1000 have a bin width of 5,
and values from 1000 to 70 000 have a bin width of 5000. The background-
subtracted median positive mouse feature intensity is 239 units (black
arrow). Median intensity for the negative control features is 3 units (gray
arrow). The inset to (A) shows a ROC curve for the two distributions.
Plotted on the vertical axis is the fraction of positive mouse probes at or
below a given level of Cy3 intensity; on the horizontal axis is the corres-
ponding fraction of negative control features at or below that same level of
Cy3 intensity. The area under the curve indicates separation of the two dis-
tributions, with a score of 1.0 indicating perfect separation of the distribu-
tions (i.e. no overlap). (B) Complex labeled genomic DNA specificity:
Reactivity of labeled plant genomic DNA (gray trace) on the mouse 16K
array. The mouse genomic DNA distribution from (A) (black trace) is
superimposed for comparison. The horizontal axis is arranged with different
bin widths in order to accommodate the full range of signal intensities.
Background-subtracted levels from —20 to 300 have a bin width of 2; values
from 300 to 1000 have a bin width of 10; and values from 1000 to 70 000
have a bin width of 5000. Median Arabidopsis genomic DNA signal is 6
(gray arrow), and the median mouse genomic DNA signal is 239 (black
arrow).

entirely non-overlapping distributions (Fig. 1A, inset shows a
typical ROC curve).

The sequence complexity of the negative control oligo
group of Figure 1A is relatively low (15 different 70mers)
compared with the full array of mouse gene sequences
(~13000), and may therefore fail to detect problematic
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background signals that are peculiar to some (unknown)
subset of mouse oligo array features. To address this, we tested
the reactivity of labeled genomic DNA from the plant
A.thaliana with the entire mouse array. The Arabidopsis
genome is complex, with ~27 000 genes, and since plant and
animal genomes have diverged greatly, the distribution of
plant signals on the mouse microarray should be a good
measure of background from a high complexity DNA source.
Figure 1B shows that Arabidopsis genomic DNA reactivity is
also very well separated from the distribution of mouse
genomic DNA with medians of 6 for Arabidopsis versus 239
for mouse. To validate its use as a negative control, an aliquot
of the same labeled Arabidopsis genomic DNA was
hybridized with an Arabidopsis cDNA microarray under the
same conditions, and it gave strong positive signals (data not
shown). Moreover, several features on our mouse array
correspond to the Arabidopsis gene apetela2, and they reacted
with a median value of 363 with the labeled plant DNA. The
ROC score for plant versus mouse DNA on mouse features
was 0.98. We conclude that mouse genomic DNA reacts in a
sequence-specific manner with 70mer microarrays and that the
signals are sufficiently well separated from background to
permit the use of genomic DNA as a ratiometric standard.

Array coverage

We compared genomic DNA reactivity over the entire array
with the Stratagene Mouse Universal RNA standard reactivi-
ties to evaluate overall signal distribution and coverage.
C2C12 cell line cDNA (Cy5) was co-hybridized with either
Cy3-labeled mouse genomic DNA or Cy3-labeled cDNA
produced from the Stratagene Mouse Universal RNA mixture.
In contrast to the relatively narrow distribution of hybridiz-
ation signals for DNA, a mixed collection of natural RNA
populations is expected to deliver a very broad distribution,
reflecting the entire span of prevalence values, from no
detectable signal for genes that are not expressed, through
intermediate values (2-3 orders of magnitude), to the most
prevalent RNAs which can saturate the scanner. Figure 2A
shows an example of the Stratagene Universal Mouse
Reference distribution (gray trace) compared to the genomic
DNA distribution (black trace). As expected, the Stratagene
distribution has much larger numbers of genes at both
extremes, and a relatively uniform distribution through middle
values. In Figure 2B, feature intensities for the entire array are
compared for five Stratagene replicates and five genomic
DNA replicates. The reproducibly flatter profile of genomic
DNA percentile rank plots shows that the vast majority of
array features are hybridized within a narrow band of
intensities, in contrast to the substantially more variable
profile for the mixed RNA standard. This fits the simplest
expectation for genomic DNA in which most template
sequences are represented at equimolar concentrations. In
Figure 2C, the five replicates are evaluated for the fraction of
gene features that react above a given background threshold.
Although the RNA sources in the Stratagene standard were
selected by the manufacturer to explicitly maximize feature
coverage, genomic DNA clearly provides more comprehen-
sive coverage of the array features at all threshold values.
Furthermore, feature coverage between repeated experiments
was more consistent for genomic DNA than for the Stratagene
standard.
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Comparison of variation in ratiometric measurements

To compare the reproducibility and stability of measurements
using the two different kinds of standards, we made a set of
five replicate measurements each for RNA and for genomic
DNA standards, all cohybridized with the same ‘numerator’
RNA across the full 16K array. We first analyzed the data
using correlation statistics over the entire array. The distribu-
tion of ratio values from these experiments roughly resembles
a log-normal distribution (12). When transformed by taking
the base 2 log, the distribution of ratiometric values appears
more normal, but still deviates significantly from normality
using the Kolmogorov—Smirnoff test. Under these conditions,
the more appropriate metric for correlation between replicate
distributions is the Spearman correlation coefficient (13).
Averaging over all pair-wise comparisons, the Stratagene
RNA experiments gave a mean Spearman correlation coeffi-
cient (ry) of 0.94, with a coefficient of variation of 1.04%. In
contrast, all pair-wise comparisons of the genomic DNA
experiments gave a mean Spearman correlation coefficient of
re = 0.99, with a CV of 0.43%. We conclude that inter-
experiment ratiometric measurements are more precise when
using the genomic DNA standard.

In use, the most critical subset of array data are those genes
expressed significantly in at least one sample (numerator)
RNA. We therefore focused on all genes with background-
subtracted signal values uniformly >250 in the test numerator
sample over all five Stratagene replicates (6324/13915 or
45% of the array features) (Fig. 3). The mean ratio, standard
deviation and coefficient of variation [CV (%)] were calcu-
lated for the Stratagene RNA ratios, and for the corresponding
set of genomic DNA ratios. The distribution of CVs for all
6324 features approximated log-normal. The base 2 log
transformations are shown in Figure 3A and B. A two-tailed
t-test, assuming unequal variances, indicates a significant
difference between these two distributions. The mean value
for the log, CV (%) using the Stratagene cohybridization
standard is slightly less than that using the genomic DNA
method (3.5 for Stratagene versus 3.8 for genomic DNA,
corresponding to CVs of 12 vs 14%), indicating that genomic

Figure 2. Comparison of genomic DNA cohybridization standard (black
trace) with the Stratagene Mouse Universal Reference RNA standard (gray
trace). (A) Intensity distributions from two separate hybridization
experiments are compared. The background-subtracted denominator values
are plotted on the horizontal axis, which is arranged with varying bin widths
to accommodate the full intensity range. Values between —20 and 1000
have a bin width of 5, and values from 1000 to 70 000 have a bin width of
5000. (B) Comparison of percentile rank plots of Cy3 intensities for five
replicate experiments in which genomic DNA (black traces) or Stratagene
mixed cDNAs (gray traces) were co-hybridized with Cy5-labeled C2C12
cDNA to the mouse 16K chip. Logjo of the background subtracted
intensity values (y-axis) were sorted, and assigned a percentile rank (x-axis).
(C) Comparison of array feature coverage for RNA and genomic DNA
cohybridization standards. The mean percent mouse feature coverage as a
function of increasing threshold value is shown for five replicate
experiments. Background thresholds are defined as the median fluorescence
intensity for the group of negative control features, plus a multiple of the
standard deviation value for the negative controls group (i.e. median
negative controls + 1 SD, etc.). The feature coverage percentage is defined
as the number of features exceeding a given background threshold value
divided by the total number of mouse features on the array, multiplied by
100. Mean and standard deviation for the replicate groups at each threshold
are plotted.

Nucleic Acids Research, 2004, Vol. 32, No. 10 e81

DNA does not introduce a gross variation in the measurement
of a ratio at any given feature. However, the smaller spread in
the distribution of log, CV (%) when the genomic DNA
method is used (17% for genomic DNA versus 23% for
Stratagene), may indicate that inter-experiment variation over
the entire array is reduced when genomic DNA is used as the
standard.

When comparing gene expression levels between two RNA
samples, genes that are highly expressed in one sample and not
expressed in the other are usually among the most interesting.
However, this group is also at greatest risk of delivering highly
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Figure 3. Comparison of variation in ratiometric measurements using two
different cohybridization standards. Replicate sets of five hybridization
experiments were performed, each using mRNA from differentiated C2C12
skeletal muscle cells as the Cy5 numerator signal cohybridized against a
denominator standard of either Cy3-labeled ¢cDNA produced from the
Stratagene mixed RNAs standard, or Cy3-labeled mouse genomic DNA.
C2C12 samples were reverse transcribed separately, then pooled and split
equally to minimize variation among the numerator samples applied to the
arrays. (A) Plot of the distribution of variation for features with numerator
values =250 on five separate experiments in which C2C12 72 h ¢cDNA
(Cy5) was cohybridized against the Stratagene mixed cDNA standard.
Mean, standard deviation and CV (%) were computed for the five measure-
ments for each feature on the array. CV (%) values were then log, trans-
formed and plotted as a histogram. Overall mean and CV (%) for the log,
CV (%) values are indicated. (B) The distribution of variation in ratios for
arrays hybridized with a mouse genomic DNA standard. The same list of
features analyzed in (A) was extracted, processed, and plotted for the DNA
denominator in (B).

variable and/or erroneous ratios when using RNA denomin-
ators with incomplete array feature coverage. Genes with only
background level expression in the denominator standard
often generate artificially high relative expression ratios and
tend to be more unstable in repeat experiments than those with
higher denominator values (see below). This, in turn, has
important implications for data quality filtering schemes. For
example, setting a reproducibility threshold for each feature
could eliminate biologically important differentials, along
with truly misleading noise. Denominator signal intensities
using the genomic DNA cohybridization standard are, on
average, very much lower than the average Stratagene signal
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Figure 4. Comparison of mean and variation for a subset of features with
very low Stratagene reference values. (A) Shown here are 60 genes with
Stratagene denominators <4 SDs above the median negative control value.
Mean and standard deviation for the low denominator Stratagene group
(open bars) and the corresponding genomic DNA measurements (black
bars) are plotted as corresponding pairs. (B) Coefficients of variation for the
paired measurements plotted in (A). CV (%) is calculated as (mean/SD) *
100.

intensity, yet they are much higher than the values for several
thousand genes missing from the ‘Universal’ RNA mix. To
investigate the effects of extremely low denominator values on
ratiometric stability, Stratagene ratio measurements from a
single chip were re-filtered to collect values with low
denominator measurements (<4 SD above the median value
for negative control probes) and ratio values >5. In Figure 4A,
the ratio values for measurements over five genomic DNA
replicates are consistently and appreciably reduced relative to
the corresponding values taken over the Stratagene standard.
Figure 4B compares coefficients of variation in mean ratio
values, and clearly shows that for 44 of the 60 genes shown
(73%), the effect of the increased denominator from genomic
DNA was to reduce variation in the ratiometric measurement.

The mean and median signals for the Stratagene RNA
reference are significantly higher than for genomic DNA.
Following the expectation that larger absolute signals are
generally more reproducible than low ones, a simple predic-
tion is that genes displaying a denominator signal within an
‘optimal’ signal range for mixed RNA will have more robust
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Figure 5. Signal variation comparisons for features with optimal RNA
denominator signals. (A) Cy5-labeled C2C12 cDNA was hybridized against
Cy3-labeled Stratagene mixed cDNAs in five replicate experiments.
Features with denominator signals >200 and <10 000 in all five Stratagene
replicates were extracted [n = 6190/13 916 features (44%)]. Log, CV (%)
for all 6190 features are plotted in the histogram. (B) The list of features
analyzed in (A) was used to extract corresponding values from five replicate
experiments in which Cy5-labeled C2C12 cDNA was cohybridized against
Cy3-labeled genomic DNA. Log, CV (%) for all 6190 features are plotted.

and reproducible ratios than corresponding ones derived by
using the genomic DNA reference. Thus, a Stratagene ‘sweet
spot’ gene set, whose background-subtracted RNA denomin-
ator values in all five replicates were >200 and <10 000 (to
avoid instability from non-linearity and saturation at very high
values) were evaluated for stability. Log, CV (%) values for
6190 features (44% of the entire array) are shown for the RNA
standard (Fig. 5A) and the genomic DNA standard (Fig. 5B).
Surprisingly, mean coefficient of variation values for the
Stratagene and genomic DNA standards were essentially the
same in this ‘RNA sweet spot’ set as for the entire array (mean
= 3.5 for Stratagene versus 3.8 for genomic DNA). Even in this
selected gene group, there is a wider spread in CV (%) values
when the Stratagene Universal Mouse RNA standard is used,
compared to the genomic DNA standard (22% for Stratagene
versus 18% for genomic DNA). We conclude that, contrary to
the naive expectation, the higher and presumably more ideal
universal RNA denominator signals that define this large gene
group do not deliver ratios that are considerably more stable or
reproducible than those obtained from genomic DNA.
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Use of a common hybridization denominator to infer
expression ratios across arrays

In microarray studies that survey more than two RNA sources,
the relationship of any RNA in the experiment with any other
(or all other) RNAs is inferred arithmetically through the
common denominator. Reproducibility of a direct comparison
of muscle and liver RNAs (Fig. 6A) was compared with
corresponding indirect determinations, one of which used
genomic DNA as the common denominator (Fig. 6B) and the
other the Stratagene mixed cDNAs standard (Fig. 6C). To
minimize the effects of variation in the numerator signal, the
six C2C12 reverse transcription reactions were pooled and
split evenly after labeling. Then, only features with numerator
values >250 on all six C2C12 muscle cell arrays were included
in this analysis (5157 features or 37% of total array features),
although the conclusions are the same qualitatively if all data
are used. As expected, in two independent replicates, the direct
determinations (muscle over liver) were highly reproducible
(rs=0.99). Indirect ratio determinations were found to be only
slightly less reproducible than direct ones, with Spearman
correlation coefficients of r; = 0.97 for the genomic DNA
cohybridization standard, and r, = 0.98 for the Stratagene
standard. Given a correlation of 0.99 between two direct
ratiometric measurements, 0.98-0.97 values for duplicate
inferred ratios are near the theoretical maximum values.

Agreement between inferred ratios methods and directly
measured ratios

We next asked how similar are arithmetically inferred ratios
made using either RNA or genomic DNA standards relative to
the corresponding direct cohybridization ratios. We used the
Spearman correlation metric, since the distribution of log,
ratio values differed significantly from normality. Experi-
ments were performed in duplicate, and ratio measurements
were averaged prior to correlation comparisons. Spearman
correlation values were r, = 0.99 for direct ratios against
Stratagene ratios (Fig. 7A), or r¢ = 0.98 for direct ratios against
genomic DNA and for Stratagene against genomic DNA
(Fig. 7B and C). We conclude that the inferred ratios from
both standards are globally very similar to each other and are
also remarkably similar to the directly hybridized C2C12/liver
determinations.

DISCUSSION

This work was motivated by recurring design difficulties
surrounding selection and use of the ‘most appropriate’ RNA
cohybridization standard in gene expression microarray
studies. The practical appeal of a genomic DNA cohybridiz-
ation standard is considerable because of its universal
availability and stability of sequence composition. Our central
conclusion is that genomic DNA is a highly viable, and
arguably superior, choice as a universal cohybridization
standard for mouse gene expression experiments in the
context of 70mer gene chips. In principle this should extend
readily to microarrays with longer probe features, such as
cDNA arrays, and to other genomes of similar or lesser size
and sequence complexity (see below). Statistical analysis of
replicate arrays confirmed the simple expectation that ratio
values for features sequences absent from a reference RNA
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Figure 6. Correlation plots for replicate experiments of directly measured
ratios, and replicate measurements of ratios inferred against either the geno-
mic DNA denominator or the Stratagene mixed cDNAs denominator.
(A) Correlation between duplicate arrays for directly measured ratios
obtained after C2C12-labeled cDNA (Cy5) was directly cohybridized with
adult mouse liver cDNA (Cy3). Only array features with C2C12 Cy5
numerator measurements >250 on all six arrays represented in this figure
were included (n = 5157 features). Evaluation of the interslide precision of
measurement is given by the Spearman correlation coefficient of r, = 0.99.
(B) Correlation between duplicate measurements in which C2C12 over liver
ratios were computed using a genomic DNA cohybridization standard.
Inter-experiment precision is evaluated by the Spearman correlation coeffi-
cient ry¢ = 0.97. (C) Correlation between duplicate C2C12 over liver ratios
computed using the Stratagene mixed cDNAs cohybridization standard.
Inter-experiment precision is evaluated by the Spearman correlation
coefficient ry = 0.98.
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standard are unstable. In contrast, the presence of those same
feature sequences in genomic DNA standards successfully
stabilized their ratio values. Moreover, for the especially
pertinent set of genes that are expressed above background
levels in a typical ‘numerator’ or experimental RNA sample,
there was negligible increase in ratio error associated with
genomic DNA versus the current Stratagene mixed RNA
standard. The error observed with the genomic DNA standard
was also more narrowly distributed, which will be helpful for
building useful error models. In a practical test of inferred
ratios quality for muscle versus liver RNA using the genomic
DNA standard, the Spearman correlation value was 0.98 to the
directly measured muscle versus liver ratios.

The genomic DNA standard substantially reduced ratio
instability for the subset of genes that have extremely low
denominator values with the mixed RNA standard. These
genes comprise a relatively small proportion of the total array,
and therefore have only modest impact on overall statistics,
yet they represent an especially important subset of the data
that is of high biological interest. Moreover, genes with
profiles of this type are likely to constitute a larger fraction of
data from fully comprehensive arrays that are now coming
into wide use. The oligonucleotide collection used here was an
early version that over-represents well known genes, many of
which had been found and characterized by classical methods
that depended on expression in major adult tissues or cell
lines. As a result, these genes should also be well represented
in the current mixed RNA standard. In contrast, newer
generation arrays that contain essentially all candidate mouse
genes, based on the whole genome sequence, have an
additional 10 000-15 000 genes that will presumably be
biased in favor of RNAs expressed only during development,
in specialized adult cell populations or at very low overall
levels. We expect that genomic DNA will not have a bias
against any of these added genes or against non-coding RNAs.
In contrast, a mixed-source RNA standard will increasingly
fall short of comprehensive coverage because it will be
progressively more difficult to include more and more minor
site RNA sources.

Protocol simplicity was emphasized to retain universality
and increase robustness. We therefore elected not to
fractionate single copy sequences using Cyt based techniques,
as this could only modestly increase signal, while introducing
variability from one DNA preparation to another. Similarly,
repeat suppression, before or during the array hybridization,
did not significantly improve performance and so was not
used.

Our conclusions regarding the efficacy of genomic DNA
cohybridization standards are more optimistic than those from
Weil et al. (7). In their study, human genomic DNA feature
coverage was statistically equivalent (~80% of spots above
threshold) to a mixture of RNA derived from 10 human cell
lines. They concluded that market preference would therefore
be the driving force for selection of a mixed cell line RNA
standard when available. More in-depth comparisons to
pinpoint the most meaningful differences between these two
studies is difficult because they include many technical
differences in labeling and hybridization protocols, micro-
array types, genomes (mouse versus human), as well as
differences in data processing and analysis.
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Extension to other genomes

The central problem in developing mammalian genomic DNA
normalization was the modest absolute hybridization signal
achievable for typical single copy genes. This comes from
large genome size and low mRNA sequence density, coupled
with the technical limits of the current labeling protocol. A
straightforward implication is that—without major technical
changes or improvements—genomic DNA normalization for
arrays of smaller, more gene dense genomes such as
Caenorhabditis elegans, Drosophila melanogaster and
Saccharomyces cerevisiae should be even better and more
robust. Preliminary work with Arabidopsis, which is ~20-fold
greater in gene density, suggests this is the case (B.A.Williams
and B.J.Wold, unpublished results). We observed a difference
between mouse and Arabidopsis median probe signal that is
close to the ratio predicted by relative genome sizes, and
overall uniform feature coverage on Arabidopsis microarrays
is consistent with this. However, predicting that genomic
DNA normalization will work as well—or better—in
Arabidopsis as in mouse should be tempered by a recent
study of Arabidopsis genomic DNA normalization by
Quackenbush and colleagues (14). In their hands, genomic
DNA generally compared unfavorably with RNA. A clearer
endorsement is in the literature for small microbial genomes,
for which genomic DNA can easily be the most desirable
cohybridization standard, as shown for Mycobacterium tuber-
culosis on cDNA arrays (9), and for Shewanella oneidensis in
the 70mer format (B.A.Williams and T.K.Teal, unpublished
results).

Extension to other microarray formats

We expect that our conclusions will extend from the 70mer
oligonucleotide format to arrays of PCR products, although we
have not yet tested this on a large scale. Eight different full-
length cDNAs were represented in quadruplicate on each of
our arrays. The average variation in the ratiometric values
across five microarrays was indistinguishable from the
variation for the 70mer oligonucleotides. We also note that
our hybridization reaction conditions were intentionally
optimized for 70mer probes that comprised the bulk of the
array, and that more stringent hybridization conditions might
further reduce ratiometric signal variation for PCR length
products while maintaining or slightly increasing signals. Our
results also invite the possibility of using the genomic DNA
standard in a third label ‘color’ in the presence of two other
labeled RNAs to increase information delivered per array and
to gain the benefits of direct comparison while still including a
universal standard.

Other denominator strategies

Alternate approaches to the same set of ratio denominator
issues include synthesizing a labeled oligonucleotide of
known specific activity complementary to a short, common
‘capture’ sequence on each microarray feature (15), synthe-
sizing an oligonucleotide mix that is fully representative and
equimolar for all genes, or making a labeled mixture of all
cDNA inserts on an array (16,17). The latter method would
become comprehensive for all mouse ORFs when (and if) the
Mammalian Genome Collection (MGC) becomes complete
(http://mgc.nci.nih.gov/), although full MGC completeness is
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not imminent. These methods have the virtue of allowing one
to freely adjust signal by varying the amount of labeled
standard in each hybridization. Moreover, dilution with
labeled material that is non-reactive, which is a substantial
technical issue for genomic DNA cohybridization standards, is
not a problem. However, these methods are currently less
general and less flexible than genomic DNA because they are
not effective for arrays with features lacking the appropriate
‘capture’ sequence, or for arrays with features that are not
represented in a given cohybridization custom mixture.
Genomic DNA, in contrast, has the advantage of applying to
all ratiometric array types and feature content.

On balance, we are optimistic that results similar to those
reported here will be possible for smaller model genomes like
yeast, C.elegans and Drosophila, and that extension to other
large mammalian and plant genomes will be feasible. Benefits
for subsets of the data, including genes with very large
differences in expression between two RNA samples, as well
as overall generality, argue in favor of genomic DNA as a
standard of choice.
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